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Abstract: The goal of this paper is to propose the combinatorial method to facilitate

the calculation of the number of spanning trees for complex networks. In particular, we

derive the explicit formulas for the triangular snake, double triangular snake, four triangular

snake, the total graph of path, the generalized friendship graphs and the subdivision of

double triangular snake. Finally, we calculate their spanning trees entropy and we compare

it between them.

Key Words: Entropy, cyclic snakes, total graph, number of spanning trees.

AMS(2010): 05C05, 05C30.

§1. Introduction

In real life, most of the systems are represented by graphs, such that the nodes denote the

basic constituents of the system and edges describe their interaction. The Internet, electric,

bioinformatics, telephone calls, social networks and many other systems are now represented

by complex graphs [1].

There are many different types of networks and their classification depends on the proper-

ties such as nodes degrees, clustering coefficients, shortest paths. Another concern in studying

complex network is how to evaluate the robustness of a network and its ability to adapt to

changes [21]. The robustness of a network is correlated to its ability to deal with internal

feedbacks within the network and to avoid malfunctioning when a fraction of its constituents is

damaged. We use the entropy of spanning trees or what is called the asymptotic complexity [4]

in order to quantify the robustness and to characterize the structure. The number of spanning

trees in G, also called, the complexity of the graph is a well-studied quantity (for long time)

and appear in a number of applications. Most notable application fields are network reliability

[15, 16, 17], enumerating certain chemical isomers [18] and counting the number of Eulerian

circuits in a graph [19].

1Received March 7, 2018, Accepted November 15, 2018.
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A graph G has different subgraphs. In fact a graph having |V (G)| nodes has

2( |V (G)|(|V (G)− 1|)
2

)

possible distinct subgraphs. Some of these subgraphs are trees and the others are not trees.

We are focused certain kinds of trees called spanning trees. The history of determining the

number of spanning trees τ(G) of a graph G, dates back to the year 1842 in which the German

Mathematician Gustav Kirchhoff [2] introduced a relation between the number of spanning trees

of a graph G, and the determinant of a specific submatrix associated with G. This method is

infeasible for large graphs. For this reason scientists have developed techniques to get around

the difficulties and have paid more attention to deriving explicit and simple formulas for special

classes, see [3 - 13].

The basic combinatorial idea, Feussners recursive formula [20], for counting τ(G) in a graph

G is quite intuitive. For an undirected simple graph G, let e be any edge of G. All spanning

trees in G can be separated into two parts: one part contains all spanning trees without e as a

tree edge; the other part contains all spanning trees with e as a tree edge. The first part has

the same number of spanning trees as graph G − e , but leaving all other edges and vertices

as they are. The second part has the same number of spanning trees as graph G ⊙ e, where

G ⊙ eis the graph (not a subgraph) obtained from G by contracting the edge e = {u, v} until

the two vertices u and v coincide. Call this new vertex uv. Both G − e and G ⊙ e have fewer

edges, than G. So the number of spanning trees in G can be counted recursively in this way.

In this paper, we propose the combinatorial method to facilitate the calculation of the number

of spanning trees for complex networks. In particular, we derive the explicit formulas for

the triangular snake (∆k − snake), double triangular snake (2∆k − snake), four triangular

snake (4∆k−snake), the total graph of path Pn(T (Pn)), the graph nC4⊙2Pn , the generalized

friendship graphs kFn and the subdivision of double triangular snake (S(2∆n−snake)). Finally,

we calculate their spanning trees entropy and we compare it between them.

§2. Preliminary Notes

The combinatorial method involves the operation of contraction of an edge. An edge e of a

graph G is said to be contracted if it is deleted and its ends are identified. The resulting graph

is denoted by G • e . Also we denote by G− e the graph obtained from G by deleting the edge

e.

Theorem 2.1([13-20]) Let G be a planar graph (multiple edges are allowed in here). Then for

any edge τ(G) = τ(G − e) + τ(G • e).

Definition 2.2([22]) A triangular snake(∆ − snake) is a connected graph in which all blocks

are triangles and the block-cut-point graph is a path, as shown in Figure 1.

Definition 2.3 For an integer number m, an m-triangular snake is a graph formed by m

triangular snakes having a common path. If m = 2 that graph is called the double triangular
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snake is denoted by 2∆− snake, as shown in Figure 1.

Definition 2.4 The friendship graph Fn,k is a collection of k-cycles (all of order n), meeting

at a common vertex, as shown in Figure 1.

Definition 2.5 The graph nCm ⊙ 2Pn is a connected graph obtained from n copies of Cm

( nCm is a disconnected graph) and two paths where each path connects with one vertex ui

(i = 1, 2, · · · , 2n) of each copy of Cm . All the vertices ui (i = 1, 2, · · · , 2n) are distinct as

shown in Figure 1.r r rr r r r r r r rr r rr r r r rr r r
(a) ∆k-snake (b) 2∆3-sanke (c) T (P3)

!!!!r rrrr rrr r
(d) F3,4

r r rr r r r r rr r r
(e) 3C4 ⊙ 2P3

���r r rr rr rr r rr r r r r rr r rr r r r r r
(f) S(2∆3 − snake)

Figure 1 Triangular snake, double triangular snake, four triangular snake,
total graph of path, generalized friendship and subdivision of double triangular snake

Definition 2.6 The total graph of a graph G is the graph whose vertex set is V (G)∪E(G) and

two vertices are adjacent whenever they are either adjacent or incident in G. The total graph

of G denoted by T (G).

§3. Main Results

Theorem 3.1 The number of spanning trees of triangular snake graph is

τ(∆n) = 3n.

Proof Consider a triangular snake graph ∆
′

n constructed from ∆n by deleting one edge.

See Figure 2.
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rr r rr r rr r r r rr r r r
∆n ∆′

n

Figure 2 Triangular snake graph (∆n)

We put

∆n = τ(∆n) and ∆
′

n = τ(∆
′

n).

It is clear that

∆n = 2(∆n−1) + 3(∆
′

n−1) and ∆
′

n = 2(∆n−1)− 3(∆
′

n−1)

with initial conditions ∆1 = 3,∆
′

n = 1 thus we have





∆n

∆
′

n



 = A





∆n

4∆
′

n



 ,

where,

A =





2 3

2 −3



 ;





∆n

∆
′

n



 = A





∆n−1

∆
′

n−1



 = · · · = An−1





∆1

∆
′

1



 ,

we compute An−1as follows:

det(A− λI2) = λ2 − λ− 12 = 0, λ1 = −4 and λ2 = 3, λ1 6= λ2.

Then there is a matrix M is invertible such that A = MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
3



 ; M−1





1
7

−3
7

6
7

3
7



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(−4)n−1 0

0 (3)n−1




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From which, we obtain

An−1 =





(−4)n−1

7 + 2∗3n

7
−3∗(−4)n−1

7 + 3n

7

−2∗(−4)n−1

7 + 2∗(3)n−1

7
6∗(−4)n−1

7 + 3n−1

7





and hence the result follows. 2
Theorem 3.2 The number of spanning trees of the double triangular snake is

τ(2∆n − snake) = 8n.

Proof Consider a double triangular snake graph 2∆′
n-snake constructed from 2∆n-snake

by deleting two edges. See Figure 3.r r r r r r r r r rLLLr r r r r rr r r r r r
2∆n-snake 2∆′

n-snake

Figure 3 Triangular snake graph (∆n)

We put

2∆n − snake = τ(2∆n − snake) and 2∆
′

2 − snake = τ(2∆
′

2 − snake).

It is clear that

2∆n − snake = 7(2∆n−1 − snake) + 8(2∆
′

2 − snake)
2∆

′

2 − snake = 2(2∆n−1 − snake)− 8(2∆
′

n−1 − snake)

with initial conditions 2∆1 − snake = 8, 2∆
′

1 − snake = 1. Thus we have





2∆n − snake
2∆

′

n − snake



 = A





2∆n−1 − snake
2∆

′

n − snake



 , where A =





7 8

2 −8



 ,





2∆n − snake
2∆

′

n − snake



 = A





2∆n−1 − snake
2∆

′

n − snake



 = · · · = An−1





2∆1 − snake
2∆

′

1 − snake



 .

We compute An−1 as follows:

det(A− λI2) = λ2 − λ− 72 = 0, λ1 = −9 and λ2 = 8, λ1 6= λ2.
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Then there is a matrix M is invertible such that A = MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
8



 ; M−1 =





−1
7

8
7

8
7

−8
7



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(8)n−1 0

0 (−9)n−1



 .

From which, we obtain

An−1 =





(−8)n−1

7 + 8∗(−9)n−1

7
8n

7 + −8∗(−9)n−1

7

−2∗(8)n−1

7 + (−9)n−1

7
−2∗(8)n

7 + −(−9)n−1

7





and hence the result follows. 2
Theorem 3.3 The number of spanning trees in 4∆n − snake is τ(2∆n − snake)=48n, where

n is the number of blocks.

Proof Consider a double triangular snake graph 2∆
′

2−snake constructed from 2∆n−snake
by deleting four edges. See Figure 4.r r r r r r r r r rLLLr r r r r rr r r r r r����

q r r r r rrrrrrr
4∆n-snake 4∆′

n-snake

Figure 4 Friendship graph F4,k

We put

4∆n − snake = τ(4∆n − snake) and 4∆
′

n − snake = τ(4∆
′

n − snake).

It is clear that

4∆n − snake = 47(4∆n−1 − snake) + 48(4∆
′

2 − snake)
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and

4∆
′

n − snake = 2(4∆n−1 − snake)− 48(4∆
′

n−1 − snake)

with initial conditions 4∆1 − snake = 48, 4∆
′

1 − snake = 1. Thus, we have





4∆n − snake
4∆

′

n − snake



 = A





4∆n−1 − snake
4∆

′

n−1 − snake



 ,

where

A =





47 48

2 −48



 ,





4∆n − snake
4∆

′

n − snake



 = A





4∆n−1 − snake
4∆

′

n−1 − snake



 = · · · = An−1





4∆1 − snake
4∆

′

1 − snake



 .

We compute An−1 as follows:

det(A− λI2) = λ2 + 4λ− 2352 = 0, λ1 = 48 and λ2 = −49, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

1
48 −2



 ; M−1 =





96
97

48
97

1
97

−48
97



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(48)n−1 0

0 (−49)n−1



 .

From which, we obtain

An−1 =





2∗(48)n

97 + (−49)n−1

97
48n

97 + −48
97 ∗ (−49)n−1

2∗(48)n−1

97 + −2
97 ∗ (−49)n−1 (48)n

97 + 96
97 ∗ (−49)n−1





and hence the result follows. 2
Theorem 3.4 The number of spanning trees of the total graph of path Pn is

τ(T (Pn)) =
1√
5

[

(
7 + 3

√
5

2
)n − (

7− 3
√

5

2
)n

]

.

Proof Consider a total graph of path PnT (P
′

n) constructed from T (Pn) by deleting one
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edge. See Figure 5. ���r r r rr r r r r r r r rr r r r r
T (Pn) T (P ′

n)

Figure 5 Total graph of path

We put

T (Pn) = τ(T (Pn)) and T (P
′

n) = τ(T (P
′

n).

It is clear that

T (Pn) = 7T (Pn−1)− T (P
′

n−2),

where T (Pn) is the number of even block and

T (P
′

n) = 48T (Pn−2)− 7T (P
′

n−3),

where T (P
′

n) is the number of odd block with initial conditions T (P2) = 3, T (P
′

2) = 1. Thus,

we have




T (Pn)

T (P
′

n)



 = A





T (Pn−1)

T (P
′

n−1)



 ,

where

A =





7 −1

48 −7



 ,





T (Pn)

T (P
′

n)



 = A





T (Pn−1)

T (P
′

n−1)



 = · · · = An−2





T (P2)

T (P
′

2)



 ,

λ1 = 1 and λ2 = −1, λ1 6= λ2. Then there is a matrix M is invertible such that A=MDM−1,

where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

6 8



 ; M−1









4 −1
2

−3 1
2









; An−2 = MBn−2M−1,

where

Bn−2 =





(1)n−2 0

0 (−1)n−2



 .
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From which, we obtain

An−2 =





4 ∗ (1)n−2 − 3 ∗ (−1)n−2 (−1
2 ) ∗ (1)n−2 + (1

2 ) ∗ (−1)n−2

24 ∗ (1)n−2 − 24 ∗ (−1)n−2 −3 ∗ (1)n−2 + 4 ∗ (−1)n−2





and hence the result follows. 2
Theorem 3.5 The number of spanning trees in the graph nC4 ◦ 2Pn is τ(nC4 ◦ 2Pn) = 4n.

Proof Consider a graph Bn constructed from nC4 ◦ 2Pn = An by deleting two edges. See

Figure 6. r r rr r r r r rr r r r r rr r r r rr r r
BnAn

Figure 6 nC4 ◦ 2Pn graph

We put

An = τ(An) and Bn = τ(Bn).

It is clear that

An = 3An−1 + 4Bn−1 and Bn = 2An−1 − 4Bn−1

with initial conditions A1 = 4 and B1 = 1 thus we have





An

Bn



 = A





An−1

Bn−1



 ,

where

A =





3 4

2 −4



 ,





An

Bn



 = A





An−1

Bn−1



 = · · · = An−1





A1

B1



 .

We compute An−1 as follows:

det(A− λI2) = λ2 + λ− 20 = 0, λ1 = −5 and λ2 = 4, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2




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and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
4



 ; M−1 =
1
9

4





1
4 −1

2 1



 ; An−1 = MBn−1M−1,

where

Bn−1 =





(−5)n−1 0

0 (4)n−1



 .

From which, we obtain

An−1 =





(−5)n−1

9 + 2∗(4)n

9
−4∗(−5)n−1

9 + 4n

9

−2∗(−5)n−1

9 + 2∗4n−1

9
8∗(−5)n−1

9 + 4n−1

9





and hence the result follows. 2
Theorem 3.6 The number of spanning trees of friendship graph F3,k is τ(F3,k)=3k.

Proof Consider a friendship graph F
′

3,k constructed from F3,k by deleting one edge. See

Figure 7. r rr rrrrrr r rr rrr rr r
F3,k

F ′
3,k

Figure 7 Friendship graph F3,k

We put

F3,k = τ(F3,k) and F
′

3,k = τ(F
′

3,k).

It is clear that

τ(F3,k) = 2τ(F3,k−1) + 3τ(F
′

3,k−1) and τ(F
′

3,k) = 2τ(F3,k−1)− 3τ(F
′

3,k−1)

with initial conditions (F3,1) = 3, (F
′

3,1) = 1. Thus we have





F3,k

F
′

3,k



 = A





F3,k−1

F
′

3,k−1



 ,
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where

A =





2 3

2 −3



 ,





F3,k

F
′

3,k



 = A





F3,k−1

F
′

3,k−1



 = · · · = Ak−1





F3,1

F
′

3,1



 .

We compute Ak−1 as follows:

det(A− λI2) = λ2 − λ− 12 = 0, λ1 = −4 and λ2 = 3, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
3



 ; M−1 =
1
9

4









1
7

−3
7

6
7

3
7









; Ak−1 = MBk−1M−1,

where

Bk−1 =





(−4)k−1 0

0 (3)k−1



 .

From which, we obtain

Ak−1 =





(−4)k−1

7 + 2∗(3)k

7
−3∗(−4)k−1

7 + 3k

7

−2∗(−4)k−1

7 + 2∗3k−1

7
6∗(−4)k−1

7 + 3k−1

7





and hence the result follows. 2
Theorem 3.7 The number of spanning trees of friendship graph F4,k is τ(F4,k)=4k.

Proof Consider a friendship graph F
′

4,k constructed from F4,k by deleting one edge. See

Figure 8. QQrr rr rrr rr rr rr JJJAArr rr rrr rr r r rr
F4,k

F ′
4,k

Figure 8 Friendship graph F4,k
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We put

τ(F4,k) = 3τ(F4,k−1) + 4τ(F
′

4,k−1) and tau(F
′

4,k) = 2τ(F4,k−1)− 4τ(F
′

4,k−1)

with initial conditions (F4,1) = 4, (F
′

4,1) = 1. Thus, we have





F4,k

F
′

4,k



 = A





F4,k−1

F
′

4,k−1



 ,

where

A =





3 4

2 −4



 ,





F4,k

F
′

4,k



 = A





F4,k−1

F
′

4,k−1



 = · · · = Ak−1





F4,1

F
′

4,1



 .

We compute Ak−1 as follows:

det(A− λI2) = λ2 + λ− 20 = 0, λ1 = −5 and λ2 = 4, λ1 6= λ2.

Then there is a matrix M is invertible such that A = MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
4



 ; M−1 =
4

9





1
4 −1

2 1



 ; Ak−1 = MBk−1M−1,

where

Bk−1 =





(−5)k−1 0

0 (4)k−1



 .

From which, we obtain

Ak−1 =





(−5)k−1

9 + 2∗(4)k

9
−4∗(−5)k−1

9 + 4k

9

−2∗(−5)k−1

9 + 2∗4k−1

9
8∗(−5)k−1

9 + 4k−1

9





and hence the result follows. 2
Theorem 3.8 The number of spanning trees of friendship graph Fn,k is τ(Fn,k)=nk.

Proof Consider a friendship graph F
′

n,k constructed from Fn,k by deleting one edge. See

Figure 9.
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����
rr rr rrr r r r r r r rrrrrr r r r rr rr �� rr rr rr rr r r r r r rrr r r r r r rr rr rr r

Fn,k F ′
n,k

rrr��
Figure 9 Friendship graph F4,k

We put

Fn,k = τ(Fn,k) and F
′

n,k = τ(F
′

n,k).

It is clear that

τ(Fn,k) = (n− 1)τ(Fn,k−1) + nτ(F
′

n,k−1) andτ(F
′

n,k) = 2τ(Fn,k−1)− nτ(F
′

n,k−1)

with initial conditions (Fn,1) = n, (F
′

n,1) = 1. Thus, we have





Fn,k

F
′

n,k



 = A





Fn,k−1

F
′

n,k−1



 ,

where

A =





n− 1 n

2 −n



 ,





Fn,k

F
′

n,k



 = A





Fn,k−1

F
′

n,k−1



 = · · · = Ak−1v





n− 1 n

2 −n



 .

We compute Ak−1 as follows:

det(A− λI2) = λ2 + λ− n(n− 1) = 0, λ1 = −(n+ 1) and λ2 = n, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
n



 ; M−1 =
n

2n+ 1





1
n −1

2 1



 ; Ak−1 = MBk−1M−1,
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where

Bk−1 =





−(n+ 1)k−1 0

0 (n)k−1



 .

From which, we obtain

Ak−1 =





(−n−1)k−1

2n+1 + 2∗(n)k

2n+1
−n∗(−n−1)k−1

2n+1 + nk

2n+1

−2∗(−n−1)k−1

2n+1 + 2∗nk−1

2n+1
2n∗(−n−1)k−1

2n+1 + nk−1

2n+1





and hence the result follows. 2
Theorem 3.9 The number of spanning trees of the subdivision of double triangular snake graph

is τ(S(2∆n − snake)) = 32n.

Proof Consider a double triangular snake graph S(2∆
′

n−snake) constructed from S(2∆n−
snake) by deleting one edges. See Figure 10,

r r r r r r r r r rLLLLr r r r r rr r r r r r
S(2∆n-snake) S(2∆′

n-snake)

r r r r r r r r r r rr r r r rr r r r r r r r r r rr
Figure 10 Friendship graph F4,k

We put

S(2∆n − snake) = τ(S(2∆n − snake)) and S(2∆
′

n − snake) = τ(S(2∆
′

n − snake)).

It is clear that

S(2∆n − snake) = 31(S(2∆n−1 − snake)) + 32(S(2∆
′

2 − snake))

and

S(2∆
′

2 − snake) = 2(S(2∆n−1 − snake))− 32(S(2∆
′

n−1 − snake))

with initial conditions S(2∆1 − snake) = 32, S(2∆
′

1 − snake) = 1. Thus, we have





S(2∆n − snake)
S(2∆

′

n − snake)



 = A





S(2∆n−1 − snake)
S(2∆

′

n − snake)



 ,
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where

A =





31 32

2 −32



 ,





S(2∆n − snake)
S(2∆

′

n − snake)



 = A





S(2∆n−1 − snake)
S(2∆

′

n − snake)



 = · · · = An−1





S(2∆1 − snake)
S(2∆

′

1 − snake)



 .

We compute An−1 as follows:

det(A− λI2) = λ2 + λ− 1056 = 0, λ1 = −33 and λ2 = 32, λ1 6= λ2.

Then there is a matrix M is invertible such that A=MBM−1, where

B =





λ1 0

0 λ2





and M is an invertible transformation matrix formed by eigenvectors

M =





1 1

−2 1
32



 ; M−1 =









1
65

−32
65

64
65

32
65









; An−1 = MBn−1M−1,

where

Bn−1 =





(32)n−1 0

0 (−33)n−1



 .

From which, we obtain

An−1 =





(32)n−1

65 + 64∗(−33)n−1

65
(−32)n

65 + −32∗(−33)n−1

65

−2∗(32)n−1

65 + 2∗(−33)n−1

65
2∗(32)n

65 + (−33)n−1

65





and hence the result follows. 2
§4. Spanning Tree Entropy

The entropy of spanning trees of a network or the asymptotic complexity is a quantitative

measure of the number of spanning trees and it characterizes the network structure. We use

this entropy to quantify the robustness of networks. The most robust network is the network

that has the highest entropy. We can calculate its spanning tree entropy which is a finite number

and a very interesting quantity characterizing the network structure, defined in [15, 16] as

Z(G) = lim
V (G)→∞

ln τ(G)

|V (G)| ;
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Z(∆k − snake) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

3n

2n+ 1
= 0.5493;

Z(2∆k − snake) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(8n)

3n+ 1
= 0.6931;

Z(4∆k − snake) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(48n)

5n+ 1
= 0.7742;

Z(T (Pn)) = lim
n→∞

ln 1√
5
[(7+3

√
5

2 )n − (7−3
√

5
2 )]

2n− 1
= ln(

√

7 + 3
√

5

2
) = 0.7650;

Z(nC4 ⊙ 2Pn) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(4n)

4n
=

ln 4

4
= 0.3466;

Z(F k
3 ) = lim

V (G)→∞

ln τ(G)

|V (G)| = lim
k→∞

ln(3k)

2k + 1
= 0.5493;

Z(F k
4 ) = lim

V (G)→∞

ln τ(G)

|V (G)| = lim
k→∞

ln(4k)

3k + 1
= 0.4621;

Z(F k
n ) = lim

V (G)→∞

ln τ(G)

|V (G)| = lim
k→∞

ln(nk)

(n− 1)k + 1
= ln

(n)

n− 1
;

Z(S(2∆k − snake)) = lim
V (G)→∞

ln τ(G)

|V (G)| = lim
n→∞

ln(32n)

8n+ 1
= ln

(32)

8
= 0.4332.

§5. Conclusion

In this paper, we proposed the combinatorial method to facilitate the calculation of the number

of spanning trees for complex networks. In particular, we derive the explicit formulas for

the triangular snake (∆k − snake), double triangular snake (2∆k − snake), four triangular

snake (4∆k− snake), the total graph of path Pn(T (Pn)), the graph nC4⊙ 2Pn, the generalized

friendship graphs F k
n and the subdivision of double triangular snake (S(2∆n−snake)). Finally,

we calculate their spanning trees entropy and we compare it between them.
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Abstract: This work deals with the isomorphism theorems of Neutrosophic R- modules. In

this work, we assumed all rings to be commutative rings, we studied neutrosophic module [2],

neutrosophic submodule, pseudo neutrosophic module and pseudo neutrosophic submodule.

We considered the concept of Lagrange theorem [11] and discovered that in case of finite

neutrosophic modules, the order of both neutrosophic submodules and pseudo neutrosophic

submodules do not generally divide the order of neutrosophic module. The concept of cosets

in general does not partition the neutrosophic module, even the pseudo neutrosophic sub-

modules do not in general partition the neutrosophic module. This work also shows that

the neutrosophic module is also a module and we considered the isomorphism theorem for

modules [8] and extended it to Neutrosophic R modules and discovered that the isomor-

phism theorem for R modules also hold for neutrosophic R modules but where the order of

a neutrosophic submodule divides the order of a neutrosophic module, the theorem may fail.

We also stated and proved the isomorphism theorems of neutrosophic R-modules.

Key Words: Neutrosophy, module, neutrosophic R-module, neutrosophic group, ring,

neutrosophic R-submodule, partition, coset, isomorphism.

AMS(2010): 03B60,12E05,97H40.

§1. Introduction

In 1980 [1], Florentin Smarandache introduced the notion of neutrosophy as a new branch of

philosophy. Neutrosophy is the base of neutrosophic logic which is an extension of the fuzzy

logic in which indeterminacy is included [2]. In the neutrosophic logic, each proposition is es-

timated to have the percentage of truth in a subset T , the percentage of indeterminacy in a

subset I, and the percentage of falsity in a subset F . Since the world is full of indeterminacy,

several real world problems involving indeterminacy arising from law, medicine, sociology, psy-

chology, politics, engineering, industry, economics, management and decision making, finance,

stocks and share, meteorology, artificial intelligence, IT, communication etc can be solved by

neutrosophic logic. Using Neutrosophic theory, Vasantha Kandasamy and Florentin Smaran-

1Received May 16, 2018, Accepted November 18, 2018.
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dache introduced the concept of neutrosophic algebraic structures [13]. Some of the neutro-

sophic algebraic structures introduced and studied include neutrosophic fields, neutrosophic

vector spaces, neutrosophic groups, neutrosophic bigroups, neutrosophic N -groups, neutro-

sophic semigroups, neutrosophic bisemigroups, neutrosophic N -semigroup, neutrosophic loops,

neutrosophic biloops, neutrosophic N -loop, neutrosophic groupoids, neutrosophic bigroupoids

and so on. Neutrosophic module was defined by Florentin and Vasantha in [11].

In section two of this work, we present some elementary properties of neutrosophic R-

modules and section three is devoted to the study of the isomorphism theorems of neutrosophic

R-modules.

§2. Some Elementary Properties of Neutrosophic R-module

We begin this section with the following definitions.

Definition 2.1([11]) Let R be a commutative ring. An R-module is an (additive) abelian group

M equipped with scalar multiplication R×M →M such that the following axioms hold for all

m,n ∈M and all r, s, 1 ∈ R:

(1) r(m+ n) = rm+ rn;

(2) (r + s)m = rm+ sm;

(3) (rs)m = r(sm);

(4) 1 ·m = m.

Remark 2.2 This definition also makes sense for non commutative rings R in which in this

case, M is called a left R-module. If R is a commutative ring, then a neutrosophic left R-module

〈M ∪ I〉 becomes a neutrosophic right R-module and we simply call 〈M ∪ I〉 a neutrosophic

R-module.

Remark 2.3 In the definition of neutrosophic R-module, we replaced the abelian group by a

neutrosophic abelian group, all other factors remain the same.

Definition 2.4 Let 〈M ∪ I〉 be a neutrosophic module. Let H and K be any two neutrosophic

submodules of 〈M∪I〉, we say H and K are neutrosophic conjugates if we can find x, y ∈ 〈M∪I〉
such that xH = Ky.

We illustrate this with the following example.

Example 2.5 LetR = {0, 1, 2} be the ring of integers and let Z6∪I = {0, 1, 2, 3, 4, 5, I, 2I, 3I, 4I,
5I, 1 + I, 1 + 2I, 1 + 3I, 1 + 4I, · · · , 5 + 5I} be a neutrosphic group under addition modulo 6.

Then R× 〈Z6 ∪ I〉 → 〈Z6 ∪ I〉 = {0, 1, 2, 3, 4, 5, I, 2I, 3I, 4I, 1+ I, · · · , 5 + 5I} = 〈Z6 ∪ I〉. This

is a neutrosophic module.

H = {0, 3, 3I, 3+3I} is a neutosophic submodule of 〈Z6∪I〉K = {0, 2, 4, 2+2I, 4+4I, 2I, 4I}
is a neutrosophic sub module of 〈Z6 ∪ I〉. For 2, 3 in 〈M ∪ I〉, we have 2H = 3K = {0}, so

H and K are neutrosophic conjugates. In case of neutrosophic conjugate, we do not demand

O(H) = O(K).
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Definition 2.6 Let 〈M ∪ I〉 be a neutrosophic module and H a neutrosophic sub module of

〈M ∪ I〉 for n ∈ 〈M ∪ I〉, then H + n = {h + n/h ∈ H} is called a coset of H in 〈M ∪ I〉.
As neutrosophic modules are formed from neutrosophic abelian groups, we do not talk about left

and right cosets as the left and right cosets coincide.

Example 2.7 Let 〈M ∪ I〉 = 〈Z2 ∪ I〉 = {0, 1, I, 1 + I} be a neutrosophic module and let

H = {0, I} be a neutrosophic sub module. The cosets ofH areH+0 = {0, I},H+1 = {1, 1+I},
H + I = {I, 0} and H + {1 + I} = {1 + I, 1}.

Definition 2.8 The cosets of a neutrosophic module do not generally partition the neutrosophic

module.

Example 2.9 Let 〈M ∪ I〉 = {0, 1, I, 1+ I} be a neutrosophic module and let H = {0, I} be a

neutrosophic sub module. Then the cosets are H+0 = {0, I}, H+1 = {1, 1+I},H+I = {I, 0}
and H + {1 + I} = {1 + I, 1}.

Therefore the classes are [0] = [I] = {0, I} and [I] = [1 + I] = {1, 1 + I}. Here, we see the

cosets do not partition the neutrosophic module.

Example 2.10 Let 〈Z3 ∪ I〉 = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I} be a neutrosophic

module and let P = {0, 2, I, 2I} be a neutrosophic submodule, then the cosets of P are P +0 =

{0, 2, I, 2I}, P + 1 = {1, 0, I, 2I}, P + 2 = {2, 1, I + 2, 2 + 2I}, P + I = {I, I + 2, 2I, 0},
P + 2I = {2I, 2+ 2I, 0, I}, P + {1+ I} = {1+ I, I, 1 +2I, 1}, P + {1+ 2I} = {1+ 2I, 2I, 1, 1+

I},P + {2 + I} = {2 + I, 1 + I, 2 + 2I, 2} and P + {2 + 2I} = {2 + 2I, 1 + 2I, 2, 2 + I}. The

cosets partition the neutrosophic module. Therefore, we see that the cosets do not generally

partition the neutrosophic module.

Theorem 2.1 The neutrosophic module is indeed a module.

Proof Suppose that the neutrosophic module 〈M ∪ I,+〉 is an (additive) Abelian neutro-

sophic group. Every (additive) Abelian neutrosophic group is a group. We know that a module

is an Abelian group over a ring. Therefore a neutrosophic module is a module. We illustrate

with an example.

Consider R = 〈Z3〉 = {0, 1, 2} is a ring and let N(M) = 〈M ∪ I〉 = 〈Z3 ∪ I〉, then

〈Z3∪I〉 = {0, 1, 2, I, 2I, 1+I, 1+2I, 2+I, 2+2I}. Let R×N(M) = {0, 1, 2}×{0, 1, 2, I, 2I, 1+

I, 1 + 2I, 2 + I, 2 + 2I} = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}.
Clearly, this is an additive Abelian neutrosophic group which is also a group. Also, an

Abelian group over a ring gives a module, which is also a group. Therefore a neutrosophic

module is a module. 2
Definition 2.11 Let 〈M ∪ I〉 be a neutrosophic Abelian group and R a commutative ring. Let

R × 〈M ∪ I〉 → 〈M ∪ I〉 be a neutrosophic R-module. A proper subset P of 〈M ∪ I〉 is said

to be a neutrosophic submodule of the R-module if P is a non-empty set which is closed under

addition and scalar multiplication.

Definition 2.12([11]) A pseudo neutrosophic group is a neutrosophic group which has no proper
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subset which is a group.

Definition 2.13([11]) Let N(M) = 〈M ∪ I〉 be a neutrosophic module, a proper subset P of

N(M) which is a pseudo neutrosophic subgroup is called a pseudo neutrosophic submodule.

Example 2.14 Let R = {0, 1} be a ring and let N(M) = 〈Z4 ∪ I〉 = {0, 1, 2, 3, I, 2I, 3I, 1 +

I, 1 + 2I, 1 + 3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I}, be a neutrosophic group. The

neutrosophic R-module R× 〈Z4 ∪ I〉 = {0, 1}× {Z4 ∪ I} = {0, 1, 2, 3, I, 2I, 3I, 1+ I, 1 + 2I, 1 +

3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I}. Let P = {0, 3 + 3I} be a pseudo neutrosophic

subgroup of 〈M ∪ I〉. Thus P is a pseudo neutrosophic submodule.

Theorem 2.2([8]) The lagrange theorem for classical module states that the order of any

submodule of a finite module is a factor of the order of the module.

Definition 2.15 The order of a neutrosophic submodule does not in general divide the order

of the neutrosophic module.

Example 2.16 Let us consider an example of Lagrange theorem on Neutrosophic module

Let 〈Z3 ∪ I〉 = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I} be a neutrosophic module and let

P = {0, 2, I, 2I} be a neutrosophic submodule, let us bear in mind that the order of the

neutrosophic submodule need not divide the order of the neutrosophic module, then the cosets of

P are P+0 = {0, 2, I, 2I}, P+1 = {1, 0, I, 2I}, P+2 = {2, 1, I+2, 2+2I},P+I = {I, I+2, 2I, 0},
P +2I = {2I, 2+2I, 0, I}, P +{1+I} = {1+I, I, 1+2I, 1}, P +{1+2I} = {1+2I, 2I, 1, 1+I},
P + {2 + I} = {2 + I, 1 + I, 2 + 2I, 2}, P + {2 + 2I} = {2 + 2I, 1 + 2I, 2, 2 + I}.

The order of the neutrosophic module is nine and the order of the neutrosophic submodule

is four, the number of elements in each coset is four as well. There are nine cosets. Therefore,

we have 9 6= 4.9, four is not a factor of nine.

In general, the neutrosophic modules do not satisfy Lagrange theorem on finite modules.

§3. Isomorphism Theorems of Neutrosophic R-modules

Theorem 3.1 Let f : M ∪ I → N ∪ I be a neutrosophic R module homomorphism. Then,

(1) ker f is a neutrosophic submodule of 〈N ∪ I〉;
(2) Imf is a neutrosophic submodule of 〈N ∪ I〉.

Proof Let 〈M ∪ I〉 ∈ ker f and r ∈ R. Then f〈rm〉 = rf〈m〉 = r〈0〉 = 0. So 〈rm〉 ∈ ker f .

Thus, ker f is a neutrosophic R submodule of 〈M ∪ I〉.
In addition, suppose m ∈ 〈M ∪ I〉 and r ∈ R, we have rf〈m〉 = f〈rm〉 ∈ Imf . So, Imf is

a neutrosophic R submodule of 〈N ∪ I〉. 2
Example 3.1 Let f : Z4 ∪ I → Z3 ∪ I defined by f : {a}4 → {2a}3 where {a}4 means

amod 4 and {2a}3 means 2amod 3. The kernel are {0, 3, 3I, 3+3I}mapped to Z3∪I under the

operation amod 4
f−→ 2amod 3. The image of 〈Z4∪I〉 are {0, 1, 2, I, 2I, 1+I, 1+2I, 2+I, 2+2I}

which is the neutrosophic submodule of 〈Z3 ∪ I〉.
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Corollary 3.2 If M1 and M2 are R submodules of the neutrosophic R module 〈M ∪ I〉 in

Theorem 3.1, then

M1 +M2/M1
∼= M2

/

M1 ∩M2.

Proof This is a corollary to Theorem 3.1. Notice that 〈M ∪ I〉 = {0, 1, 2, I, 2I, 1 +

I, 1 + 2I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 + 2I, 3 + 3I}, M2 = {0, 1, 2}, M1 = {0, 1}, M2

/

M1 =

{0, 1, 2} + {0, 1} = {{0, 1}, {1, 2}, {2, 0}} = {0, 1, 2}, M1 + M2

/

M1 = {0, 1} + {0, 1, 2} =

{{0, 1, 2}, {1, 2, 0}}= {0, 1, 2}, M1 ∩M2 = {0, 1}, M2

/

M1 ∩M2 = {0, 1, 2}
/

{0, 1} = {0, 1, 2}+

{0, 1} = {{0, 1}, {1, 2}, {2, 0}} = {0, 1, 2} and M1 +M2/M1
∼= M2

/

M1 ∩M2. It is noteworthy

to mention that Theorem 3.1 holds even when the submodules are not neutrosophic submodules

but just submodules. 2
Theorem 3.3 If 〈M1∪I〉 ⊆ 〈M2∪I〉 ⊆ 〈M∪I〉 are neutrosophic R-modules, then M2 ∪ I /M1 ∪ I
is a neutrosophic submodule of 〈M ∪ I〉 /〈M1 ∪ I〉 and

〈M ∪ I〉
/

〈M1 ∪ I〉
/

〈M2 ∪ I〉 /〈M1 ∪ I〉 ∼= 〈M ∪ I〉 /〈M2 ∪ I〉.

Proof Define θ : M ∪I /M1∪I →M ∪I /M2∪I by θ〈x+M1∪I〉 = x+M2∪I. We have to

check whether it is well defined. If we have two different representatives for x+M2∪I, it means

x+M1 ∪ I = y +M1 ∪ I which is the same as saying x− y ∈M1 ∪ I but 〈M1 ∪ I〉 ⊂ 〈M2 ∪ I〉,
therefore, x− y ∈ 〈M2 ∪ I〉, hence x+M2 ∪ I is the same as y +M2 ∪ I. θ is well defined and

θ is a neutrosophic R module homomorphism. Now, what is the kernel of θ? Cleraly,

ker θ = {x̄ ∈M ∪ I /M1 ∪ I : x+M2 ∪ I = 0 +M2 ∪ I},

i.e.,

ker θ = {x+M1 ∪ I ∈M ∪ I /M1 ∪ I : x ∈M2 ∪ I} = M2 ∪ I /M1 ∪ I.

If you take any x+M2∪ I in M ∪ I
/

M2∪ I, look at x+M1∪ I and θ(x+M1∪ I) = x+M2∪ I.
Therefore, it is surjective. 2
Example 3.2 Let 〈M ∪ I〉 = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}, 〈M2 ∪ I〉 = {0, 1, I, 1 +

I}, 〈M1 ∪ I〉 = {0, I}, M ∪ I/M1 ∪ I = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I} + {0, I} =

{0, 1, 2, I, 2I, 1+I, 1+2I, 2+I, 2+2I},M2 ∪ I/M1 ∪ I = {0, 1, I, 1+I}+{0, I} = {0, 1, I, 2I, 1+

I, 1 + 2I}, M2 ∪ I/M1 ∪ I is a neutrosophic submodule of M ∪ I/M1 ∪ I.

〈M ∪ I〉/〈M1 ∪ I〉
/

〈M2 ∪ I〉/〈M1 ∪ I〉

= {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}
/

{0, 1, I, 2I, 1 + I, 1 + 2I}
= {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I},



On Isomorphism Theorems of Neutrosophic R-Modules 23

M ∪ I/M2 ∪ I = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}
/

{0, 1, I, 1 + I}
= {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I},

Whence,

〈M ∪ I〉/〈M1 ∪ I〉
/

〈M2 ∪ I〉/〈M1 ∪ I〉 ∼= 〈M ∪ I〉
/

〈M2 ∪ I〉.

Corollary 3.4 Let M ∪ I be a neutrosophic module. Let M1 and M2 be submodules of 〈M ∪ I〉
and let M1 ⊆M2 ⊆ 〈M ∪ I〉, then 〈M ∪ I〉

/

M1

/

M2/M1
∼= 〈M ∪ I〉

/

M2.

This is a corollary of Theorem 3.3.

Example 3.3 We consider the following example Let 〈M ∪ I〉 = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 +

I, 2+2I}, M2 = {0, 1, 2}, M1 = {0, 1}. Then M2

/

M1 = {0, 1, 2}
/

{0, 1} = {0, 1, 2}+ {0, 1}=

{{0, 1}, {1, 2}, {2, 1}}= {0, 1, 2}, 〈M∪I〉/M1 = {0, 1, 2, I, 2I, 1+I, 1+2I, 2+I, 2+2I}+{0, 1}, =
{{0, 1}, {1, 2}, {2, 0}, {I, 1+I}, {2I, 2I+1}, {1+I, 2+I}, {1+2I, 2+2I}, {2+I, I}, {2+2I, 2I}}=

{0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I} and 〈M ∪ I〉
/

M1

/

M2/M1 = {0, 1, 2, I, 2I, 1 + I, 1 +

2I, 2+I, 2+2I}
/

{0, 1, 2} = {0, 1, 2, I, 2I, 1+I, 1+2I, 2+I, 2+2I}+{0, 1, 2}= {0, 1, 2, I, 2I, 1+

I, 1 + 2I, 2 + I, 2 + 2I}, 〈M ∪ I〉/M2 = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}/{0, 1, 2} =

{0, 1, 2, I, 2I, 1+I, 1+I, 1+2I, 2+I, 2+2I}+{0, 1, 2}= {{0, 1, 2}, {1, 2, 0}, {2, 0, 1}, {I, 1+I, 2+

I}, {2I, 2I+1, 2I+2}, {1+I, 2+I, I}, {1+2I, 2+2I, 2I}, {2+I, I, 1+I}, {2+2I, 2I, 1+2I}}=

{0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}. Whence,

〈M ∪ I〉
/

M1

/

M2/M1
∼= 〈M ∪ I〉

/

M2.

Theorem 3.5 Let f : 〈M ∪ I〉 → N ∪ I be a neutrosophic R module homomorphism, then

Imf ∼= M ∪ I
/

ker f

Proof Define θ : M ∪ I
/

ker f → Imf , θx̄ = f(x). We want to prove that it is well-defined

since there could be many representatives of x̄. If x̄ = ȳ → x− y ∈ ker f → f(x− y) = 0. Since

f is a neutrosophic module homomorphism f(x) = f(y)→ θ(x̄) = θ(ȳ)→ θ is well defined. θ is

a homomorphism since f is a homomorphism for all x̄, ȳ ∈M ∪ I
/

ker f . θ(x̄+ ȳ) = θ(x + y) =

f(x+y) = f(x)+f(y) = θ(x̄) = θ(ȳ) for all r ∈ R and x̄ ∈M ∪ I
/

ker f . By definition of scalar

multiplication on M ∪ I
/

ker f , θ(r.x̄) = θ(rx) = f(rx) = rf(x) = rθ(x̄), θ is a neutrosophic

R module homomorphism. Now, let y ∈ Imf → x ∈ M ∪ I such that f(x) = y → θ(x̄) = y

this implies θ is surjective. If θ(x̄) = 0, then f(x) = 0 → x ∈ ker f → x̄ = 0. This implies θ is

injective and it implies θ is an isomorphism. 2
Example 3.4 Let f : Z3∪I → Z3∪I be defined by f : [a]3 → [4a]3 where [a]3 means amod 3 and

[4a]3 means 4amod 3. The image of f = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}, ker f = {0},
M ∪ I

/

ker f = {0, 1, 2, I, 2I, 1 + I, 1 + 2}
/

{0} = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}.
Imf = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}. Hence, Imf ∼= M ∪ I

/

ker f .
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Theorem 3.6 If 〈M1 ∪ I〉 and 〈M2 ∪ I〉 are neutrosophic R submodules of 〈M ∪ I〉, then

〈M1 ∪ I〉+ 〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∼= 〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∩ 〈M2 ∪ I〉.

Proof Define θ : 〈M2 ∪ I〉 → 〈M1 ∪ I〉+ 〈M2 ∪ I〉
/

〈M1 ∪ I〉 by θ(x) = x̄. Note that we do

not have to worry about well definiteness. There is no representative issue, every element has

its own existence θ(x+ y) = x+ y = x̄+ ȳ = θ(x) + θ(y). ker θ = {x ∈M2 ∪ I : x̄ = 0} = {x ∈
M2 ∪ I : x ∈ M1 ∪ I} = 〈M2 ∪ I〉 ∩ 〈M1 ∪ I〉. It is injective. x+ y or x̄ + M1 ∪ I is a coset,

y ∈M1 ∪ I and x ∈M2∪ I, x+ y = (x+ y)+M1 = (x+M1∪ I)+ (y+M1∪ I), y+M1∪ I = 0

(in neutrosophic quotient module) = x+M1 ∪ I = x̄→ θ(x) = x+ y → θ is surjective. 2
The next example is an illustration of Theorem 3.6.

Example 3.5 Let M ∪ I = {0, 1, 2, I, 2I, 3I, 1+ I, 1 + 2I, 1 + 3I, 2 + I, 2 + 2I, 2 + 3I, 3 + I, 3 +

2I, 3 + 3I}, M2 ∪ I = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}, M1 ∪ I = {0, 2, 2I, 2 + 2I}.
We show that 〈M1 ∪ I〉 + 〈M2 ∪ I〉

/

〈M1 ∪ I〉 ∼= 〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∩ 〈M2 ∪ I〉. Notice

that 〈M2 ∪ I〉
/

〈M1 ∪ I〉 = {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}
/

{0, 2, 2I, 2 + 2I}, 〈M2 ∪

I〉
/

〈M1 ∪ I〉 = {0, 1, 2, I, 2I, 1+ I, 1 + 2I, 2 + I, 2 + 2I} and 〈M1 ∪ I〉+ 〈M2 ∪ I〉
/

〈M1 ∪ I〉 =

{0, 2, 2I, 2 + 2I} + {0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}. Therefore, 〈M1 ∪ I〉 + 〈M2 ∪
I〉
/

〈M1∪ I〉 = {0, 1, 2, I, 2I, 1+ I, 1+2I, 2+ I, 2+2I}, 〈M1∪ I〉∩ 〈M2∪ I〉 = {0, 2, 2I, 2+2I},

〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∩ 〈M2 ∪ I〉 = {0, 1, 2, I, 2I, 1+ I, 1 + 2I, 2 + I, 2 + 2I}
/

{0, 2, 2I, 2 + 2I} =

{0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}+ {0, 2, 2I, 2 + 2I}, 〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∩ 〈M2 ∪ I〉 =

{0, 1, 2, I, 2I, 1 + I, 1 + 2I, 2 + I, 2 + 2I}. Therefore, we know that

〈M1 ∪ I〉+ 〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∼= 〈M2 ∪ I〉
/

〈M1 ∪ I〉 ∩ 〈M2 ∪ I〉.
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Abstract: Let G be an undirected graph with n vertices in which a robot is placed at a

vertex say v, and a hole at vertex u and in all other (n − 2) vertices are obstacles. We refer

to this assignment of robot and obstacles as a configuration Cv
u of G. Suppose we have a

one player game in which an obstacle can be slide to an adjacent vertex if it is empty i.e.

if it has a hole and the robot can move from vertex u to an empty vertex v if d(u, v) ≤ 2

where d(u, v) is the distance between vertex u and v. The goal is to take the robot to a

particular destination vertex by using a sequence of mRJ moves of the robot for m = 1

and simple moves of the robot as well as obstacles as the case may be. The results of this

paper, which is an extension of the work [Motion planning in Cartesian product graphs,

Discussiones Mathematicae Graph Theory 34 (2014) 207-221] gives the minimum number of

moves required for the motion planning problem in Cartesian product of two graphs each

having girth six or more.

Key Words: Robot motion in a graph, Cartesian product of graphs, 1RJ move.

AMS(2010): 05C85, 05C75, 68R10, 91A43.

§1. Introduction

Given a graph G, with a robot placed at one of it’s vertices and movable obstacles at some

other vertices. Assuming that we are allowed to slide the obstacles to an adjacent vertex if

it is empty and the robot can move from vertex u to an empty vertex v if d(u, v) ≤ 2. Let

u, v ∈ V (G), and suppose that the robot is at v and the hole at u and obstacles at other

vertices we refer to this as a configuration Cv
u. The number of edges in a path is called its

length. The girth of a graph G, denoted by g(G), is the length of a shortest cycle contained

in the graph. A simple move is referred to as moving an obstacle or the robot to an adjacent

empty vertex. A graph G is k-reachable if there exists a k-configuration such that the robot

can reach any vertex of the graph in a finite number of simple moves. Let u and v be two

vertices having a robot and a hole, respectively. Further let [u, d1, d2, d3, · · · , dm, v] be a path

having obstacles at the vertices d1, d2, d3, · · · , dm. An mRJ move from the vertex u to the

1Received May 25, 2018, Accepted November 20, 2018.
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empty vertex v is defined as movement of the robot to an empty vertex v by jumping over m

obstacles d1, d2, d3, · · · , dm. Although throughout this paper we would only consider the case

where m = 1 (i.e. 1RJmoves only) and simple moves of the robot as well as obstacles as the

case may be. Let [u, d1, d2, d3, · · · , dm, v] be a path in a graph such that u and v have a hole

and a robot respectively, and d1, d2, d3, ...dm have obstacles. An mRJ move from vertex u to

v is denoted by v
r←−
1
u. Similarly we use v

r←− u and v
o←− u to denote respectively, the robot

move and the obstacle move from vertex u to an adjacent vertex v where u, v ∈ E(G). The

objective is to find a minimum sequence of moves that takes the robot from (source) vertex u

to a (destination) vertex v. The vertex set and edge set of a graph G is denoted by V (G) and

E(G) respectively. We refer to |V (G)| and |E(G)| as the order and the size of G, respectively.

A graph G is said to be non-trivial if |V (G)| > 1. In this article, we restrict our study to

simple finite non-trivial graphs. For two vertices u, v ∈ V (G), let dG(u, v) denotes the distance

between u and v in G. We use d(u, v) instead of dG(u, v) to represent the distance between the

vertices u and v in the graph G. We denote the path, the cycle and the complete graph on n

vertices by Pn, Cn and Kn respectively.

The motion planning problem in graph was proposed by Papadimitriou et al. [9] where it

was shown that with arbitrary number of holes, the decision version of such problem is NP-

complete and that the problem is complex even when it is restricted to planar graphs. They

also gave time algorithm for trees. The result in [9] was improve in [3]. Robot motion planning

on graphs (RMPG) is a graph with a robot placed at one of its vertices and movable obstacle at

some of the other vertices while generalization of RMPG problem is the Multiple robot motion

planning in graph (MRMPG) whereby we have k different robots with respective destinations.

Ellips and Azadeh [6] studied MRMPG on trees and introduced the concept of minimal solvable

trees. Auletta et al. [2] also studied the feasibility of MRMPG problem on trees and gave an

algorithm that, on input of two arrangements of k robots on a tree of order n, decides in

time O(n) whether the two arrangements are reachable from one another. Parberry [8] worked

on grid of order n2 with multiple robots while Deb and Kapoor [5, 4] generalized and apply

the technique used in [8] to calculate the minimum number of moves for the motion planning

problem for the cartesian product of two given graphs. A recent work is by the present authors

[1] whereby they gave the minimum number of moves required for the motion planning problem

in some lexicographic product graphs.

The MRMPG problem of grid graph of order n2 with n2 − 1 robots is known as (n2 − 1)-

puzzle. The objective of (n2 − 1)-puzzle is to verify whether two given configurations of the

grid graph of order n2 are reachable from each other and if they are reachable then to provide a

sequence of minimum number of moves that takes one configuration to the other. The (n2−1)-

puzzle have been studied extensively in [7, 8, 10, 11].

Our work was motivated by Deb and Kapoor [4] whereby they gave minimum sequence of

moves required for the motion planning problem in Cartesian product of two graphs having girth

6 or more. They also proved that the path traced by the robot coincides with a shortest path

in case of Cartesian product of graphs. In this paper we extend the work in [4] by considering

the case in which the robot can jump one obstacle at a move (or time) and thus we give the

minimum number of moves required for the motion planning problem in Cartesian product of
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two graphs say G and H .

Definition 1.1 The Cartesian product G2H of two graphs G and H is a graph with vertex set

V (G)×V (H) in which (ui, vj) and (up, vq) are adjacent if one of the following condition holds:

(1) ui = up and {vj, vq} ∈ E(H);

(2) vj = vq and {ui, up} ∈ E(G).

The graphs G and H are known as the factors of G2H . Now onwards G and H are simple

graphs with V (G) = {1, 2, 3, ...m} unless otherwise stated.

Suppose we are dealing with r-copies of a graph G and we are denoting these r-copies of G

by Gi, where i = {1, 2, 3, · · · , r}. Then for each vertex u ∈ V (G) we denote the corresponding

vertex in the ith copy Gi by ui. The girth of a graph G, denoted by g(G) is the length of the

shortest cycle contained in graph G. Now we refer to the work of Deb and Kapoor [4] for a

good pre-knowledge of this work.

§2. Local Moves of the Hole

Definition 2.1 An edge ui, vj in G2H is said to be a G-edge (respectively, H-edge) if u = v

and {i, j} ∈ E(G) (respectively, if i = j and {u, v} ∈ E(H) ).

Definition 2.2 For any path P in G2H, by G-length and H-length of P we mean the number

of G-edges and H-edges in P , respectively. We use lG(P ) and lH(P ) to denote the G-length

and H-length of P , respectively.

Definition 2.3 Given two graphs G and H. For any ui, vj ∈ V (G2H), we call the distance

between u and v in H to be the H-distance between ui and vj in G2H, and the distance between

i and j in G to be the G-distance between ui and vj in G2H. We use dG(ui, vj) and dH(ui, vj)

to denote the G-distance and H-distance between ui and vj in G2H, respectively.

Now, we use d(u, v) instead of dG(u, v) to represent the distance between u and v in G.

Proposition 2.1 Given two graphs G and H. Let {i, j}, {j, k}, {k, l}, {l,m} ∈ E(G) and

u ∈ V (H). Then (i) dG2H−uk(ui, ul) = min{dG−k(i, l), 5} and (ii) dG2H−uk(ui, um) =

min{dG−k(i,m), 6}.

Proof (i) Let Q be a shortest path connecting ui and ul in G2H − uk. We need to show

that |Q| = min{dG−k(i, l), 5}. We consider the following cases.

Case 1. V (Q)∩V (Gi) = V (Q) which implies that V (Q) ⊆ V (Gi−uk) and so |Q| = dG−k(i, l).

Case 2. V (Q) ∩ V (Gi) 6= V (Q). We claim that |Q| = 5. From the Cartesian product of

graphs, notice that for any u, v ∈ E(H), the vertices ux, vy are adjacent in G2H if and only

if x = y. Therefore if we are moving away from the copy Gi using the path Q we must also

come back to the copy Gi. Hence G-distance covered along the path Q must be at least two.

Also d(i, l) = 3, otherwise i, k or j, l ∈ E(G) and this implies |Q| = 2, which is not possible.
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So G-distance traveled along the path Q must be at least three. Hence |Q| ≥ 5. Now for any

u, v ∈ E(H) the path [ui, uj , vj , vk, vl, ul] connects ui and ul in G2H .

(ii) Since we have established that dG2H−uk(ui, ul) = min{dG−k(i, l), 5} and k, l ∈ E(G)

we then conclude that dG2H−uk(ui, um) = min{dG−k(i,m), 6}. This proves our claim. 2
Corollary 2.2 Given two graphs G and H. Let {i, j}, {j, k}, {k, l} ∈ E(G) and u ∈ V (H).

Then starting from the configuration Cui

uk of G2H we require at least min{1 + dG−k(i, l), 6}
moves to move the robot to ul. In particular, if g(G) ≥ 6, then we need at least 6 moves to

move the robot to ul.

Proof Notice that, {ui, uj}, {uj, uk}, {uk, ul} ∈ E(G2H). In order to move the robot from

uk to ul, before it, the hole must be moved from ui to ul. This would take min{dG−k(i, l), 5}
moves. Since dG2H−uk(ui, ul) = min{dG−k(i, l), 5}. Then the simple move ul r←− uk takes the

robot from uk to ul. Hence the result follows.

If g(H) ≥ 6 then dG−k(i, l) ≥ 5 and so min{1+dG−k(i, l), 6} = 6. Thus, at least six moves

are required to take the robot from uk to ul. 2
Corollary 2.3 Given two graphs G and H. Let {i, j}, {j, k}, {k, l}, {l,m} ∈ E(G) and u ∈
V (H). Then starting from the configuration Cui

uk of G2H we require at least min{1+dG−k(i,m), 7}
moves to move the robot to um. In particular, if g(G) ≥ 6, then we need at least 7 moves to

move the robot to um.

Proof Just as in Corollary 2.2, in order to move the robot from uk to um, before it,

the hole must be moved from ui to um. This would take min{dG−k(i,m), 6} moves. Since

dG2H−uk(ui, um) = min{dG−k(i,m), 6} . Then the 1RJ move um r←−
1
uk takes the robot from

uk to um. Hence the result follows.

If g(H) ≥ 6 then dG−k(i,m) ≥ 6 and so min{1 + dG−k(i,m), 6} = 6. Therefore at least

seven moves are required to take the robot from uk to um. 2
As Cartesian product of graphs is commutative, so the proof of the following proposition

can be drawn in the same line as that of Proposition 2.1.

Proposition 2.4 Given two non-trivial graphs G and H. Let {u, v}, {v, w}, {w, x}, {x, y} ∈
E(H) and i ∈ V (G). Then (i) dG2H−vi(ui, xi) = min{dH−v(u, x), 5} and (ii) dG2H−vi(ui, yi) =

min{dH−v(u, y), 6}.

Corollary 2.5 Given two graphs G and H. Let {u, v}, {v, w}, {w, x} ∈ E(H) and i ∈ V (G).

Then starting from the configuration Cui

vi of G2H we require at least min{1 + dH−v(u, x), 6}
moves to move the robot to xi. In particular, if g(G) ≥ 6, then we need at least 6 moves to

move the robot to xi.

Corollary 2.6 Given two graphs G and H. Let {u, v}, {v, w}, {w, x}, {x, y} ∈ E(H) and

i ∈ V (G). Then starting from the configuration Cui

vi of G2H we require at least min{1 +

dH−v(u, y), 7} moves to move the robot to yi. In particular, if g(G) ≥ 6, then we need at least

7 moves to move the robot to yi.
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The theorem below gives the advantage of a 1RJ move of the robot over a simple move.

Theorem 2.7 Given two graphs G and H. Let {u, v}, {v, w} ∈ E(H) and i ∈ V (G). Then

starting from the configuration Cui

vi of G2H we require at least 3 moves to move the robot to

wi.

Proof Since {ui, vi} ∈ E(G2H). First we would require the move ui r←− vi which would

take the robot from vi to ui. In order to move the robot to wi, before it, the hole must be

moved from vi to wi. This take dG2H(vi, wi) = 1. Then the move wi r←−
1
ui takes the robot

from ui to wi. Hence the result follows. 2
Proposition 2.8 Given two graphs G and H. Let {i, j}, {j, k} ∈ E(G) and {u, v} ∈ E(H).

Then, starting from the configuration Cui

uj of G2H, we need at least four moves to move the

robot to vk.

Proof To move the robot from uj to vk before it, the hole must be moved from ui to vk.

This takes three steps (or moves), since dG2H−uj (ui, vk) = 3. Then the move vk r←−
1
ui takes

the robot to vk. Hence the result follows. 2
As Cartesian product of graphs is commutative, so the proof of the following proposition

can be drawn in the same line as that of Proposition 2.8.

Proposition 2.9 Given two graphs G and H. Let {i, j} ∈ E(G) and {u, v} ∈ E(H). Then,

starting from the configuration Cui

vi of G2H, we need at least four moves to move the robot to

vk.

Definition 2.4 A robot move in G2H is called a G-move (respectively,H-move) if the edge

along which the move took place is a G-edge(respectively,H-edge).

Definition 2.5 Let T be a sequence of moves that take the robot from ui to vj in G2H. An H-

move (respectively, G-move) in T of the robot is said to be a secondary H-move (respectively,

G-move) if it is preceded by an H-move (respectively, G-move). An H-move (respectively,

G-move) in T of the robot is said to be a primary H-move (respectively, G-move) if it is

preceded by a G-move (respectively, H-move). Also the edge corresponding to a primary G-

move (respectively, H-move) in T is said to be a primary G-edge (respectively, H-edge).

Definition 2.6 A simple move G2H is said to be a G-simple move (respectively, H-simple

move) if the edge along which the simple move took place is a G-edge(respectively, H-edge).

Also, a 1RJ-move in G2H is said to be a G-1RJ-move (respectively, H-1RJ-move) if the edge

along which the 1RJ-move took place is a G-edge(respectively, H-edge).

Definition 2.7 Let T be a sequence of moves that take the robot from ui to vj in G2H.

A G-simple move (respectively, H-simple move) in T of the robot preceded by a G-1RJ-move

(respectively, H-1RJ-move) is said to be a G-primary simple move (respectively, H-primary

simple move). A G-1RJ-move (respectively, H-1RJ-move) in T of the robot preceded by another

G-1RJ-move (respectively, H-1RJ-move) is said to be a G-secondary 1RJ-move (respectively,
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H-secondary 1RJ-move).

In view of the above definitions we summarize the results of this section in terms of the

following remark.

Remark 2.10 Given two graphs G and H , each having girth six or more.

(1) In view of Corollaries 2.2 and 2.5, to perform each G-primary simple (or H-primary

simple) move of the robot we require at least 6 moves.

(2) In view of Corollaries 2.3 and 2.6, to perform each G-secondary (or H-secondary) 1RJ

move of the robot we require at least 7 moves.

(3) In view of Propositions 2.8 and 2.9, to perform each G-primary (or H-primary) 1RJ-

move of the robot we require at least 4 moves.

(4) In a minimum sequence of moves, the robot should take as many primary moves as

possible.

§3. Trace of the Robot

To begin this section, we now state the following lemma without proof. This lemma gives the

least (or minimum) number of H-moves and G-moves a sequence can have in G2H .

Lemma 3.1 Let G and H be two graphs such that i, j ∈ V (G) and u, v ∈ V (H). Further, let T

be a sequence of moves that take the robot from ui to vj in G2H. Then the minimum number

of H-moves (respectively,G-moves ) of the robot in T is

(1)
p

2
(respectively,

k

2
)moves, if p is even (respectively, k is even);

(2) —it
p+ 1

2
(respectively,

k + 1

2
) moves, if p is odd (respectively, k is odd ). Where

dG(i, j) = k and dH(u, v) = p.

Lemma 3.2 Consider the graphs G and H each having girth six or more. Let i, j ∈ V (G) and

{u, v}, {u,w} ∈ E(H). Then each robot move in a minimum sequence of moves that takes Cui

vi

to Cuj

wj in G2H is a G−1RJ-move. Also such a minimum sequence involves exactly
k

2
number

of G− 1RJ-moves of the robot and
7k

2
moves in total, where k = d(i, j) ≥ 1 and k is even.

Proof Let T be a sequence of moves that takes Cui

vi to Cuj

wj in G2H . First assume that

the number of robot moves in T is z and each of these robot moves in T is a G − 1RJ-move.

By Proposition 2.9, we need at least four moves to accomplish the first G − 1RJ-move of the

robot. Notice that each remaining z − 1 robot moves in T is a G-secondary 1RJ-move. So

by Remark 2.10, we need minimum of 7(z − 1) G-secondary 1RJ-moves. Now, if uj r←−
1
uq

is the zth robot move in T , it will leave the graph G2H with the configuration Cuj

uq . Since

dG2H−uj (uq, wj) = 3, so we need minimum of three more move to take the hole from uq to

wj . Hence T involves minimum 7z moves. Notice that, the expression 7z takes the minimum

value when z is minimum. Next, let d(i, j) = k and [i = i0, i2, i4, · · · , ik] be a path of length
k

2
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connecting i and j in G. Then [ui = ui0 , ui2 , ui4 , · · · , uik = uj]is a path of length
k

2
in G2H

joining ui to uj. So the sequence of moves

vi o∗

←− ui2 r←−
1
ui0 o∗

←− ui4 r←−
1
ui2 o∗

←− ui6 r←−
1
ui4 o∗

←− ui8 ...
r←−
1
uik

r←−
1
uik−2

o∗

←− wj

takes the robot from ui to uj along this path and each move in this sequence is a G − 1RJ-

move. Also it involves exactly
k

2
number of G− 1RJ-moves of the robot. Therefore by Lemma

3.1, a minimum sequence of moves in T (not involving H-moves of the robot) that takes the

configuration Cui

vi to Cuj

wj involves exactly 7
k

2
moves.

Finally, assume that the sequence T involves H-moves also. If the sequence involves H-

moves then we would require at least two H-moves. The first H-move of the robot in T would

take it away from copy Gu and the other would bring it back to Gu. Note here that T would

still require additional
k

2
G − 1RJ moves. Thus we conclude that T is not minimum. This

completes the proof. 2
Lemma 3.3 Consider the graphs G and H each having girth six or more. Let i, j ∈ V (G) and

{u, v}, {u,w} ∈ E(H). Then each robot move in a minimum sequence of moves that takes Cui

vi

to Cuj

wj in G2H is a G-move. Also such a minimum sequence involves exactly
k + 1

2
number

of G moves of the robot and
7k + 3

2
moves in total, where k = d(i, j) ≥ 1 and k is odd.

Proof Let T be a sequence of moves that takes Cui

vi to Cuj

wj in G2H . First assume that

the number of robot moves in T in z and each of these robot moves in T is a G-move. By

Proposition 2.9, we need at least four moves to accomplish the first G − 1RJ-move of the

robot. Notice that each succeeding z − 2 robot moves in T is a G-secondary 1RJ-move. So by

Remark 2.10, we need minimum of 7(z − 2) G-secondary 1RJ moves. Clearly, the zth move

of the robot is a G-primary simple move. Thus by Remark 2.10, we require at least six moves

to perform this G-primary simple move. Now, if uj r←− us is the zth robot move in T , it will

leave the graph G2H with the configuration Cuj

us . Since dG2H−uj (us, wj) = 2, so we need

minimum of two more moves to take the hole from us to wj . Hence T involves minimum

7z − 2 moves. The expression 7z − 2 takes the minimum value when z is minimum. Next, let

d(i, j) = k and [i = i0, i2, i4, ..., ik−1] be a path of length
k + 1

2
connecting i and j in G. Then

[ui = ui0 , ui2 , ui4 , · · · , uik−1 = uj ] is a path of length
k + 1

2
in G2H joining ui to uj. So the

sequence of moves

vi o∗

←− ui2 r←−
1
ui0 o∗

←− ui4 r←−
1
ui2 o∗

←− ui6 r←−
1
ui4 o∗

←− ui8 ...uik−1
r←− uik−3

o∗

←− wj

takes the robot from ui to uj along this path and each move in this sequence is a G-move. Also

it involves exactly
k + 1

2
number of G-moves of the robot. Therefore by Lemma 3.1, a minimum

sequence of moves in T (not involving H-moves of the robot) that takes the configuration Cui

vi

to Cuj

wj involves exactly
7k + 3

2
moves.This completes the proof. 2
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Since the Cartesian product of graphs is commutative, so the proof of the next two lemmas

can be drawn in the same as line as that of Lemmas 3.2 and 3.3.

Lemma 3.4 Consider the graphs G and H each having girth six or more. Let {i, j}, {i, k}inE(G)

and u, v ∈ V (H). Then each robot move in a minimum sequence of moves that takes Cui

uj to

Cvi

vk in G2H is an H − 1rJmove. Also such a minimum sequence involves exactly
p

2
number

of H − 1rJmoves of the robot and
7p

2
moves in total, where p = d(u, v) ≥ 1 and p is even.

Lemma 3.5 Consider the graphs G and H each having girth six or more. Let {i, j}, {i, k} ∈
E(G) and u, v ∈ V (H). Then each robot move in a minimum sequence of moves that takes Cui

uj

to Cvi

vk in G2H is a H-move. Also such a minimum sequence involves exactly
p+ 1

2
number

of Hmoves of the robot and
7p+ 3

2
moves in total, where p = d(u, v) ≥ 1 and p is odd.

In view of the results obtained in this section we have the following theorem.

Theorem 3.6 Given two connected graphs G and H each having girth six or more. Consider

the configuration Cui

vi of G2H.Then to move the robot from

(1) Gu to Gv we require at least (p− 1) + 7
2 (p− 2) moves or (p− 1) + 7

2 (p− 3) + 6 moves

according as p is even or odd respectively;

(2) Hi to Hj we require at least (k + 2) + 7
2 (k− 2) moves or (k + 2) + 7

2 (k − 3) + 6 moves

according as k is even or odd respectively.

§4. Minimum Number of Moves

Definition 4.1 Given a path P connecting ui and vjin G2H. By a minimal sequence of moves

with trace P we mean a sequence with minimum number of moves that takes the robot from ui

to vj along the path P in G2H.

Definition 4.2 By a minimal uivj-path in G2H we mean a uivj-path P such that the G-edges

in P induces a ij-path in G and the H-edges in P induces a uv-path in H.

Definition 4.3 Give two graphs G, H and a path P in G2H. By a primary edge in P we

mean an H-edge that is preceded by a G-edge or a G-edge that is preceded by an H-edge. By

a secondary edge in P we mean an H-edge that is preceded by an H-edge or a G-edge that is

preceded by a G-edge.

In view of the definitions above we now state the following lemma without proof. This

lemma gives the maximum number of primary edges that a path can have in G2H with given

H-length and G-length respectively.

Lemma 4.1 Given two graphs G and H. Let P be a path connecting ui and vj in G2H such

that lG(P ) = a and lH(P ) = b. Then, the maximum number of primary edges P can have when
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(1) a = b is a− 1, if a and b are both even;

(2) a = b is a, if a and b are both odd;

(3) a > b is b− 1, if a is odd and b is even and the first edge in P is an H-edge;

(4) a > b is b or b + 1, if a and b are positive integers with opposite parity and the first

edge in P is a G-edge according as a = b+ 1 or otherwise respectively;

(5) a > b is b, if a is even and b is odd and the first edge in P is an H-edge;

(6) a > b is b− 1, if both a and b is even and the first edge in P is an H-edge;

(7) a > b is b, if both a and b is even (odd) and the first edge in P is a G-edge (H-edge);

(8) a > b is b+ 1, if both a and b is odd and the first edge in P is a G-edge;

(9) a < b is a, if a is even and b is a positive integer and the first edge in P is an H-edge;

(10) a < b is a − 1, if a is even and b is a positive integer and the first edge in P is a

G-edge;

(11) a < b is a or a + 1, if a is odd and b is even and the first edge in P is an H-edge

according as a = b− 1 or otherwise respectively;

(12) a < b is a, if a is odd and b is a positive integer and the first edge in P is a G-edge;

(13) a < b is a+ 1, if both a and b is odd and the first edge in P is an H-edge.

In order to prove our result we need the following.

Remark 4.1 (See [5]) Given two graphs G and H each having girth six or more. To perform

each primary G-move (or H-move) of the robot we require at least 3 moves.

Proposition 4.3 Given two graphs G and H. Let {i, j}, {j, k}, {k, l}, {l,m} ∈ E(G) and

{u, v}, {v, w}, {w, x}, {x, y} ∈ E(H). Then, starting from the configuration

(i) Cwk

uk of G2H, we need at least five moves to move the robot to wm;

(ii) Cwm

wk of G2H, we need at least five moves to move the robot to ym;

(iii) Cuk

ui of G2H, we need at least four moves to move the robot to vk;

(iv) Cwk

uk of G2H, we need at least four moves to move the robot to wl.

Proof (i) To move the robot from wk to wm, before it, the hole must be moved from uk

to wm. This takes dG2H−uk(uk, wm) = 4. Then the 1RJ-move wm r←−
1
wk takes the robot to

wm. Hence the result follows.

(ii) As Cartesian product of graphs is commutative, the proof can be drawn in the same

line as (i) above.

(iii) To move the robot from uk to vk, before it, the hole must be moved from ui to vk.

This takes dG2H−uk(ui, vk) = 3. Then the 1RJ-move vk r←−
1
uk takes the robot to vk. Hence

the result follows.

(iv) As Cartesian product of graphs is commutative, the proof can be drawn in the same

line as (iii) above. 2
Definition 4.4 Let T be a sequence of moves that takes the robot from ui to vj in G2H. A

G−1RJ-move (respectively, H−1RJ-move) that is preceded by an H−1RJ-move (respectively,

G− 1RJ-move)is said to be a primary G− 1RJ-move (respectively,primary H − 1RJ-move ).
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Also, a G simple move (respectively, H simple move)preceded by a H−1RJ-move (respectively,

G− 1RJ-move) is said to be a strong-primary G-move (respectively,H-move).

In view of the above definitions we have this remark.

Remark 4.4 Given two graphs each having girth six or more, in view of Proposition 4.4, to

perform each

(1) Primary G− 1RJ-move (respectively, primary H − 1RJ-move)of the robot we require

at least 5 moves;

(2) Strong-primary or weak-secondary G-move (respectively,H-move) of the robot we re-

quire at least 4 moves.

Theorem 4.5 Given two graphs G and H each having girth six or more. Consider the con-

figuration Cui

vi of G2H. For some j ∈ G2H, let P be a minimal path connecting ui and vj in

G2H. Let T be a minimal sequence with trace P . Where lG(P ) = a and lH(P ) = b. Suppose

that the first move of the robot is an H-move then T involves at least

(i) k − 2m+ 7
2 (a+ b)− 8 moves if a and b are both even;

(ii) k − 2m− 3n− q − 4r + 7
2 (a+ b)− 1 moves if a and b are both odd;

(iii) k − 2m− 3n− q + 7
2 (a+ b)− 9

2 moves if otherwise.

Furthermore, suppose that the first move of the robot is a G-move then T involves at least

(i) k − 2m+ 7
2 (a+ b)− 4 moves if a and b are both even;

(ii) k − 2m− 3n− q − 4r + 7
2 (a+ b) + 3 moves if a and b are both odd;

(iii) k − 2m− 3n− q + 7
2 (a+ b)− 1

2 moves if otherwise,

where m is the number of primary G− 1RJ (or primary H − 1RJ)- moves, n is the number of

strong-primary G (or H)-move, q is the number of G-primary (or H-primary) simple moves

and r is the number of primary moves of the robot in T and k = d(u, v).

Proof We consider cases following.

Case 1. The first edge in P is an H-edge.

Subcase 1.1 Since T is minimal so it involves exactly a+b
2 robot moves. In this case the

first robot move is an H − 1RJ-move, say wi r←−
1
ui. In order to realize this move, before it,

the hole must move from vi to wi. Therefore, we require k − 1 moves to realize the first robot

move, since dG2H−ui(vi, wi) = k − 2 (k − 2 moves to bring the hole at wi plus the robot move

wi r←−
1
ui. Since m is the number of primary G(or H)-1RJ-moves in T , so the number of G(or

H)-secondary 1RJ robot moves in T is a+b
2 −m − 1. Hence, by Remark 2.10, the number of

moves in T is k − 1 + 5m+ 7
2 (a+ b− 2m− 2), i.e., k − 2m+ 7

2 (a+ b)− 8 moves.

Subcase 1.2 Since T is minimal so it involves exactly a+b+2
2 robot moves. Just as in

Subcase 1.1 above, we require k−1 moves to realize the first robot move. By definition of m,n, q

and r in T the number of G(or H)-secondary 1RJ robot moves in T is a+b+2
2 −m−n−q−r−1.

Hence, by Remarks 2.10, 4.2 and 4.4 the number of moves in T is k− 1 + 5m+ 4n+ 6q+ 3r+

7(a+b+2
2 −m− n− q − r − 1), i.e., k − 2m− 3n− q − 4r + 7

2 (a+ b)− 1 moves.
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Subcase 1.3 Since T is minimal so it involves exactly a+b+1
2 robot moves. Similarly as in

Subcase 1.1 above, we require k− 1 moves to realize the first robot move. By definition of m,n

and q in T the number of G(or H)-secondary 1RJ robot moves in T is a+b+1
2 −m− n− q− 1.

Hence, by Remarks 2.10 and 4.4 the number of moves in T is k− 1+5m+4n+6q+7(a+b+1
2 −

m− n− q − 1), i.e., k − 2m− 3n− q + 7
2 (a+ b)− 9

2 moves.

Case 2. The first edge in P is a G-edge.

Subcase 2.1 Since T is minimal so it involves exactly a+b
2 robot moves. In this case the

first robot move is a G − 1RJ-move. Let this move be uk r←−
1
ui. So to perform this move we

must first move the hole from vi to uk. Clearly dG2H−ui(vi, uk) = k+ 2. Therefore, we require

k+3 moves to perform the first robot move (k+2 moves to bring the hole at uk plus the robot

move uk r←−
1
ui. Since m is the number of primary G(or H)-1RJ-moves in T , so the number of

G(or H)-secondary 1RJ robot moves in T is a+b
2 −m− 1. Hence, by Remark 2.10, the number

of moves in T is k + 3 + 5m+ 7
2 (a+ b− 2m− 2), i.e., k − 2m+ 7

2 (a+ b)− 4moves.

Subcase 2.2 Since T is minimal so it involves exactly a+b+2
2 robot moves. Just as in

Subcase 2.1 above, we require k+3 moves to realize the first robot move. By definition of m,n, q

and r in T the number of G(or H)-secondary 1RJ robot moves in T is a+b+2
2 −m−n−q−r−1.

Hence, by Remarks 2.10, 4.2 and 4.4 the number of moves in T is k+ 3 + 5m+ 4n+ 6q+ 3r+

7(a+b+2
2 −m− n− q − r − 1), i.e., k − 2m− 3n− q − 4r + 7

2 (a+ b) + 3 moves.

Subcase 2.3 Since T is minimal so it involves exactly a+b+1
2 robot moves. Similarly as in

Subcase 2.1 above, we require k+ 3 moves to realize the first robot move. By definition of m,n

and q in T the number of G(or H)-secondary 1RJ robot moves in T is a+b+1
2 −m− n− q− 1.

Hence, by Remark 2.10 and 4.4 the number of moves in T is k+ 3 + 5m+ 4n+ 6q+ 7(a+b+1
2 −

m− n− q − 1), i.e., k − 2m− 3n− q + 7
2 (a+ b)− 1

2 moves.

This completes the proof. 2
§5. Conclusion and Future Work

In this article, we have been able to investigate the minimum number of moves required for

the motion planning of Cartesian product of graphs whereby the robot/object can jump an

obstacle. It is clear that the path traced by the robot moves of such motions is less than the

minimal path in particular for some cases it is half of the minimal path and off course this path

is along the shortest path.

As future work, we plan to investigate this kind of motion in other product graphs, in

particular strong and modular product.
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§1. Introduction

The notion of β−change in Finsler spaces was introduced by C. Shibata in [13]. Since then so

many results have been obtained using this theory. In [1], S. H. Abed generalized the theory of

β−change and introduced a new change, called conformal β−change. In differential geometry,

the theory of indicatrices has been very interesting topic for geometers from all over the world

for both pure mathematical and applied reasons. The theory of indicatries and its properties

have been studied by so many authors (([7], [10], · · · , [14]) In the present paper we study the

behavior of the indicatrices given by a particular β−change, known as Kropina change.

This paper is organized as follows:

In the second section, we discuss the basic definitions and examples of some special Finsler

spaces. In Section 3, we consider the Indicatrices given by a β−change, called Kropina change

and study its properties in detail. The terminologies and notations are referred to Matsumoto’s

monograph [11] in this paper.

§2. Preliminaries

Let M be an n− dimensional smooth manifold, TxM, the tangent space at x ∈ M , and TM

the tangent bundle, the disjoint union of tangent spaces, i.e.,

TM :=
⊔

x∈M

TxM.

1Received April 7, 2018, Accepted November 22, 2018.
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The elements of TM are denoted by (x, y), where x = (xi) ∈M and y ∈ TxM, called supporting

element. The slit tangent bundle TM0 is defined as TM\ {0} .
A Finsler metric on a smooth manifold M is a function F : TM −→ [0,∞) satisfying the

following properties:

(1) F is smooth on TM0,

(2) F is positively 1−homogeneous on the fibers of tangent bundle TM and

(3) the hession of F 2 with elements gij =
1

2

∂2F 2

∂yi∂yj
is positively defined on TM.

A smooth manifoldM equipped with the Finsler metric F is called Finsler manifold and the

corresponding space, denoted by Fn = (M,F ) is called a Finsler space. F is called fundamental

function and gij is called fundamental metric tensor of the Finsler space Fn. The normalized

supporting element ℓi, angular metric tensor hij , and the metric tensor gij of Fn are defined

respectively as:

ℓi =
∂F

∂yi
, hij =

∂2F

∂yi∂yj
& gij =

1

2

∂2F 2

∂yi∂yj
. (2.1)

Finsler metrics were introduced in order to generalize the Riemannian ones in the sense

that metric should not depend only on the point, but also on the direction. In Finsler geometry,

(α, β) metrics, introduced in [12], form a very important and rich class of Finsler metrics which

can be expressed in the form F = αφ(s), s =
β

α
, where α =

√

aij(x)yiyj is a Riemannian

metric, β = bi(x)y
i is a 1−form and φ is a positive smooth function on the domain of definition.

The notable (α, β) metrics are Randers metric, Kropina metric, generalized Kropina metric, Z.

Shen’s square metric and Matsumoto metric. If φ(s) = 1+ s, we get F = α+β, called Randers

metric. In particular, when φ(s) =
1

s
, we get F =

α2

β
, called Kropina metric. Kropina metrics

were induced by V. K. Kropina [8]. Kropina metrics seem to be among the simplest non-trivial

Finsler metrics with many interesting applications in physics, electron optics with a magnatic

field etc.([2], [3], [6]). Now we give some definitions and results that have been used in the next

section.

Definition 2.1 A Finsler space Fn = (M,F )(n > 2) is called P2−like, if there exist a covariant

vector field Pi such that the hv curvature tensor Phijk of Fn can be written in the form

Phijk = PhCijk − PiChjk.

Let the Finsler space Fn(n > 2) is P2−like. Then we have the result following.

Theorem 2.1([9]) For a P2−like Finsler space Fn = (M,F )(n > 2), the hv curvature tensor

Phijk vanishes, or the v− curvature tensor Shijk of Fn vanishes.

Definition 2.2 A Finsler space Fn = (M,F )(n > 3) is called R3−like, if the third curvature

tensor Rhijk of Cartan is expressible in the form Rhijk = ghjLik + gikLhj − ghkLij − gijLhk,

where Lik =
1

n− 2

(

Rik −
r

2
gik

)

, Rhj = Rm
h jm and r =

1

n− 1
Rm

m.
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For the (v)hv−torsion tensor Phij and the (h)hv− torsion tensor Chij , we define

∗Phij = Phij − λChij ,

where the scalar λ is homogeneous of degree one with respect to yi and is given by
PiC

i

CjCj
for

Cj 6= 0.

Definition 2.3 A Finsler space Fn = (M,F )(n > 2) is called a ∗P−Finsler space, if the

torsion tensor ∗Phij = 0.

Definition 2.4 A Finsler space Fn = (M,F ) is called a Landsberg space, if the (v)hv−torsion

tensor Phij = 0.

Definition 2.5([5]) A non-Riemannian Finsler space Fn = (M,F )(n > 4) is called S4−like,

if the v−curvature tensor Shijk is written in the form

L2Shijk = hhjMik + hikMhj − hhkMij − hijMhk,

where Mij is symmetric and indicatory tensor given by Mij =
1

n− 3

[

Sij −
Shij

2(n− 2)

]

.

Theorem 2.2([15]) Let Fn = (M,F )(n > 4) be a R3−like (non-Landsberg) ∗P−Finsler space.

Then Fn is S4−like.

Theorem 2.3([15]) An R3−like Landsberg space Fn = (M,F )(n > 3) is a Finsler space

satisfying Shijk = 0, or a Riemannian space of constant curvature.

After some calculation, we find the following result.

Theorem 2.4([15]) If a Finsler space Fn = (M,F )(n > 4) is S4−like, then the Finsler space

F̄n = (M, F̄ ), obtained from Fn by a Kropina change, is also S4−like.

§3. Indicatrices Given by a Kropina Change

Let Fn = (M,F ) be a Finsler space. For any x ∈ M, the tangent space TxM is regarded as

an n− dimensional Riemannian space with the fundamental tensor gij(x, y), where x = (xi) is

fixed. In terms of the Cartan connection CΓ of Fn, components Ci
jk of the (h)hv−torsion tensor

are christoffel symbols of TxM and the v−curvature tensor Si
hjk is the Riemannian curvature

tensor of TxM. The indicatrix Ix at a point x is a hypersurface of the Riemannian space TxM

which is defined by the equation F (x, y) = 1, where x is fixed. Consequently, Ix is regarded as

an (n− 1)−dimensional Riemannian space.

Now, we consider a special β−change, called Kropina change, defined by

F̄ =
F 2

β
= f(F, β), (3.1)
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where β = bi(x)y
i is a non-zero 1−form on M.

Differentiation of (3.1) with respect t0 F and β gives us the following relations:

f1 =
∂F̄

∂F
=

2F

β
, f2 =

∂F̄

∂β
= −F

2

β2
,

f11 =
∂2F̄

∂F 2
=

2

β
, f22 =

∂2F̄

∂β2
=

2F 2

β3
, f12 =

∂2F̄

∂β∂F
= −2F

β2
(3.2)

F̄ = f1 + f2β =
F 2

β
, Ff12 + βf22 = 0, Ff11 + βf12 = 0. (3.3)

p = ff1/F =
2F 2

β2
, q = ff2 = −F

4

β3
, q

0
= ff22 =

2F 4

β4
. (3.4)

Further, ℓ̄i = F̄yi gives

ℓ̄i = f1ℓi + f2bi = −F
2

β2

(

bi −
2β

F 2
yi

)

(3.5)

h̄ij = F̄ ∂̇i∂̇jF̄ gives

h̄ij = phij + q
0
mimj =

2F 2

β2
hij +

2F 4

β4
mimj , mi = bi −

β

F 2
yi. (3.6)

Furthermore, we find

p0 = q0 + f2
2 =

3F 4

β4
, q

−1 = ff12/F = −2F 2

β3
, p

−1 = q
−1 + pf2/f = −4F 2

β3
,

q
−2

=
f (f11 − f1/F )

F 2
= 0, p

−2
= q

−2
+ p2/f2 =

4

β2
. (3.7)

Notice that ḡij =
1

2

(

F̄ 2
)

yiyj gives

ḡij = pgij + p
0
bibj + p

−1
(biyj + bjyi) + p

−2
yiyj

=
2F 2

β2
gij +

3F 4

β4
bibj −

4F 2

β3
(biyj + bjyi) +

4

β2
yiyj. (3.8)

By the Kropina change Fij =
hij

F
is invariant under certain conditions, where hij =

gij − ℓiℓj is the angular metric tensor.

From now on, we shall call a tensor which is invariant under the Kropina change a K-

invariant tensor. For the v-curvature tensor Shijk, putting

LS∗
hijk = Shijk +

1

n− 3
Ujk {hijShk + hhkSij − Shijhhk/ (n− 2)} , (3.9)

we find that S∗
hijk is K-invariant under certain restrictions, where we use the notation Ujk to

denote the interchange of indices j, k and subtraction.

For a S4−like Finsler space, we have the following result.
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Theorem 3.1([14]) Let Fn = (M,F )(n > 4) be a S4−like Finsler space. Then the indicatrix

Ix is conformally flat.

Also, we can easily prove the result following.

Theorem 3.2) A non-Riemannian Finsler space Fn = (M,F )(n > 4) is S4−like if and only

if the K-invariant tensor S∗
hijk vanishes.

From equation (3.1), Theorems 2.1, 2.4, 3.1 and 3.2, we find the following result.

Theorem 3.3 For a P2−like Finsler space Fn = (M,F )(n > 4), the indicatrix Īx of F̄n,

obtained from Fn by a Kropina change is conformally flat provided that Phijk 6= 0.

From Theorems 2.2, 2.4 and 3.1, we immediately find the following theorem.

Theorem 3.4 Let Fn = (M,F )(n > 4), be a R3− like (non-Landsberg) ∗P− Finsler space.

Then the indicatrix Īx of F̄n, obtained from Fn by a Kropina change, is conformally flat.

From equation (3.1), Theorems 2.3, 2.4, 3.1 and 3.2, we immediately find the next result.

Theorem 3.5 Let Fn = (M,F )(n > 4), be an R3− like Landsberg space. If Fn is not a

Riemannian space of constant curvature, then the indicatrix Īx of F̄n, obtained from Fn by a

Kropina change, is conformally flat.

Theorem 3.6([4]) Let Fn = (M,F )(n > 2), be a ∗P− Finsler space. If the hv−curvature

tensor Phijk is symmetric in j&k, then Phijk = 0, or the v−curvature tensor Shijk = 0.

Therefore, by, equation (3.1) and Theorems 2.1, 2.43.13.23.6 we immediately get the fol-

lowing conclusion.

Theorem 3.7 Let Fn = (M,F )(n > 2), be a ∗P− Finsler space. If the hv−curvature tensor

Phijk is symmetric in j&k, then the indicatrix Īx of F̄n, obtained from Fn by a Kropina change,

is conformally flat provided that Phijk 6= 0.

According to the β− change of a Finsler metric, the v−curvature tensor Si
hjk changes as

follows ([13]):

S̄i
hjk = Si

hjk + Ujk

(

Ci
mkV

m
hj − Cm

hkV
i
mj − V i

mkV
m
hj

)

, V h
ij = Ch

ij − C̄h
ij . (3.10)

In case of Kropina change, from (3.2), we get a conclusion following.

Theorem 3.8 Let Si
hjk = Ujk

(

Cm
hkV

i
mj + V i

mkV
m
hj − Ci

mkV
m
hj

)

. Then we get S̄i
hjk = 0, where

V h
ij = Qh

(

p Cimjb
m − p

−1
mimj

)

−1

2

(

mh

p
− ν Qh

)

(

p02 mimj + p
−1hij

)

− p
−1

2p

(

hh
i mj + hh

jmi

)
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and

Qh = s0b
h + s

−1
yh, s0 =

β2

2b2 F 2
, s

−1
= − β3

b2 F 4
, p =

2F 2

β2
,

p
−1

= −4F 2

β3
, ν = b2 − β2

F 2
, p

02
=
∂p

0

∂β
= −12F 4

β5
. (3.11)

In [6], we have known the following result.

Theorem 3.9 Let Fn = (M,F )(n > 2), be a Finsler space. Then its v−curvature tensor Shijk

vanishes at a point x, if and only if the indicatrix Ix is of constant curvature 1.

By Theorems (3.8) and (3.9), we get

Theorem 3.10 Let Si
hjk = Ujk

(

Cm
hkV

i
mj + V i

mkV
m
hj − Ci

mkV
m
hj

)

. Then the indicarix Īx of F̄n,

obtained from Fn(n > 2) by a Kropina change, is of constant curvature 1.
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§1. Introduction

In this paper, we consider only finite, simple, connected graphs. We denote the vertex set and

the edge set of a graph G by V (G) and E(G) respectively. The degree of a vertex v is the

number of edges incident at v, and it is denoted by d(v). A graph G is regular if all its vertices

have the same degree. The 2-degree of v is the sum of the degrees of the vertices adjacent to

v and it is denoted by t(v). A pseudo degree of a vertex v is denoted by da(v) and defined as
t(v)

d∗G(v)
, where d∗G(v) is the number of edges incident at v.

A graph is called pseudo-regular if every vertex of G has equal pseudo (average) degree

[3]. The notion of fuzzy sets was introduced by Zadeh as a way of representing uncertainly

and vagueness [18]. The first definition of fuzzy graph was introduced by Haufmann in 1973.

In 1975, A. Rosenfeld introduced the concept of fuzzy graphs [8]. The theory of graph is an

extremely useful tool for solving combinatorial problems in different areas. Irregular fuzzy

graphs plays a central role in combinatorics and theoretical computer science.

§2. Review of Literature

Nagoorgani and Radha introduced the concept of degree, total degree, regular fuzzy graphs in

1Received April 9, 2018, Accepted November 25, 2018.
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2008 [7]. Nagoorgani and Latha introduced the concept of irregular fuzzy graphs, neighbourly

irregular fuzzy graphs and highly irregular fuzzy graphs in 2008 [6]. Mathew, Sunitha and

Anjali introduced some connectivity concepts in bipolar fuzzy graphs [16]. Akram and Dudek

introduced the notions of regular bipolar fuzzy graphs [1] and also introduced intuitionistic

fuzzy graphs [2]. Samanta and Pal introduced the concept of irregular bipolar fuzzy graphs in

[14].

N.R.S. Maheswari and C. Sekar introduced (2,k)-regular fuzzy graphs and totally (2,k)-

regular fuzzy graphs [9]. N.R.S. Maheswari and C. Sekar introduced m-neighbourly irregular

fuzzy graphs [13]. N.R.S. Maheswari and C. Sekar introduced neighbourly edge irregular fuzzy

graphs [10]. N.R.S. Maheswariand C. Sekar introduced neighbourly edge irregular bipolar fuzzy

graphs [11]. Pal and Hossein introduced irregular interval-valued fuzzy graphs [17]. Sunitha

and Mathew discussed about growth of fuzzy graph theory [15]. N.R.S. Maheswari and C. Sekar

introduced pseudo degree and total pseudo degree in fuzzy graphs and pseudo regular fuzzy

graphs and discussed some of its properties [12]. These motivate us to introduce neighbourly

pseudo irregular fuzzy graphs, and neighbourly pseudo totally irregular fuzzy graphs discussed

some of its properties.

§3. Preliminaries

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a

graph G denoted by V (G) and E(G) respectively [2].

Definition 3.1([5]) A fuzzy graph G : (σ, µ) is a pair of functions (σ, µ), where σ : V → [0, 1]

is a fuzzy subset of a non-empty set V and µ : V × V → [0, 1] is a symmetric fuzzy relation on

σ such that for all u,v in V , the relation µ(uv) ≤ σ(u)Λσ(v) is satisfied. A fuzzy graph G is

called complete fuzzy graph if the relation µ(uv) = σ(u)Λσ(v) is satisfied.

Definition 3.2([4]) Let G : (σ, µ) be a fuzzy graph on G∗(V,E). The degree of a vertex u in G

is denoted by d(u) and is defined as d(u) =
∑

µ(uv), for all uv ∈ E.

Definition 3.3([6]) Let G : (σ, µ) be a fuzzy graph on G∗(V,E). The total degree of a vertex u

in G is denoted by td(uv) and is defined as td(uv) = d(u) + σ(u) for all u ∈ V .

Definition 3.4([1]) Let G : (σ, µ) be a fuzzy graph on G∗(V,E). Then G is said to be an

irregular fuzzy graph, if there is a vertex which is adjacent to vertices with distinct degrees.

Definition 3.5 Let G : (σ, µ) be a fuzzy graph on G∗(V,E).Then G is said to be a totally

irregular fuzzy graph if there is vertex which is adjacent to vertices with distinct degrees.

Definition 3.6 let G : (σ, µ)be a fuzzy graph on G∗(V,E). Then G is said to be a neighbourly

irregular fuzzy graph if every two adjacent vertices of G have distinct degree.

Definition 3.7 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). Then G is said to be a neighbourly

total irregular fuzzy graph if every two adjacent vertices have distinct total degrees.
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Definition 3.8 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). The 2-degree of a vertex v is

defined as the sum of degrees of vertices incident at v and it is denoted by t(v).

Definition 3.9 A pseudo degree of a vertex v is denoted by da(v) and defined as t(v)
d∗

G
(v) , where

d∗G(v) is the number of edges incident at v.

Definition 3.10 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). The pseudo total degree of a

vertex v in G is denoted by tda(v) and is defined as tda(v) = da(v) + σ(v) for all v ∈ V .

§4. Neighbourly Pseudo Irregular Fuzzy Graphs

Definition 4.1 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). Then G is said to be a neighbourly

pseudo irregular fuzzy graph if every two adjacent vertices of G have distinct pseudo degree.

Example 4.2 Consider a graph on G∗(V,E).����������������������u
u uu tu(0.3)

y(0.7)

x(0.6)

v(0.7) 0.4 w(0.5)

0.1
0.2

0.4 0.3

Figure 1

From Figure 1, dG(u) = 0.3, dG(v) = 0.8, dG(w) = 0.4, dG(x) = 0.7, dG(y) = 0.6. Also,

da(u) = 0.7, da(v) = 0.46, da(w) = 0.8, da(x) = 0.7, da(y) = 0.5. Here, pseudo degrees of all

pair of adjacent vertices are distinct. Hence G is neighbourly pseudo irregular fuzzy graph.

Definition 4.3 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). Then G is said to be a neighbourly

pseudo totally irregular fuzzy graph if every two adjacent vertices of G have distinct total pseudo

degree.

Example 4.4 Consider a graph on G∗(V,E). ������������t u u
u(0.4)

w(0.7) v(0.9)0.7

0.1 0.3

Figure 2

From Figure 2, dG(u) = 0.4, dG(v) = 1.0, dG(w) = 0.8. Here, dG∗(u) = 2 for all u in G.
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Also, da(u) = 0.9, da(v) = 0.6, da(w) = 0.7, tda(u) = 1.3, tda(v) = 1.5, tda(w) = 1.4. Here,

total pseudo degrees of all pair of adjacent vertices are distinct. Hence G is neighbourly pseudo

totally irregular fuzzy graph.

Remark 4.5 A neighbourly pseudo irregular fuzzy graph need not be a neighbourly pseudo

totally irregular fuzzy graph.

Example 4.6 Consider a graph on G∗(V,E).

s s sss
u(0.6)

y(0.8)
0.3

0.1

0.3

v(0.85)

0.2

w(0.3)0.1x(0.5)

0.4

Figure 3

From the above figure, dG(u) = 0.4, dG(v) = 0.6, dG(w) = 0.3, dG(x) = 1.1, dG(y) = 0.4.

Also, da(u) = 0.85, da(v) = 0.6, da(w) = 0.85,da(x) = 0.425, da(y) = 1.1, tda(u) = 1.45,

tda(v) = 1.45, tda(w) = 1.15, tda(x) = 0.925, tda(y) = 1.9. Here, pseudo degrees of all pair

of adjacent vertices are distinct. Hence G is neighbourly pseudo irregular fuzzy graph. But u

and v are the adjacent vertices having same total pseudo degree. Hence G is not a neighbourly

pseudo totally irregular fuzzy graph.

Remark 4.6 A neighbourly pseudo totally irregular fuzzy graph need not be a neighbourly

pseudo irregular fuzzy graph.

Example 4.7 Consider a graph on G∗(V,E). t ttttu
u(0.2)

v(0.4)

w(0.6)

x(0.8)

y(0.6)

z(0.4)

0.1 0.2

0.3

0.4
0.1

0.2

Figure 4

Here, da(u) = 0.4, da(v) = 0.5, da(w) = 0.5,da(x) = 0.5, da(y) = 0.4, da(z) = 0.3,

tda(u) = 0.6, tda(v) = 0.9, tda(w) = 1.1, tda(x) = 1.3, tda(y) = 1.0, tda(z) = 0.7. Here,

total pseudo degrees of all pair of adjacent vertices are distinct. Hence G is neighbourly pseudo
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totally irregular fuzzy graph. But the pairs v and w, w and x are the adjacent vertices having

same pseudo degree. Hence G is not a neighbourly pseudo irregular fuzzy graph.

Theorem 4.9 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). If σ is a constant function then the

following are equivalent.

(i) G is neighbourly pseudo irregular fuzzy graph;

(ii) G is neighbourly pseudo totally irregular fuzzy graph.

Proof Assume that σ is a constant function. Let σ(u) = c for all u ∈ V . Suppose

G is a neighbourly pseudo irregular fuzzy graph. Then every two pair of adjacent vertices

have distinct pseudo degrees. Let u1 and u2 be two adjacent vertices with pseudo degrees k1

and k2 respectively. Then k1 6= k2. Suppose G is not a neighbourly pseudo totally irregular

fuzzy graph. Then at least two adjacent vertices have same total pseudo degree. Suppose

tda(u1) = tda(u2) =⇒ k1 + c = k2 + c =⇒ k1 = k2, which is a contradiction. Hence G is a

neighbourly pseudo totally irregular fuzzy graph. Then (i) =⇒ (ii) proved

Now, Suppose G is a neighbourly pseudo totally irregular fuzzy graph. Then every pair

of adjacent vertices have distinct total pseudo degrees. Let u1 and u2 be two adjacent vertices

with pseudo degrees k1 and k2 respectively. Now, tda(u1) 6= tda(u2) =⇒ k1 + c 6= k2 + c =⇒
k1 6= k2. Thus every pair of adjacent vertices have distinct average degrees. Hence G is a

neighbourly pseudo irregular fuzzy graph. Thus (ii) =⇒ (i) proved. 2
Remark 4.10 The converse of the above theorem need not be true.

Example 4.11 Consider a graph on G∗(V,E).u u u
uu

u(0.5) v(0.5) w(0.6)0.4 0.1

0.2
0.1

y(0.3) 0.2 x(0.3)

Figure 5

From the figure 5, da(u) = 0.6, da(v) = 0.6, da(w) = 0.55,da(x) = 0.366, da(y) = 0.5 ,

tda(u) = 1.1, tda(v) = 0.9, tda(w) = 1.15, tda(x) = 0.666, tda(y) = 0.8. Hence G is neighbourly

pseudo irregular fuzzy graph and neighbourly pseudo totally irregular fuzzy graph. But σ is

not a constant function.

Remark 4.12 Pseudo irregular fuzzy graph need not be a neighbourly pseudo irregular fuzzy

graph.

Example 4.13 Consider a graph on G∗(V,E).
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u(0.2)

v(0.4)

w(0.6)

x(0.8)

y(0.6)

z(0.4)

0.1 0.2

0.3

0.4
0.1

0.2

Figure 6

Here, da(u) = 0.4, da(v) = 0.5, da(w) = 0.5,da(x) = 0.5, da(y) = 0.4, da(z) = 0.3. Here

But the pairs v & w and w & xare the adjacent vertices having same pseudo degree. Hence G

is not a neighbourly pseudo irregular fuzzy graph. But G is pseudo irregular fuzzy graph, since

the vertex u is adjacent to vertices v and z with distinct pseudo degrees

Theorem 4.14 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). If the pseudo degrees of all vertices

of G are distinct, then G is neighbourly pseudo irregular fuzzy graph.

Proof Assume that the pseudo degrees of all vertices of G are distinct. Then every pair

of adjacent vertices have distinct pseudo degree and hence G is neighbourly pseudo irregular

fuzzy graph. 2
Theorem 4.15 Let G : (σ, µ) be a fuzzy graph on G∗(V,E). If the pseudo degrees of all vertices

of G are distinct and σ is constant, then G is neighbourly pseudo totally irregular fuzzy graph.

Proof Assume that the pseudo degrees of all vertices of G are distinct. Then by theorem G

is neighbourly pseudo irregular fuzzy graph. Since σ is constant, by theorem, G is neighbourly

pseudo totally irregular fuzzy graph. 2
Theorem 4.16 If G : (σ, µ) be a fuzzy graph on G∗(V,E), a cycle of length n and µ is a

constant function then G is not a neighbourly pseudo irregular fuzzy graph.

Proof Assume that µ is a constant function, say µ(uiuj) = c, i 6= j for all uiuj ∈ E. Then

da(ui) = 2c for all ui ∈ V . Thus da(ui) is constant for all ui ∈ V . Hence G is not a neighbourly

pseudo irregular fuzzy graph. 2
Theorem 4.17 Let G : (σ, µ) be a fuzzy graph on G∗(V,E), a cycle of length n. If µ is a

constant and σ is distinct, then G is neighbourly pseudo totally irregular fuzzy graph.

Proof Assume that µ is a constant and σ is distinct. (i.e.) µ(uiuj) = c, i 6= j for all

uiuj ∈ E and σ(ui) = ki for all ui ∈ V . Thus k1 6= k2 6= k3 6= · · · 6= kn. Then da(ui) = 2c

for all ui ∈ V . Now tda(ui) = da(ui) + σ(ui) = 2c + ki, for i = 1, 2, 3, · · · , n. Hence G is a

neighbourly pseudo totally irregular fuzzy graph. 2
Theorem 4.18 Let G : (σ, µ) be a fuzzy graph on G∗(V,E), an even cycle of length n and σ
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is distinct. If alternate edges have the same membership values, then G is neighbourly pseudo

totally irregular fuzzy graph.

Proof Assume that alternate edges takes the same membership values and σ(ui) = ki, for

i = 1, 2, · · · , n and k1 6= k2 6= · · · 6= kn. Let e1, e2, · · · , en be the edges of G. Since the alternate

edges have the same membership values,

µ(ei) =







c1if i is odd,

c2 if i iseven,

da(ui) = c1 + c2, i = 1, 2, · · · , n,

da(ui) = constant,

tda(ui) = da(ui) + σ(ui),

= da(ui) + ki, i = 1, 2, · · · , n and k1 6= k2 6= ... 6= kn.

So, every pair of adjacent vertices have distinct total pseudo degree. Hence G is neighbourly

pseudo totally irregular fuzzy graph. 2
Remarks 4.19 The above theorem does not hold for neighbourly pseudo irregular fuzzy graph.

Example 4.20 Consider a graph on G∗(V,E). t ttttu
u(0.2)

v(0.3)

w(0.4)

x(0.5)

y(0.6)

z(0.7)

0.2 0.1

0.2

0.1
0.2

0.1

Figure 7

Here, da(u) = 0.3, da(v) = 0.3, da(w) = 0.3,da(x) = 0.3, da(y) = 0.3, da(z) = 0.3. Here

σ(u) is distinct. But G is not a neighbourly pseudo irregular fuzzy graph, since there is no pair

of adjacent vertices having distinct pseudo degree.

Theorem 4.21 Let G : (σ, µ) be a fuzzy graph on G∗(V,E), a cycle of length n and n ≥ 5.

If the membership values of the edges are c1, c2, c3, · · · , cn such that c1 < c2 < c3 < · · · < cn.

Then G is neighbourly pseudo irregular fuzzy graph.

Proof Let G : (σ, µ) be a fuzzy graph on G∗(V,E), a cycle of length n and n ≥ 5. Let

c1, c2, c3, · · · , cn be the edges of the cycle Cn in that order. Let the membership values of the

edges e1, e2, e3, · · · , en be c1, c2, c3, · · · , cn such that c1 < c2 < c3 < · · · < cn.

Now, d(vi) =







cn + c1 if i = 1

ci−1 + ci if i = 2, 3, 4, · · · , n
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=⇒ da(vi) =















d(v2)+d(vn)
2 if i = 1

d(vi−1)+d(vi+1)
2 if i = 2, 3, · · · , n− 1

d(vn−1)+d(v1)
2 if i = n

=⇒ da(vi) =



























c2+c3+cn−1+cn

2 if i = 1

cn+c1+c2+c3

2 if i = 2
ci−2+ci−1+ci+ci+1

2 if i = 3, · · · , n− 1
c1+cn+cn−1+cn−2

2 ifi = n.

Also, since c1 < c2 < c3 < · · · < cn, we have every pair of adjacent vertices have distinct

pseudo degree. Hence the graph G is neighbourly pseudo irregular fuzzy graph. 2
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Abstract: The duplication graph DG(G) of a graph G is obtained by inserting new vertices

corresponding to each vertex of G and making the vertex adjacent to the neighborhood of

the corresponding vertex of G and deleting the edges of G. Let G1 and G2 be two graph with

vertex sets V (G1) and V (G2) respectively. The DG-vertex join of G1 and G2 is denoted by

G1 ⊔G2 and it is the graph obtained from DG(G1) and G2 by joining every vertex of V (G1)

to every vertex of V (G2). The DG-add vertex join of G1 and G2 is denoted by G1 ⊲⊳ G2 and

is the graph obtained from DG(G1) and G2 by joining every additional vertex of DG(G1) to

every vertex of V (G2). In this paper we determine the A-spectra and L-spectra of the two

new joins of graphs G1 and G2 when G1 is a regular graph and G2 is an arbitrary graph. As

an application we give the number of spanning tree, the Kirchhoff index and Laplace energy

like invariant of the new join. Also we obtain some infinite family of new class of integral

graphs.

Key Words: Spectrum, cospectral graphs, Join of graphs, spanning tree, Kirchhoff index,

Laplace-energy like invariant.

AMS(2010): 05C50.

§1. Introduction

All graphs described in this paper are simple and undirected. Let G be a graph with vertex set

V (G1) = {v1, v2, · · · vn}. The adjacency matrix of G, denoted by A(G) = (aij)n×n is an n× n
symmetric matrix with

aij =







1 if vi and vj are adjacent

0 otherwise

Let di be the degree of the vertex vi in G and D(G) = diag(d1, d2, · · · dn) be the diagonal

matrix of G. The Laplacian matrix is defined as L(G) = D(G) − A(G). The characteristic

polynomial of A(G) is defined as fG(A : x) = det(xIn − A), where In is the identity matrix of

order n. The roots of the characteristic equation of A(G) are called the eigenvalues of G. It is

1Received January 23, 2018, Accepted November 26, 2018.
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denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). It is called the A - Spectrum of G. The eigen values

of L(G) is denoted by 0 = µ1(G) ≤ µ2(G), · · · ≤ µn(G) and it is called the L - Spectrum of G.

Since A(G) and L(G) are real and symmetric, their eigen values are all real numbers. A graph

is A - integral, if the A - spectrum consists only of integers [4,14]. Two graphs are said to be

A - Cospectral if they have the same A - spectrum.

The characteristic polynomial and spectra of graphs help to investigate some properties of

graphs such as energy [8,16], number of spanning trees [18, 9,1], the Kirchhoff index [2, 5, 11],

Laplace energy like invariants [7] etc.

The first result on Laplacian matrix, which was discovered by Kirchhoff, appeared in a

paper published in the year 1847 is related to electrical network. There exists a vast literature

that studies the Laplacian eigen values and their relationship with various properties of graphs

[12,13]. Most of the studies of the Laplacian eigen values has naturally concentrated on external

non trivial eigen values. Gutman et al. [16] discovered the connection between photoelectron

spectra of standard hydrocarbons and the Laplacian eigen values of the underlying molecular

graphs.

In a recent paper Reji Kumar and Renny P. Varghese [18] introduced subdivision graph

vertex join of two given graphs and studies its spectral properties. They also studied [19] the

spectral properties of some classes of hypergraphs.

In the next section we define DG - vertex join and DG - add vertex join of two graphs

and discuss some important results, which are found essential to prove the results given in the

subsequent sections. In the third section we find the A - spectrum and the L - spectrum of the

new join and prove some related results. As an application, we find the number of spanning

trees, Kirchhoff index and Laplacian - energy like invariant. Fourth section contains a discussion

on some infinite family of integral graphs.

§2. Preliminaries

In a paper published in 1973 on duplicate graphs, which appeared in the Journal of Indian

Mathematical Society, Sampathkumar [10] defined duplicate graphs. Let G be a graph with

vertex set V(G) = {v1, v2, · · · , vn}. Take another set U = {u1, u2, · · · , un}. Make ui adjacent to

all the vertices in N(vi), the neighbourhood set of vi, in G for each i and remove all edges of G.

The resulting graph is called the duplication graph of G and is denoted by D(G). The following

result tells us an easy way to find the determinant of a bigger matrix using the determinant of

relatively smaller matrices.

Proposition 2.1 Let M1,M2,M3,M4 be respectively p× p, p× q, q × p, q × q matrix with M1

and M4 are invertible then

det





M1 M2

M3 M4



 = det(M1)det(M4 −M3M
−1
1 M2)

= det(M4)det(M1 −M2M
−1
4 M3),
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where M4−M3M
−1
1 M2 and M1−M2M

−1
4 M3 are called the Schur complements of M1 and M4

respectively.

Let G be a graph on n vertices, with the adjacency matrix A. The characteristic matrix

xI − A of A has determinant det(xI − A) = fG(A : x) 6= 0, so is invertible. The A - coronal

([6]), ΓA(x) of G is defined to be the sum of the entries of the matrix (xI −A)−1. This can be

calculated as

ΓA(x) = 1T
n (xI −A)−11n.

The A - coronal of some classes of graphs are given here.

Lemma 2.2([6]) Let G be r - regular on n vertices. Then

ΓA(x) =
n

x− r .

Since for any graph G with n vertices, each row sum of the Laplacian matrix L(G) is equal

to 0, we have ΓL(x) =
n

x
.

Lemma 2.3([6]) Let G be the bipartite graph Kpq, where p+ q = n. Then

ΓA(x) =
nx+ 2pq

x2 − pq .

The following results on an n× n real matrix is useful in this context.

Proposition 2.4([15]) Let A be an n × n real matrix, and Js×t denote the s × t matrix with

all entries equal to one. Then

det(A+ αJn × n) = det(A) + α1T
nadj(A)1n.

Here α is a real number and adj(A) is the adjugate matrix of A.

Corollary2.5([15]) Let A be an n× n real matrix. Then

det(xIn −A− αJn×n) = (1− αΓA(x)) det(xIn −A).

Next we proceed to define the DG - vertex join and the DG - advertex join of two graphs.

Definition 2.6 Let G1 be a graph on n1 vertices and m1 edges. G2 be an arbitrary graph on n2

vertices The DG− vertex join of G1 and G2 is denoted by G1 ⊔G2 and is the graph obtained

from D(G1) and G2 by joining every vertex of V (G1) to every vertex of V (G2). Where D(G1)

is the duplication graph of G1.

In Figure 1 an example of DG - vertex join of the graphs C4 and K2 is given.
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s
s

s
s

ss sss s
Figure 1 C4 ⊔K2

Definition 2.7 The DG − addvertex join of G1 and G2 is denoted by G1 ⊲⊳ G2 and is the

graph obtained from D(G1) and G2 by joining the additional vertices of D(G1) corresponding

to the vertices of G1 with every vertex of V (G2).

In Figure 2 an example of DG - advertex join of the graphs C4 and K2 is given.sss
s

s
s s s

ss
Figure 2 C4 ⊲⊳ K2

§3. Spectrum of G1 ⊔G2 for Some Classes of Graphs G1 and G2

In this section we study the spectrum of DG - vertex join of some classes of graphs G1 and G2.

We prove the following results in this connection.

Theorem 3.1 Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2 be an arbitrary

graph on n2 vertices. Then, the Characteristic polynomial of G1 ⊔G2 is

fG1⊔G2(A : x) = (x2 − n1xΓA2(x)− r21)

n2
∏

i=2

(x− λi(G2))

n1
∏

i=2

(x2 − λi(G1)
2).
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Proof The adjacency matrix of G1 ⊔G2 is

A =









0 A1 Jn1×n2

A1 0n1 0n1×n2

Jn2×n1 0n2×n1 A2









where A1 and A2 are the adjacency matrix of G1 and G2 respectively and J is a matrix with

each entries 1.

The characteristic polynomial of G1 ⊔G2 is

fG1⊔G2(A : x) =

∣

∣

∣

∣

xIn1 −A1 −J

−A1 xIn1 0

−J 0 xIn2−A2

∣

∣

∣

∣

= det(xIn2 −A2) det S,

where

S =





xIn1 −A1

−A1 xIn1



−





−Jn1×n2

0



 (xIn2 −A2)
−1
(

−Jn2×n1 0
)

=





xIn1 −A1

−A1 xIn1



−





ΓA2(x)Jn1×n1 0

0 0





=





xI − ΓA2(x)Jn1×n1 −A1

−A1 xI





Whence,

det S = det(xI) det

(

(xI − ΓA2(x)J −
A2

1

x

)

= xn1 det

(

xI − ΓA2(x)J −
A2

1

x
)

)

= xn1 det

(

xI − A2
1

x
− ΓA2(x)J

)

= xn1 det

(

xI − A2
1

x

)(

1− ΓA2(x)ΓA2
1

x

(x)

)

,

Notice that G1 is r1 - regular and the row sum of A2
1 is r21 . We get

ΓA2
1

x

=
n1

x− r2
1

x

=
n1x

x2 − r21
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and

det S = xn1det

(

xI − A2
1

x
)

)(

1− n1x

x2 − r21
ΓA2(x)

)

= det(x2I −A2)

(

x2 − r21 − n1xΓA2(x)

x2 − r21

)

.

Hence

det(xI −A) = (x2 − n1xΓA2(x)− r21)
n2
∏

i=1

(x− λi(G2))

n1
∏

i=2

(x2 − λi(G1)
2). 2

Corollary 3.2 Let G1 be an r1 - regular graph on n1 vertices, G2 be r2 - regular graph on n2

vertices. Then the A− Spectrum of G1 ⊔G2 consists of

(i) λi(G2) , for i = 2, 3, · · · , n2;

(ii) ±λi(G1) , for i = 2, 3, · · · , n1;

(iii) Three roots of the equation

x3 − r2x2 − (n1n2 + r21)x+ r21r2.

Proof If G2 is r2 - regular then

ΓA2(x) =
n2

x− r2
.

We get

det(xI −A) = (x3 − r2x2 − (n1n2 + r21)x+ r21r2)

×
n2
∏

i=2

(x− λi(G2))

n1
∏

i=2

(x2 − λi(G1)
2). 2

Corollary 3.3 Let G1 be an r1 - regular graph on n1 vertices, A − Spectrum of G1 ⊔ Kn

consists of

(i) 0, repeats n2 times;

(ii) ±λi(G1) , for i = 2, 3, · · · , n1;

(iii) ±
√

n1n2 + r21.

Corollary 3.4 Let G1 be an r1 - regular graph on n1 vertices. A − Spectrum of G1 ⊔ Kpq

consists of

(i) 0, repeats p+ q − 2 times;

(ii) ±λi(G1) , for i = 2, 3, · · · , n1;

(iii) Four roots of the equation

x4 − (pq + r21 + n1p+ n1q)x
2 − 2pqn1x+ r21pq.
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3.1 Laplacian Spectrum of G1 ⊔G2 for Some Classes of Graphs G1 and G2

Theorem 3.5 Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2 be an arbitrary

graph on n2 vertices. then,

fG1⊔G2(L : x) = x(x2 − (n1 + n2 + 2r1)x+ r1(2n1 + n2))

×
n2
∏

i=2

(x − n1 − µi(G2))

n1
∏

i=2

(x2 − (2r1 + n2)x+ n2r1 + r21 − λi(G1)
2).

Proof The Laplace adjacency matrix of G1 ⊔G2 is

L =









(r1 + n2)I −A1 Jn1×n2

−A1 r1I 0n1×n2

−Jn2×n1 0n1×n1 n1In2 + L2









where L2 is the Laplacian adjacency matrix of G2

The Laplacian characteristic polynomial of G1 ⊔G2 is

fG1⊔G2(L : x) =

∣

∣

∣

∣

(x−r1−n2)In1 A1 J

A1 (x−r1)In1 0

J 0 (x−n1)In2−L2

∣

∣

∣

∣

.

Using proposition 2.2 we get

fG1⊔G2(L : x) = det((x− n1)In2 − L2) detS,

where

S =





(x− r1 − n2)In1 A1

A1 (x− r1)In1



−





J

0



 ((x− n1)In1 − L2)
−1
(

J 0
)

=





(x − r1 − n2)I A1

A1 (x− r1)I



−





ΓL2(x− n1)Jn1×n1 0

0 o





=





(x − r1 − n2)I − ΓL2(x− n1)J A1

A1 (x− r1)I





Therefore,

det S = (x− r1)n1det

(

(x − r1 − n2)I − ΓL2(x− n1)J −
A2

1

x− r1

)

.
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By Corollary 2.7

det S = (x− r1)n1det

(

(x− r1 − n2)I −
A2

1

x− r1

)

×
(

1− ΓL2(x− n1)Γ A2
1

x−r1

(x− r1 − n2)

)

= det
(

(x − r1 − n2)(x− r1)I −A2
)

(

1− ΓL2(x− n1)Γ A2
1

x−r1

(x− r1 − n2)

)

.

Since G1 is r1 regular graph, the row sum of
A2

1

x−r1
is

r2
1

x−r1
. Therefore,

Γ A2
1

x−r1

(x− r1 − n2) =
n1(x − r1)

x2 − (2r1 + n2)x+ n2r1
,

1− ΓL2(x− n1)Γ A2
1

x−r1

(x− r1 − n2) =
x(x2 − (n1 + n2 + 2r1)x + r1(2n1 + n2))

(x− n1)(x2 − (2r1 + n2)x+ n2r1)
.

Hence

fG1⊔G2(L : x) = x(x2 − (n1 + n2 + 2r1)x+ r1(2n1 + n2))

×
n2
∏

i=2

(x − n1 − µi(G2))

n1
∏

i=2

(x2 − (2r1 + n2)x+ n2r1 + r21 − λi(G1)
2). 2

Let t(G) denote the number of spanning tree of the graph G, the total number of distinct

spanning subgraphs of G that are trees. The number of spanning trees of the graph describe

the network which is one of the natural characteristics of its reliability. If G is a connected

graph with n vertices and the Laplacian spectrum 0 = µ1(G) ≤ µ2(G), · · · ≤, µn(G) then ([17])

t(G) =
µ2(G)µ3(G) · · ·µn(G)

n

Corollary 3.6 Let G1 be an r1 - regular graph on n1 vertices and G2 be an arbitrary graph on

n2 vertices.Then

t(G1 ⊔G2) =
r1(2n1 + n2)

∏n1

i=2(n1 + µi(G2))
∏n2

i=2(r
2
1 + n2r1 − λ2

i (G1))

2n1 + n2
.

Proof By Theorem 3.5 the roots of fG1⊔G2(L : x) are as follows:

(i) 0;

(ii) n1 + µi(G2) for i = 2, 3, · · · , n2;

(iii) Two roots say x1 and x2 of the equation x2 − (n1 + n2 + 2r1)x + r1(2n1 + n2);

(iv) Two roots say xi1 and xi2 of the equation x2 − (2r1 + n2)x+ n2r1 + r21 − λi(G1)
2 for

i = 2, 3, · · · , n2.

For Case (iii), x1x2 = r1(2n1 + n2), and for Case (iv), xi1xi2 = n2r1 + r21 − λi(G1)
2,
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i = 2, 3, · · · , n2. Then, we get that

t(G1 ⊔G2) =
r1(2n1 + n2)

∏n1

i=2(n1 + µi(G2))
∏n2

i=2(r
2
1 + n2r1 − λ2

i (G1))

2n1 + n2
. 2

Another Laplacian spectrum based on graph invariant was defined by Liu and Liu [3] called

the Laplacian - energy - like invariant. The Laplacian - energy - like invariant(LEL) of a graph

G of n vertices is defined as

LEL(G) =

n
∑

i=2

√
µi.

Corollary 3.7 Let G1 be an r1 - regular graph on n1 vertices and G2 be an arbitrary graph on

n2 vertices. Then Laplace - energy - like invariant

LEL =
(

n1 + n2 + 2r1 + 2
√

r1(2n1 + n2)
)1/2

+

n2
∑

i=2

(

n1 + µi(G1)
2
)1/2

+

n1
∑

i=2

(

2r1 + n2 +
√

r21 + n2r1 − λi(G1)2

r21 + n2r1 − λi(G1)2

)1/2

.

Proof Using Theorem 3.5 and Corollary 3.6 we have

√
x1 +

√
x2 = (x1 + x2 + 2

√
x1x2)

1/2

=
(

n1 + n2 + 2
√

r1(2n1 + n2)
)1/2

,

1√
xi1

+
1√
xi2

=

√
xi1 +

√
xi2

2
√
xi1xi2

=

(

x1 + x2 +
√
x1x2

xi1xi2

)1/2

=

(

2r1 + n2 +
√

r21 + n2r1 − λi(G1)2

r21 + n2r1 − λi(G1)2

)1/2

.

Hence the required result is obtained using the formula for LEL. 2
Klein [5] propounder of resistance distance defined electric resistance in network corre-

sponding to the considered graph as the resistance distance between any two adjacent nodes is

1 ohm. The sum of the resistance distance between all pairs of the vertices of a graph is con-

ceived as a new graph invariant. The electric resistance is calculated by means of the Kirchhoff

laws called kirchhoff index.

Kirchhoff index of a connected graph G with n(n ≥ 2) vertices is defined as

Kf(G) = n

n−1
∑

i=1

1

µi

Corollary 3.8 Let G1 be an r1 - regular graph on n1 vertices. G2 be an arbitrary graph on n2
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vertices.Then

Kf(G1 ⊔G2) = (2n1 + n2)

[

n1 + n2 + 2r1
r1(2n1 + n2)

+

n2
∑

i=2

1

n1 + µi(G2)
+

n1
∑

i=2

2r1 + n2

r21 + n2r1 − λi(G1)2

]

.

Proof Using Theorem 3.5, Corollary 3.7 and the formula for Kirchhoff index we obtain the

required result. 2
3.2 Spectra of DG - add Vertex Graph of Some Classes of Graphs

Next we discuss some spectral properties of the DG - add vertex graph of some classes of graphs.

Proposition 3.9 Let G1 be an r1 - regular graph on n1 vertices and G2 be an arbitrary graph

on n2 vertices. Then G1 ⊔G2 and G1 ⊲⊳ G2 are A - cospectral

Proof Notice that the characteristic polynomials of G1⊔G2 and G1 ⊲⊳ G2 are same. Hence

we get the result. 2
Proposition 3.10 Let G1 be an r1 - regular graph on n1 vertices and G2 be an arbitrary graph

on n2 vertices then G1 ⊔G2 and G1 ⊲⊳ G2 are L - cospectral.

§4. Infinite Families of Integral Graphs

The following properties give a necessary and sufficient condition for DG - vertex join and DG

- add vertex join of G1 and G2 to be integral.

Proposition 4.1 Let G1 be r1 - regular graph on n1 vertices and G2 be r2 - regular graph on

n2 vertices. G1 ⊔G2 ( respectively G1 ⊲⊳ G2 ) is an integral graph if and only if G1 and G2 are

integral graphs and the roots of x3 − r2x2 − (n1n2 + r21)x+ r21r2 are integers.

In particular if G2 = Kn (totally disconnected) then r2 = 0 then G1 ⊔ G2 (respectively

G1 ⊲⊳ G2) is integral iff G1 is an integral graph and n1n2 + r21 is a perfect square.r r
rr r sr rrr rr

Figure 3 K4 ⊔K4 with spectrum {−5,−13, 04, 13, 5}
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Proposition 4.2 Let G1 be r1 - regular graph on n1. G1 ⊔Kpq ( respectively G1 ⊲⊳ Kpq ) is

an integral graph if and only if G1 is an integral graph and the roots of x4 − (pq + r21 + n1p +

n1q)x
2 − 2pqn1x+ r21pq are integers.

References
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Abstract: Molecular descriptor are major in the study of QSAR/QSPR. There are numer-

ous importance of graph theory in the field of structural chemistry. In the present paper, we

study the Gourava index of four operation on graphs.

Key Words: Gourava index, Zagreb index, graph operations.
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§1. Introduction

Let ϑ denotes the collection entire graphs. A mapping T : ϑ→ R is called a topological index, if

for every graphH isomorphic to G, T (G) = T (H). In chemical graph theory, topological indices

have several applications in isomer discrimination, QSAR/QSPR investigation, pharmaceutical

drug design and many more [5]. There are few important class of topological indices that

are extensively studied by a number of researchers. Out of these topological indices, the first

and second Zagreb indices, first appeared in a topological structure for the total π -energy of

conjugated molecules, were introduced by Gutman et.al., in [8].

The first and second Zagreb indices [3] of a molecular graph G are defined as

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)].

and

M2(G) =
∑

uv∈E(G)

[d(u)d(v)].

Motivated by the definitions of the Zagreb indices and their wide applications, V. R. Kulli

[10], introduced the first Gourava index of a molecular graph as follows.

The first Gourava index of a graph G is defined as

GO1(G) =
∑

uv∈E(G)

[d(u) + d(v) + d(u)d(v)].

1Received May 18, 2018, Accepted November 28, 2018.
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Figure 1: Graph G,H and G+F H

The cartesian product is an important method to construct a ample graph and play vital

role in the design and analysis the network. The cartesian product of two connected graphs G

and H , which is denoted by G2H , is a graph such that the set of vertices is V (G)2V (H) and

two vertices (p1, q1) and (p2, q2) of G2H are adjacent if and only if p1 = p2 and q1 is adjacent

with q2 in H otherwise q1 = q2 and p1 is adjacent with p2 in G. Let G be a graph with vertex

set V (G) and edge set E(G), there are four related graphs as follows:

For any connected graph G, define four operator graphs S(G), T (G), Q(G) = T1(G) and

R(G) = T2(G) as follows:

• S(G) is the graph obtained by inserting an additional vertex in each edge of G, i.e.,

replacing each edge of G by a path of length 2 ([1, 18]).

• The total graph T (G) of a graph G is the graph whose vertex set V
⋃

E, with two vertices

of T (G) being adjacent if and only if the corresponding elements of G are adjacent or incident

([14]).

• Q(G) is the graph obtained by inserting a new vertex into each edge of G, then joining

with edges those pairs of new vertices on adjacent edges of G, by a new edge ([15]).

• R(G) is the graph obtained by adding a new vertex corresponding to each edge of G,

then joining each new vertex to the end vertices of the corresponding edge ([15]).

Suppose that G and H are two connected graphs. M. Eliasi, B. Taeri [6] introduced four

new operations named as F-sum graphs, on these graphs that are based on S, T2, T1, T as follows.

Let F be one of the symbols S, T2, T1 or , T . The F -sum denoted by G+F H of graphs G

and H , is a graph with the set of vertices V (G +F H) = (V (G)
⋃

E(G)) × V (H) and (p1, p2)
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(q1, q2) ∈ E(G +F H), if and only if p1 = p2 ∈ V (G) and q1q2 ∈ E(H) or q1 = q2 and

(p1, p2) ∈ E(F (G)).

Throughout this paper, we consider only simple, connected, finite and undirected graphs.

For a graph G, the order and the size of graph are denoted as nG and eG respectively.

In mathematical chemistry, graph operations act as a very essential role, viz., as some

chemically interesting graphs can be derived from some simpler graphs by operations on graphs.

In [4], H. Deng et al. computed the first and second Zagreb indices for graph operations

S(G), R(G), Q(G) and T (G). Here, we extend this study by investigate the Gourava index of

four operation on graphs. Investigators need to study more details on calculating topological

indices of graph operations can be refer [2, 7, 9, 11, 12, 16, 17, 19].

§2. The Gourava Index of F-Sum of Graphs

In this section, we discuss main results of Gourava index of F-sum of graphs.

Theorem 2.1 Let G and H be two connected graphs. Then,

GO1(G+s H) = nHGO1(G) + nGGO1(H) + eHM1(G) + 2eGM1(H) + 8nHeG + 12eHeG.

Proof From the definition of Gourava index,

GO1(G+s H) =
∑

(p1,q1)(p2,q2)∈E(G+sH)

[dG+sH(p1, q1) + dG+sH(p2, q2)

+dG+sH(p1, q1)dG+sH(p2, q2)]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[dG+sH(p1, q1) + dG+sH(p1, q2)

+dG+sH(p1, q1)dG+sH(p1, q2)]

+
∑

q1∈V (H)

∑

p1p2∈E(S(G))

[dG+sH(p1, q1) + dG+sH(p1, q2)

+dG+sH(p1, q1)dG+sH(p1, q2)]

= I1 + I2, (1)

where I1, I2 are the sums of the above terms, in order.

For vertex ∀p1 ∈ V (G) and q1q2 ∈ E(H) we get

I1 =
∑

p1∈V (G)

∑

q1q2∈E(H)

[dG(p1) + dH(q1) + dG(p1) + dH(q2)

+[dG(p1) + dH(q1)][dG(p1) + dH(q2)]]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[

2dG(p1) + dH(q1) + dH(q2) + d2
G(p1) + dG(p1)[dH(q1) + dH(q2)]

+dH(q1)dH(q2)]
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=
∑

p1∈V (G)

[

2eHdG(p1) +M1(H) + eHd
2
G(p1) + dG(p1)M1(H) +M2(H)

]

= 4eHeG + nGGO1(H) + eHM1(G) + 2eGM1(H).

For edge ∀p1p2 ∈ E(S(G), where the vertex p1 ∈ V (G), p2 ∈ V (S(G)) − V (G) and

q1 ∈ V (H), since |E(S(G)| = 2|E(G)|,

I2 =
∑

q1∈V (H)

∑

p1p2∈E(S(G))

[

dS(G)(p1) + dH(q1) + dS(G)(p2)

+[dS(G)(p1) + dH(q1)]dS(G)(p2)
]

=
∑

q1∈V (H)

[GO1(S(G)) + 2eGdH(q1) + 2eGdH(q1)]

= nHGO1(S(G)) + 8eHeG

We know that, M1S(G) = M1(G) + 4eG and M2S(G) = M2(G) + 4eG. Therefore,

GO1(S(G)) = GO1(G) + 8eG and I2 = nHGO1(G) + 8nHeG + 8eHeG.

Substituting I1 and I2 in (1) we get required result

GO1(G+s H) = nHGO1(G) + nGGO1(H) + eHM1(G) + 2eGM1(H) + 8nHeG + 12eHeG. 2
Theorem 2.2 Let G and H be two connected graphs. Then,

GO1(G+T1 H) = nGGO1(H) + 5eHM1(G) + 3eGM1(H) + 2nHM1(G) + 2eGnHM1(G)

+10eHeG + nH

∑

uiuj∈E(G),
ujuk∈E(G)

[dG(ui)[1 + dG(uk)] + dG(uk)[1 + dG(uj)]

+dG(uj)[dG(ui) + dG(uj)]]

Proof Consider

GO1(G+T1 H) =
∑

(p1,q1)(p2,q2)∈E(G+T1H)

[

dG+T1H(p1, q1) + dG+T1H(p2, q2)

+dG+T1H(p1, q1)dG+T1H(p2, q2)
]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[

dG+T1H(p1, q1) + dG+T1H(p1, q2)

+dG+T1H(p1, q1)dG+T1H(p1, q2)
]

+
∑

q1∈V (H)

∑

p1p2∈E(T1(G))

[

dG+T1H(p1, q1) + dG+T1H(p2, q1)

+dG+T1H(p1, q1)dG+T1H(p2, q1)
]

.

The edge set E(T1(G)) split in to E(S(G)) and E(L(G)). Let E(T1(G)) = α1, V (G) = β,
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V (T1(G)) − V (G) = γ1. Then,

GO1(G+T1 H) =
∑

p1∈V (G)

∑

q1q2∈E(H)

[

dG+T1H(p1, q1) + dG+T1H(p1, q2)

+ dG+T1H(p1, q1)dG+T1H(p1, q2)
]

+
∑

q1∈V (H)

∑

p1p2∈α1,
p1∈β,
p2∈γ1

[

dG+T1H(p1, q1) + dG+T1H(p2, q1)

+ dG+T1H(p1, q1)dG+T1H(p2, q1)
]

+
∑

q1∈V (H)

∑

p1p2∈α1,
p1,p2∈γ1

[

dG+T1H(p1, q1) + dG+T1H(p2, q1)

+dG+T1H(p1, q1)dG+T1H(p2, q1)
]

= J1 + J2 + J3, (2)

where J1, J2, J3 are the sums of the above terms, in order

J1 =
∑

p1∈V (G)

∑

q1q2∈E(H)

[

2dT1(G)(p1) + dH(q1) + dH(q2)

+[dT1(G)(p1) + dH(q1)][dT1(G)(p1) + dH(q2)]
]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[

2dT1(G)(p1) + dH(q1) + dH(q2) + d2
T1(G)(p1) + dT1(G)(p1)dH(q2)

+dH(q1)dH(q2) + dT1(G)(p1)dH(q1)
]

=
∑

p1∈V (G)

[

2eHdG(p1) +GO1(H) + eHd
2
G(p1) + dG(p1)dH(q2) + dG(p1)dH(q1)

]

= nGGO1(H) + eHM1(G) + eGM1(H) + 2eHeG.

J2 =
∑

q1∈V (H)

∑

p1p2∈α1,
p1∈β,
p2∈γ1

[

[dT1(G)(p1) + 2dH(q1) + dT1(G)(p2)]

+[dT1(G)(p1) + dH(q1)][dT1(G)(p2) + dH(q1)]
]

=
∑

q1∈V (H)

∑

p1p2∈α1,
p1∈β,
p2∈γ1

[

[dG(p1) + 2dH(q1) + dT1(G)(p2)]

+[dG(p1) + dH(q1)][dT1(G)(p2) + dH(q1)]
]

=
∑

q1∈V (H)

∑

p1p2∈α1,
p1∈β,
p2∈γ1

[

dG(p1) + 2dH(q1) + dT1(G)(p2) + dG(p1)dT1(G)(p2)

+dG(p1)dH(q1) + dH(q1)dT1(G)(p2) + d2
H(q1)

]
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=
∑

q1∈V (H)

∑

p1∈V (G)

[

dG(p1)[dG(p1) + 2dH(q1) + dG(p1)dH(q1) + d2
H(q1)]

]

+
∑

q1∈V (H)

∑

p1p2∈α1,
p1∈β,
p2∈γ1

[

dT1(G)(p2) + dG(p1)dT1(G)(p2) + dH(q1)dT1(G)(p2)
]

.

We observe that for p2 ∈ V (T1(G)) − V (G), dT1(G)(p2) = dG(wi) + dG(wj), where p2 =

wiwj ∈ E(G). Hence,

J2 = nHM1(G) + 8eHeG + 2eHM1(G) + 2eGM1(H)

+
∑

q1∈V (H)

∑

wiwj∈E(G)

[dG(wi) + dG(wj) + dG(p1)[dG(wi) + dG(wj)]

+ dH(q1)[dG(wi) + dG(wj)]]

= 2nHM1(G) + 8eHeG + 4eHM1(G) + 2eGM1(H) + 2eGnHM1(G).

J3 =
∑

q1∈V (H)

∑

p1p2∈α1,p1,p2∈γ1

[

[dT1(G)(p1) + dT1(G)(p2)] + [dT1(G)(p1)dT1(G)(p2)]
]

= nH

∑

uiuj∈E(G),
ujuk∈E(G)

[[dG(ui) + dG(uj) + dG(uj) + dG(uk)]

+[dG(ui) + dG(uj)][dG(uj) + dG(uk)]]

= nH

∑

uiuj∈E(G),
ujuk∈E(G)

[dG(ui)[1 + dG(uk)] + dG(uk)[1 + dG(uj)] + dG(uj)[dG(ui) + dG(uj)]] .

Adding J1, J2, J3 in (2) we get desired result. 2
Theorem 2.3 Let G and H be two connected graphs. Then,

GO1(G+T2 H) = 4nHGO1(G) +GO1(H) + 8eHM1(G) + 5eGM1(H) + 6nHM1(G)

+4nHM2(G) + 24eHeG + 4nHeG

Proof We know that,

GO1(G+T2 H) =
∑

(p1,q1)(p2,q2)∈E(G+T2H)

[

dG+T2H(p1, q1) + dG+T2H(p2, q2)

+dG+T2H(p1, q1)dG+T2H(p1, q2)
]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[

dG+T2H(p1, q1) + dG+T2H(p1, q2)

+dG+T2H(p1, q1)dG+T2H(p1, q2)
]

+
∑

q1∈V (H)

∑

p1p2∈E(T1(G))

[

dG+T2H(p1, q1) + dG+T2H(p2, q1)

+dG+T2H(p1, q1)dG+T2H(p2, q1)
]
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= K1 +K2, (3)

where K1 and K1 are the sums of the above terms, in order

K1 =
∑

p1∈V (G)

∑

q1q2∈E(H)

[

2dT2(G)(p1) + dH(q1) + dH(q2)

+d2
T2(G)(p1) + dT2(G)(p1)[dH(q1) + dH(q2)] + dH(q1)dH(q2)

]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[

4d(G)(p1) + dH(q1) + dH(q2)

+4d2
G(p1) + 2d(G)(p1)[dH(q1) + dH(q2)] + dH(q1)dH(q2)

]

=
∑

p1∈V (G)

[

4eHdG(p1) +GO1(H) + 4eHd
2
G(p1) + 2dG(p1)M1(H)

]

= 8eHeG +GO1(H) + 4eHM1(G) + 4eGM1(H) (3a)

for edge ∀p1p2 ∈ E(T2(G)) and vertex q1 ∈ V (H). Here we denote E(T2(G)) = α2, V (G) = β,

V (T2(G)) − V (G) = γ2.

K2 =
∑

q1∈V (H)

∑

p1p2∈E(T2(G))

[

dG+T2H(p1, q1) + dG+T2H(p2, q1)

+dG+T2H(p1, q1)dG+T2H(p2, q1)
]

+
∑

q1∈V (H)

∑

p1p2∈α2,
p1∈β,
p2∈γ2

[

dG+T2H(p1, q1) + dG+T2H(p2, q1) + dG+T2H(p1, q1)dG+T2H(p2, q1)
]

= K3 +K4 (3b).

for ∀q1 ∈ V (H) and edge p1p2 ∈ E(T2(G)) if and only if p1p2 ∈ E(G).

K3 =
∑

q1∈V (H)

∑

p1p2∈E(G)

[

dG+T2(G)H(p1, q1) + dG+T2(G)H(p2, q1)

+dG+T2(G)H(p1, q1)dG+T2(G)H(p2, q1)
]

=
∑

q1∈V (H)

∑

p1p2∈E(G)

[

dT2(G)(p1) + dH(q1) + dT2(G)(p2) + dH(q1)

+[dT2(G)(p1) + dH(q1)][dT2(G)(p2) + dH(q1)]
]

=
∑

q1∈V (H)

∑

p1p2∈E(G)

[2dG(p1) + 2dH(q1) + 2dG(p2) + 4dG(p1)dG(p2)

+2dG(p1)dH(q1) + 2dH(q1)dG(p2) + d2
H(q1)

]

= 4nHGO1(G) + 4eHM1(G) + eGM1(H) + 4nHM2(G) + 4eHeG.

Since we have dT2(G)(p1) = 2dG(P1) for each vertex p1 ∈ V (G) and dT2(p2) = 2 for each

vertex p2 ∈ V (T2(G)) − V (G),
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K4 =
∑

q1∈V (H)

∑

p1p2∈α2,
p1∈β,
p2∈γ2

[

dT2(G)(p1) + dH(q1) + dT2(G)(p2)

+[dT2(G)(p1) + dH(q1)]dT2(G)(p2)
]

=
∑

q1∈V (H)

∑

p1p2∈α2,
p1∈β,
p2∈γ2

[

dT2(G)(p1) + dH(q1) + dT2(G)(p2)

+dT2(G)(p1)dT2(G)(p2) + dH(q1)dT2(G)(p2)
]

=
∑

q1∈V (H)

∑

p1p2∈α2,
p1∈β,
p2∈γ2

[6dG(p1) + 3dH(q1) + 2]

=
∑

q1∈V (H)

∑

p1∈V (G)

dG(p1) [6dG(p1) + 3dH(q1) + 2]

= 6nHM1(G) + 12eGeH + 4nHeG.

Adding K3 and K4 and substitute in (3b) we get

4nHGO1(G) + 16eHeG + 6nHM1(G) + 4eHM1(G) + eGM1(H) + 4nHM2(G) + 4nHeG. (3c)

Substitute (3a) and (3c) in (3) we get desired results.

GO1(G+T2 H) = 4nHGO1(G) +GO1(H) + 8eHM1(G) + 5eGM1(H) + 6nHM1(G)

+4nHM2(G) + 24eHeG + 4nHeG.

This completes the proof. 2
Theorem 2.4 Let G and H be two connected graphs. Then,

GO1(G+T H) = 4nHGO1(G) + nGGO1(H) + 12eHM1(G) + 6eGM1(H)

+2nHM1(G) + eGM2(H) + 8eGM1(G) + 20eHeG

+nH

∑

qiqj∈E(G),
qjqk∈E(G)

[dG(qi) + 2dG(qj) + dG(qk)

+[dG(qi) + dG(qj)][dG(qj) + dG(qk)]]

Proof Let

GO1(G+T H) =
∑

(p1,q1)(p2,q2)∈E(G+T H)

[dG+T H(p1, q1) + dG+T H(p2, q2)

+dG+T H(p1, q1)dG+T H(p2, q2)]
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=
∑

p1∈V (G)

∑

q1q2∈E(H)

[dG+T H(p1, q1) + dG+T H(p1, q2)

+dG+T H(p1, q1)dG+T H(p1, q2)]

+
∑

q1∈V (H)

∑

p1p2∈E(T (G))

[dG+T H(p1, q1) + dG+T H(p2, q1)

+dG+T H(p1, q1)dG+T H(p2, q1)] .

Note that E(T (G)) = E(G)
⋃

E(S(G))
⋃

E(L(G)). We get that

GO1(G+T H)

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[dG+T H(p1, q1) + dG+T H(p1, q2) + dG+T H(p1, q1)dG+T H(p1, q2)]

+
∑

q1∈V (H)

∑

(p1p2)∈E(T (G)),
(p1,p2)∈V (G)

[dG+T H(p1, q1) + dG+T H(p2, q1) + dG+T H(p1, q1)dG+T H(p2, q1)]

+
∑

q1∈V (H)

∑

(p1p2)∈α3,
p1∈β,
p2∈γ3

[dG+T H(p1, q1) + dG+T H(p2, q1) + dG+T H(p1, q1)dG+T H(p2, q1)]

+
∑

q1∈V (H)

∑

(p1p2)∈α3,
(p1,p2)∈γ3

[dG+T H(p1, q1) + dG+T H(p2, q1) + dG+T H(p1, q1)dG+T H(p2, q1)]

= L1 + L2 + L3 + L4, (4)

where L1, L2, L3, L4 are the sums of the above terms, in order

L1 =
∑

p1∈V (G)

∑

q1q2∈E(H)

[

2dT (G)(p1) + dH(q1) + dH(q2)

+[dT (G)(p1) + dH(q1)][dT (G)(p1)dH(q2)]
]

=
∑

p1∈V (G)

∑

q1q2∈E(H)

[

4dG(p1) + dH(q1) + dH(q2) + 4d2
G(p1) + 2dG(p1)dH(q1)

]

+2dG(p1)dH(q2) + dH(q1)dH(q2)

= nGGO1(H) + 4eHM1(G) + 4eGM1(H) + 8eGeH .

L2 =
∑

q1∈V (H)

∑

p1p2∈α3,p1,p2∈β

[

dT (G)(p1) + 2dH(q1) + dT (G)(p2)

+[dT (G)(p1) + dH(q1)][dT (G)(p2)dH(q1)]
]

=
∑

q1∈V (H)

∑

p1p2∈E(G)

[

2dG(p1) + 2dG(p2) + 2dH(q1) + d2
H(q1) + 2dG(p2)dH(q1)

+4dG(p1)dG(p2) + 2dG(p1)dH(q1)]

= 2nHGO1(G) + 4eHM1(G) + eGM2(H) + 2nHM2(G) + 4eGeH .
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L3 =
∑

q1∈V (H)

∑

p1p2∈α3,
p1∈β,
p2∈γ3

[

dT (G)(p1) + dT (G)(p2) + 2dH(q1)

+[dT (G)(p1) + dH(q1)][dT (G)(p2)dH(q1)]
]

=
∑

q1∈V (H)

∑

(p1∈V (G)

[

dG(p1)2dG(p1) + dH(q1) + dH(q1) + dG(p1)dH(q1) + d2
H(q1)

]

+
∑

q1∈V (H)

∑

p1p2∈α3,
p1∈β,
p2∈γ3

[

dT (G)(p2) + 2dG(p1)dT (G)(p2) + dH(q1)dT (G)(p2)
]

.

Note that p2 ∈ V (T (G)) − V (G), dT (G)(p2) = dG(p) + dG(q) where p2 = pq ∈ E(G), we

further get that

L3 = 2nHM1(G) + 4eHM1(G) + 2eGM1(H) + 8eHeG

+
∑

q1∈V (H)

∑

p1∈β,
p2∈γ3

[(dG(p) + dG(q)) + 2dG(p1)(dG(p) + dG(q)) + dH(q1)(dG(p) + dG(q))]

= 2nHM1(G) + 4eHM1(G) + 2eGM1(H) + 2nHM1(G) + 8eGM1(G) + 4eHM1(G)

= 4nHM1(G) + 4eHM1(G) + 8eGM1(G) + 2eGM1(H) + 8eHeG.

L4 =
∑

q1∈V (H)

∑

(p1,p2)∈γ3

[dG+T H(p1, q1) + dG+T H(p2, q1) + dG+T H(p1, q1)dG+T H(p2, q1)]

=
∑

q1∈V (H)

∑

p1,
p2∈γ3

[

dT (G)(p1) + dT (G)(p2) + dT (G)(p1)dT (G)(p2)
]

= nH

∑

qiqj∈E(G),qjqk∈E(G)

[(dG(qi) + dG(qj)) + (dG(qj) + dG(qk))

+[dG(qi) + dG(qj)][dG(qj) + dG(qk)]]

Adding L1, L2, L3, L4 in (4) we get required result. 2
§3. Conclusion

In this paper, we obtain explicit expression for the Gourava index of four operation on graphs

in terms of first Zagreb and second Zagreb index.
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§1. Introduction

A graph G consists of a nonempty set V = V (G) of points called vertices and another set

E = E(G) whose elements are called edges where each edge is identified with an unordered pair

of vertices in V . Each pair e = (u, v) in E of points of V is an edge of G and is said to be

incident with u and v. In this case u and v are said to be adjacent to each other. The number

of vertices in G is called the order of G.

We begin with some basic definitions and notations [7], [12], [6].

Definition 1.1 A walk of a graph G is a finite, alternative sequence of vertices and edges

v0, e1, v1, e2, v2, · · · , vn−1, en, vn, beginning with v0 and ending with vn such that each edge ei is

incident with vi−1 and vi. The number of edges is called the length of the walk. A walk is called

a path if all its vertices (and thus necessarily all the edges) are distinct. A path on n vertices

is denoted by Pn.

Definition 1.2 A walk in a graph is closed if its initial and terminal vertices are identical. A

closed walk is called a cycle. A cycle on n(≥ 3) vertices is denoted by Cn.

Definition 1.3 A graph G is said to be complete if every pair of its distinct vertices are

adjacent. A complete graph on n vertices is denoted by Kn.

Definition 1.4 A bigraph or bipartite graph is a graph whose vertex set V (G) can be partitioned

into two subsets V1 and V2 such that every edge of G joins a vertex of V1 with a vertex of V2.

(V1, V2) is a bipartition of G.

1Received April 13, 2018, Accepted November 30, 2018.
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A complete bipartite graph is a bipartite graph with bipartition (V1, V2) such that every

vertex of V1 joined to all the vertices of V2. If V1 contains m points and V2 contains n points

then the complete bipartite graph is denoted by Km,n. A star K1,n is a complete bipartite graph.

Definition 1.5 A graph is acyclic if it has no cycles. A tree is a connected acyclic graph.

Definition 1.6 The wheel Wn(n ≥ 4) is the graph obtained from the join of K1 and Cn−1.

Definition 1.7 A fan Fn(n ≥ 2) is the graph obtained from the join of the path Pn and K1.

Definition 1.8 A ladder Ln is a graph with vertex set V (Ln) = {vi : 1 ≤ i ≤ 2n} and edge set

E(Ln) = {v2iv2i+2, v2i−1v2i+1 : 1 ≤ i ≤ n− 1} ∪ {v2i−1v2i : 1 ≤ i ≤ n}.

Definition 1.9 A triangular ladder is a graph Tn, whose vertex set is V (Tn) = {vi : 1 ≤ i ≤ 2n}
and whose edge set is E(Tn) = E(Ln)

⋃{v2iv2i+1 : 1 ≤ i ≤ n− 1}.

Definition 1.10 A complete n-ary tree is a tree in which every internal vertex is of degree

n+ 1, the root vertex is of degree n and the pendent vertices are of degree 1 and have the same

depth.

Definition 1.11 A chord of a cycle Cn is an edge joining two non-adjacent vertices of the cycle

Cn.

Definition 1.12 The graph obtained by joining a single pendent edge to each vertex of a path

is called a comb.

Definition 1.13 Duplication of a vertex v by a new edge e = uw in a graph G produces a new

graph G
′

such that N(u) = {v, w} and N(w) = {u, v}.

Definition 1.14 Duplication of an edge e = uv by a new vertex w in a graph G produces a

new graph G
′

such that N(w) = {u, v}.

Definition 1.15 A triangular snake is a graph obtained from the duplication of each edge of a

path by a new vertex.

Definition 1.16 The windmill graph Km
n , (n > 3) consists of m copies of Kn with a vertex in

common.

Consider a graph G of order n. Let P1 and P2 be two paths in G with the same vertex

set V . Then we say that P1 and P2 are path homotopic with respect to V . We denote this by

P1 ≃V P2. One can easily prove that this relation is an equivalence relation. Let P be the path

homotopy class consisting of those paths which are path homotopic to the path P with a given

vertex set and let A denote the set of all distinct path homotopy classes in G.

Definition 1.17 A graph G of order n is said to be strongly k-multiplicative if there is an

injective mapping f : V (G) → {1, 2, · · · , n} such that the induced mapping h : A → Z+

defined by h(P) =
k+1
∏

i=1

f(vji), where j1, j2, · · · , jk+1 ∈ {1, 2, · · · , n}, k+ 1≤ n and P is the path
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homotopy class of paths having the vertex set {vj1 , vj2 , · · · , vjk+1
}, is injective.

In particular, if k=2 we call G, strongly 2- multiplicative and if k=1, then we call G,

strongly 1- multiplicative or simply strongly multiplicative.

In 2001, L. W. Beineke and S. M. Hegde [5] have introduced the concept of strongly

multiplicative graphs. Since then many authors including C. Adiga, H. N. Ramaswamy and D.

D. Somashekara [2],[3], [4], M. A. Seoud and A. Zid [9], B. D. Acharya, Germina and Ajitha [1],

S. K. Vaidya and K. K. Kanani [10], [11] and M. Muthusamy, K. C. Raajasekar and J. Basker

Babujee [8] have also studied and contributed to the concept of strongly multiplicative graphs.

For more details one may refer the survey article “A dynamic survey of graph labeling” by J.

A. Gallian [6].

In the next section we prove our main results.

§2. Main Results

We first note that for a graph to be strongly 2-multiplicative, it has to have at least 3 vertices.

Theorem 2.1 The path Pn is strongly 2-multiplicative.

Proof Consider a path Pn of length n− 1. We label the vertices as follows: vi = i for all

i. Then A consists of n − 2 distinct path homotopy classes P1,P2,P3, · · · ,Pn−2, where Pi

is the path homotopy class of paths having the vertex set {vi, vi+1, vi+2}, for 1 6 i ≤ n − 2.

Then h(Pi)=(i)(i+ 1)(i+ 2), for 1 ≤ i ≤ n− 2. Since i(i+ 1)(i+ 2) < (i+ 1)(i+ 2)(i+ 3), for

1 ≤ i ≤ n− 3, it follows that h(Pi) < h(Pi+1), for 1 ≤ i ≤ n− 3. Hence h is injective and Pn

is strongly 2-multiplicative. 2
Theorem 2.2 Every cycle Cn, is strongly 2-multiplicative.

Proof Consider a cycle Cn=(v1, v2, v3, · · · , vn, v1) of order n and let p be the largest

prime less than n. We label the vertices as follows: vi=i, for 1 ≤ i ≤ p − 1, vi = i + 1, for

p ≤ i ≤ n − 1 and vn = p. If n = 3, then A consists of only one path homotopy class and

is trivially strongly 2-multiplicative. If n > 3 , then A consists of n distinct path homotopy

classes P1,P2,P3, · · · ,Pn, where Pi is the path homotopy classes of paths having the vertex sets

{vi, vi+1, vi+2}, for 1 ≤ i ≤ n− 2, Pn−1 is the path homotopy class of paths having the vertex

set {vn−1, vn, v1} and Pn is the path homotopy class of paths having the vertex set {vn, v1, v2}.
Then h(Pi) = (i)(i + 1)(i+ 2), for 1 ≤ i ≤ p − 3, h(Pp−2) = (p − 2)(p− 1)(p + 1), h(Pp−1) =

(p− 1)(p+ 1)(p+ 2), h(Pi) = (i+ 1)(i+ 2)(i+ 3), for p ≤ i ≤ n− 3, h(Pn−2) = (n− 1)(n)(p)

or h(Pn−2) = (n − 2)(n)(p), if p is the immediate predecessor of n, h(Pn−1) = n · p · 1 and

h(Pn) = p · 1 · 2. Then from the definition of h it follows that h(Pi) < h(Pi+1), 1 ≤ i ≤ n− 3

and h(Pn) < h(Pn−1) < h(Pn−2), also h(Pi) 6= h(Pj), n − 2 ≤ j ≤ n and 1 ≤ i ≤ n − 3.

Since h(Pj) is divisible by p, where as h(Pi) is not, h is injective and the graph Cn is strongly

2-multiplicative. 2
Theorem 2.3 Every cycle with one chord is strongly 2-multiplicative.
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Proof First, consider a cycle C4 with vertices v1, v2, v3, v4. Let the chord be e = v1v3. We

label the vertices as follows: v1 = 1, v2 = 4, v3 = 2 and v4 = 3. Then A consists of 4 distinct

path homotopy classes P1,P2,P3 and P4, corresponding to the path homotopy classes of paths

having the vertex sets {v1, v2, v3}, {v2, v3, v4}, {v3, v4, v1} and {v4, v1, v2} respectively. Then

h(P1) = 8, h(P2) = 24, h(P3) = 6, h(P4) = 12. Clearly h is injective and C4 with one chord is

strongly 2-multiplicative.

Second, consider a cycle C5 with vertices v1, v2, v3, v4, v5. Let the chord be e = v1v3.

We label the vertices as follows: v1 = 1, v2 = 4, v3 = 2, v4 = 5 and v5 = 3. Then A
consists of 7 distinct path homotopy classes P1,P2,P3, P4,P5,P6 and P7, corresponding to

path homotopy classes of paths having the vertex sets {v1, v2, v3}, {v2, v3, v4}, {v3, v4, v5},
{v4, v5, v1}, {v5, v1, v2}, {v5, v1, v3} and {v4, v3, v1} respectively. Then h(P1)=8, h(P2) = 40,

h(P3) = 30, h(P4) = 15, h(P5) = 12, h(P6) = 6 and h(P7) = 10. Clearly h is injective and C5

with one chord is strongly 2-multiplicative.

Finally, let n > 5. Consider a cycle Cn = (v1, v2, v3, · · · , vn, v1) of order n and let p1 and

p2 be the two consecutive primes such that 0 < p2 < p1 < n and that p1 is the largest. Let

e = v1vp2 be the chord of the cycle Cn. We label the vertices as follows: vi = i, for 1 ≤ i ≤ p1−1,

vi = i+1, for p1 ≤ i ≤ n−1 and vn=p1. ThenA consists of n+4 (n+2, in case n = 6 and n = 7)

distinct path homotopy classes P1,P2,P3, · · · ,Pn, Pn+1, Pn+2, Pn+3, Pn+4, where Pi is the

path homotopy class of paths having the vertex sets {vi, vi+1, vi+2}, for 1 ≤ i ≤ n−2 and Pn−1,

Pn, Pn+1, Pn+2, Pn+3 and Pn+4 are the path homotopy classes of paths having the vertex

set {vn−1, vn, v1}, {vn, v1, v2}, {vn, v1, vp2}, {vp2+1, vp2 , v1}, {v2, v1, vp2} and {vp2−1, vp2 , v1}
respectively. Then h(Pi)=(i)(i+1)(i+2), for 1 ≤ i ≤ p1−3, h(Pp1−2) = (p1−2)(p1−1)(p1+1),

h(Pp1−1) = (p1 − 1)(p1 + 1)(p1 + 2), h(Pi) = (i + 1)(i + 2)(i + 3), for p1 ≤ i ≤ n − 3,

h(Pn−2) = (n − 1)(n)(p1) or h(Pn−2) = (n − 2)(n)(p1), if p1 is the immediate predecessor

of n, h(Pn−1)=n.p1.1, h(Pn)=p1.1.2, h(Pn+1)=p1.1.p2, h(Pn+2)=(p2 + 1).p2.1 h(Pn+3)=2.1.p2

and h(Pn+4)=(p2 − 1).p2.1. Then from the definition of h it follows that h(Pi)<h(Pi+1), for

1≤i≤p2−3 and p2+1≤i≤n−3 and h(Pn)<h(Pn−1)< h(Pn−2), also h(Pi)6= h(Pj), 1≤i≤p2−3,

p2+1≤i≤n−3 and n−2≤j≤n. Since h(Pj) is divisible by p1, where as h(Pi) is not. h(Pn+3) <

h(Pn+4) < h(Pn+2) < h(Pn+1) < h(Pp2−2) < h(Pp2−1) < h(Pp2) and these are not equal to

h(Pi) and h(Pj), where 1≤i≤p2 − 3, p2 + 1≤i≤n− 3 and n− 2≤j≤n, since these are divisible

by p2 whereas h(Pi) and h(Pj) are not. Hence h is injective and Cn, n > 5 with one chord is

strongly 2-multiplicative. 2
Remark 2.4 (1) In general, a cycle Cn=(v1, v2, v3, · · · , vn, v1) with one chord joining any two

non adjacent vertices, can be shown to be strongly 2-multiplicative.

(2) A cycle with twin chords can be shown to be strongly 2-multiplicative.

Theorem 2.5 The graph obtained by duplication of an arbitrary vertex of a cycle by a new

edge is strongly 2-multiplicative.

Proof Consider a cycle Cn=(v1, v2, v3, · · · , vn, v1). We duplicate the vertex vn by an edge

e with end vertices vn+1 and vn+2. Let the graph so obtained be G. Then | V (G) |= n + 2

and | E(G) |= n + 3. Let p be the largest prime less than n. We label the vertices as
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follows: vi=i, for 1 ≤ i ≤ p − 1 and for n < i ≤ n + 2, vi = i + 1, for p ≤ i ≤ n − 1 and

vn = p. If n = 3, then A consists of 6 distinct path homotopy classes P1,P2,P3,P4, P5 and

P6, corresponding to the path homotopy classes of paths having the vertex sets {v1, v2, v3},
{v3, v4, v5}, {v2, v3, v4}, {v2, v3, v5}, {v1, v3, v4} and {v1, v3, v5} respectively. Then h(P1) = 6,

h(P2) = 40, h(P3) = 24, h(P4) = 30, h(P5) = 8, h(P4) = 10. If n > 3, then A consists of n+ 5

distinct path homotopy classes P1,P2,P3, . . . ,Pn, Pn+1, Pn+2, Pn+3, Pn+4, Pn+5, where Pi is

the path homotopy class of paths having the vertex sets {vi, vi+1, vi+2}, for 1 ≤ i ≤ n− 2 and

Pn−1, Pn, Pn+1, Pn+2, Pn+3, Pn+4 and Pn+5 are the path homotopy classes of paths having

the vertex sets {vn−1, vn, v1}, {vn, v1, v2}, {vn, vn+1, vn+2}, {vn+1, vn, vn−1}, {vn+1, vn, v1},
{vn+2, vn, vn−1} and {vn+2, vn, v1} respectively. Then h(Pi) = (i)(i+1)(i+2), for 1 ≤ i ≤ p−3,

h(Pp−2) = (p− 2)(p− 1)(p+ 1), h(Pp−1) = (p− 1)(p+ 1)(p+ 2), h(Pi) = (i+ 1)(i+ 2)(i+ 3),

for p ≤ i ≤ n − 3, h(Pn−2) = (n − 1)(n)(p) or h(Pn−2) = (n − 2)(n)(p), if p is the immediate

predecessor of n, h(Pn−1) = n · p · 1, h(Pn) = p · 1 · 2, h(Pn+1) = p · (n + 1) · (n + 2),

h(Pn+2) = n · p · (n + 1), h(Pn+3) = (n + 1) · p · 1, h(Pn+4) = (n + 2) · p · n and h(Pn+5) =

(n + 2) · p · 1. Then from the definition of h it follows that h(Pi) < h(Pi+1), 1 ≤ i ≤ n − 3

and h(Pn) < h(Pn−1) < h(Pn+3) < h(Pn+5) < h(Pn−2) < h(Pn+2) < h(Pn+4) < h(Pn+1) and

these not equal to h(Pk) where 1 ≤ k ≤ n − 3, since these are divisible by p whereas h(Pk)

is not. Hence h is injective and the graph obtained by duplication of an arbitrary vertex of a

cycle by a new edge is strongly 2-multiplicative. 2
Remark 2.6 If we duplicate an edge in a cycle of an order n by a new vertex, then we obtain

a cycle of order n+1 with one chord. Hence by Theorem 2.3 the graph obtained by duplication

of an arbitrary edge of cycle by a new vertex is strongly 2-multiplicative.

Theorem 2.7 The comb graph is strongly 2-multiplicative

Proof Consider the comb graphG of order 2n(n ≥ 2) with vertex setG = {v1, v2, v3, · · · , v2n}
as shown below.

sssss s s s
v7v5v3v1

v8v6v4v2 qqqq qq sss s
v2nv2n−3

v2n−1
v2n−2

Figure 1

ThenA consists of 3n−4 distinct path homotopy classesP2i−1,2i+1,2i+3, P2i−1,2i,2i+1, P2i−1,2i+1,2i+2,

corresponding to path homotopy classes of paths having vertex sets {v2i−1, v2i+1, v2i+3}, {v2i−1, v2i, v2i+1}
and {v2i−1, v2i+1, v2i+2} respectively, for 1 ≤ i ≤ n−2 and path homotopy classesP2n−3,2n−2,2n−1,

P2n−3,2n−1,2n corresponding to path homotopy classes of paths having the vertex sets {v2n−3, v2n−2, v2n−1}
and {v2n−3, v2n−1, v2n} respectively. We label the vertices as follows: vi = i, for all i. Then

h(Pi,j,k) = i · j · k. Since (2i − 1) · (2i) · (2i + 1) < (2i − 1) · (2i + 1) · (2i + 2) < (2i − 1) ·
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(2i + 1) · (2i + 3), (2i − 1) · (2i + 1) · (2i+ 3) < (2i+ 1) · (2i + 2) · (2i + 3), for 1 ≤ i ≤ n − 2

and (2i − 1) · (2i) · (2i + 1) < (2i − 1) · (2i + 1) · (2i + 2) for i = n − 1, it follows that

h(P1,2,3) < h(P1,3,4) < · · · < h(P2n−3,2n−1,2n). Therefore h is injective and the comb graph is

strongly 2-multiplicative. 2
Theorem 2.8 The triangular snake graph is strongly 2-multiplicative.

Proof Consider the triangular snake graph Tn(n ≥ 2) with vertex set V (Tn) = {v1, v2, v3,
· · · , v2n−1} as shown below.

v2 v4 v6 v8 v2n−2s s s s s ss s s s s sq q q
v1 v3 v5 v7 v9 v2n−3

v2n−1

Figure 2

Then A consists of 5n− 9 distinct path homotopy classes

P2i−1,2i,2i+1, P2i−1,2i+1,2i+2, P2i−1,2i+1,2i+3, P2i,2i+1,2i+2, P2i,2i+1,2i+3

corresponding to path homotopy classes of paths having vertex sets

{v2i−1, v2i, v2i+1}, {v2i−1, v2i+1, v2i+2}, {v2i−1, v2i+1, v2i+3}, {v2i, v2i+1, v2i+2}
and {v2i, v2i+1, v2i+3} respectively, for 1 ≤ i ≤ n−2 and path homotopy classes P2n−3,2n−2,2n−1

corresponding to path homotopy class of paths having the vertex set {v2n−3, v2n−2, v2n−1}. We

label the vertices as follows: vi = i, for all i. Then h(Pi,j,k) = i·j ·k. Since (2i−1)·(2i)·(2i+1)<

(2i−1)·(2i+1)·(2i+2)< (2i−1)·(2i+1)·(2i+3)< (2i)·(2i+1)·(2i+2)< (2i)·(2i+1)·(2i+3),

(2i)·(2i+1)·(2i+3)< (2i+1)·(2i+2)·(2i+3), for 1 ≤ i ≤ n−2 and (2n−3)·(2n−1)·(2n−4)<

(2n − 3) · (2n − 2) · (2n − 1) it follows that h(P1,2,3) < h(P1,3,4) < . . . < h(P2n−3,2n−2,2n−1).

Therefore h is injective and the triangular snake graph is strongly 2-multiplicative. 2
Theorem 2.9 The ladder graph Ln is strongly 2-multiplicative.

Proof Consider the ladder graph Ln with vertex set V (Ln) = {v1, v2, v3, · · · , v2n} as shown

below. s s s s s sssssssv2 v4 v6 v8 v2n−2 v2n

v1 v3 v5 v7 v2n−3 v2n−1

q q qqq q
Figure 3

Then A consists of 6n− 8 distinct path homotopy classes
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P2i,2i−1,2i+1, P2i−1,2i,2i+2, P2i−1,2i+1,2i+2, P2i−1,2i+1,2i+3, P2i,2i+2,2i+4, P2i,2i+2,2i+1,

corresponding to path homotopy classes of paths having vertex sets {v2i, v2i−1, v2i+1}, {v2i−1,

v2i, v2i+2}, {v2i−1, v2i+1, v2i+2}, {v2i−1, v2i+1, v2i+3}, {v2i, v2i+2, v2i+4} and {v2i, v2i+2, v2i+1}
respectively, for 1 ≤ i ≤ n − 2 and path homotopy classes P2n−2,2n−3,2n−1, P2n−3,2n−2,2n,

P2n−3,2n−1,2n, P2n−2,2n,2n−1 corresponding to path homotopy classes of paths having the ver-

tex sets {v2n−2, v2n−3, v2n−1}, {v2n−3, v2n−2, v2n}, {v2n−3, v2n−1, v2n} and {v2n−2, v2n, v2n−1}
respectively. We label the vertices as follows: vi=i, for all i. Then h(Pi,j,k) = i · j · k. Since

(2i)·(2i−1)·(2i+1) < (2i−1)·(2i)·(2i+2) < (2i−1)·(2i+1)·(2i+2) < (2i−1)·(2i+1)·(2i+3) <

(2i) · (2i+2) · (2i+1) < (2i) · (2i+2) · (2i+4), (2i) · (2i+2) · (2i+4) < (2i+2) · (2i+1) · (2i+3),

for 1 ≤ i ≤ n−2 and (2i) · (2i−1) · (2i+1)< (2i−1) · (2i) · (2i+2)< (2i−1) · (2i+1) · (2i+2)<

(2i) ·(2i+2) ·(2i+1) for i = n−1 it follows that h(P2,1,3) < h(P1,2,4) < · · · < h(P2n−2,2n,2n−1).

Therefore h is injective and the graph Ln is strongly 2-multiplicative. 2
Theorem 2.10 The binary tree is strongly 2-multiplicative.

Proof Consider the binary tree G consisting of 2n+1 − 1 vertices with n levels. We label

the vertices, using breadth-first search method as follows vi = i, for 1 ≤ i ≤ 2n+1 − 1 as shown

in the figure. sss ss s s
-

s s ss s ss
s

--
v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11 v12 v13 v14 v15

Figure 4

If n = 1 then the tree becomes a path with 3 vertices and is trivially strongly 2-multiplicative.

So, let n > 1. Then for each m, consisting of the edges of level m − 1 and of the level m,

1 < m ≤ n− 1, there are 5.2m−2 distinct path homotopy classes consisting of 2m−2 bunches of

5 path homotopy classes Pm,r,1, Pm,r,2, Pm,r,3, Pm,r,4, Pm,r,5 corresponding to path homotopy

classes of paths having vertex sets

{v2m−2+r−1, v2(2m−2+r−1), v2(2m−2+r−1)+1}, {v2m−2+r−1, v2(2m−2+r−1), v4(2m−2+r−1)},
{v2m−2+r−1, v2(2m−2+r−1), v4(2m−2+r−1)+1}, {v2m−2+r−1, v2(2m−2+r−1)+1, v4(2m−2+r−1)+2}

and {v2m−2+r−1, v2(2m−2+r−1)+1, v4(2m−2+r−1)+3} respectively, where 1 ≤ r ≤ 2m−2 and if

m = n, in addition to 5 · 2m−2 distinct path homotopy classes described above we have

2n−1 distinct path homotopy classes Pn+1,r,1 corresponding to the paths having vertex sets



84 D.D.Somashekara, C.R.Veena and H. E. Ravi

{v2n−1+r−1, v2(2n−1+r−1), v2(2n−1+r−1)+1}, where 1 ≤ r ≤ 2n−1. Then h(Pm,r,1) = (2m−2 + r −
1) · (2(2m−2 + r − 1)) · (2(2m−2 + r − 1) + 1), h(Pm,r,2) = (2m−2 + r − 1) · (2(2m−2 + r − 1)) ·
(4(2m−2 + r − 1)), h(Pm,r,3) = (2m−2 + r − 1) · (2(2m−2 + r − 1)) · (4(2m−2 + r − 1) + 1),

h(Pm,r,4) = (2m−2 + r − 1) · (2(2m−2 + r − 1) + 1) · (4(2m−2 + r − 1) + 2), h(Pm,r,5) =

(2m−2 + r− 1) · (2(2m−2 + r− 1) + 1) · (4(2m−2 + r− 1)+ 3), for 1 < m ≤ n, 1 ≤ r ≤ 2m−2 and

h(Pn+1,r,1) = (2n−1 + r − 1) · (2(2n−1 + r − 1)) · (2(2n−1 + r − 1) + 1), for 1 ≤ r ≤ 2n−1. Then

to show h is injective, consider the following cases:

Case 1. Let k = 2m−2 + r − 1. Then h(Pm,r,2) = k · 2k · 4k, h(Pm,r,3) = k · 2k · (4k + 1),

h(Pm,r,4) = k · (2k + 1) · (4k + 2) and h(Pm,r,5) = k · (2k+ 1) · (4k + 3). Since 2k < 2k + 1 and

4k < 4k + 1 < 4k + 2 < 4k + 3, we have k · 2k · 4k < k · 2k · (4k + 1) < k · (2k + 1) · (4k + 2) <

k · (2k + 1) · (4k + 3). Hence h(Pm,r,2) < h(Pm,r,3) < h(Pm,r,4) < h(Pm,r,5).

Case 2. Let k = 2m−1 − 1. Then h(Pm,2m−2,5) = k · (2k + 1) · (4k + 3), h(Pm+1,1,2) =

(k + 1) · (2(k + 1)) · (4(k + 1)). Since k < k + 1, 2k + 1 < 2k + 2 and 4k + 3 < 4k + 4, we have

k · 2k + 1 · 4k + 3 < k + 1 · 2k + 2 · 4k + 4. Hence h(Pm,2m−2,5) < h(Pm+1,1,2).

Case 3. Let k = 2m−2 + r − 1. Then h(Pm,r,5) = k · (2k + 1) · (4k + 3), h(Pm,r+1,1) =

(k + 1) · (2(k + 1)) · (4(k + 1)). Since k < k + 1, 2k + 1 < 2k + 2 and 4k + 3 < 4k + 4, we have

k · 2k+ 1 · 4k+ 3 < k+ 1 · 2k+ 2 · 4k+ 4. Hence h(Pm,r,5) < h(Pm,r+1,2), for 1 ≤ r ≤ 2m−2− 1.

Case 4. Since r− 1 < r, we have (2m−2 + r− 1) · (2(2m−2 + r− 1)) · (2(2m−2 + r − 1) + 1) <

((2m−2) + r) · (2(2m−2 + r)) · (2(2m−2 + r) + 1), which is same as h(Pm,r,1) < h(Pm,r+1,1), for

1 ≤ r ≤ 2m−2 − 1.

Case 5. Let k = 2m−1 − 1. Then h(Pm,2m−2,1) = k · 2k · (2k + 1), h(Pm+1,1,1) = (k +

1) · (2(k + 1)) · (2(k + 1) + 1). Since k < k + 1, 2k < 2k + 2 and 2k + 1 < 2k + 3, we have

k · 2k · (2k + 1) < (k + 1) · (2k + 2) · (2k + 3). Hence h(Pm,2m−2,1) < h(Pm+1,1,1).

Case 6. For given m and r, we have h(Pm,r,1) = (2m−2 + r− 1) · (2(2m−2 + r− 1)) · (2(2m−2 +

r − 1) + 1) in which one of the three factors differs from the three factors of h(Ps,t,i) for

s < m, 1 ≤ t ≤ 2s−1, 1 ≤ i ≤ 5 and for s = m, 1 ≤ t < r ≤ 2m−2, 1 ≤ i ≤ 5. Hence

h(Pm,r,1) 6= h(Ps,t,i) for s < m, 1 ≤ t ≤ 2s−1, 1 ≤ i ≤ 5 and for s = m, 1 ≤ t < r ≤ 2m−2,

1 ≤ i ≤ 5.

Thus, by Cases (1)-(6) it follows that h is injective and G is strongly 2-multiplicative. 2
Theorem 2.11 The complete graph Kn is strongly 2-multiplicative if and only if 3 ≤ n ≤ 5.

Proof First, consider K3 with vertices v1, v2 and v3. Then there is only one path homotopy

class and is trivially strongly 2-multiplicative.

Second, consider K4 with vertices v1, v2, v3 and v4. Then there are four distinct path

homotopy classes P1,P2,P3 and P4, corresponding to paths having vertex sets {v1, v2, v3},
{v1, v2, v4}, {v1, v3, v4} and {v2, v3, v4} respectively. We label the vertices as follows : vi = i,

1 ≤ i ≤ 4. Then h(P1) = 6, h(P2) = 8, h(P3) = 12, h(P4) = 24. Clearly h is injective and K4

is strongly 2-multiplicative.

Third, consider K5 with vertices v1, v2, v3, v4 and v5. Then there are ten distinct path
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homotopy classes P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10, corresponding to paths having

vertex sets {v1, v2, v3}, {v1, v3, v4}, {v1, v4, v5}, {v2, v3, v4}, {v2, v4, v5}, {v2, v5, v1}, {v3, v4, v5},
{v3, v5, v1}, {v4, v1, v2} and {v5, v2, v3} respectively. We label the vertices as follows : vi=i,

1 ≤ i ≤ 5. Then h(P1) = 6, h(P2) = 12, h(P3) = 20, h(P4) = 24, h(P5) = 40, h(P6) = 10,

h(P7) = 60, h(P8) = 15, h(P9) = 8 and h(P10) = 30. Clearly h is injective and K5 is strongly

2-multiplicative.

Finally, consider a complete graph Kn, where n ≥ 6. Clearly corresponding to each

triangle, one can always find a path homotopy class of paths of length 2 having the vertex set,

the vertices of triangle. In any labelling of the vertices, we can find two path homotopy classes

P and P ′

where P consisting of paths having the vertices labelled 1, 3 and 4 and P ′

consisting

of paths having the vertices labelled 1, 2 and 6. Clearly P6= P ′

, but h(P) = 12 = h(P ′

). Hence

for n ≥ 6, Kn is not strongly 2-multiplicative. 2
Theorem 2.12 The star graph Sn is strongly 2-multiplicative if and only if 3 ≤ n ≤ 7.

Proof First, consider S3 with vertices v1,v2 and v3. Here v2,v3 are pendent vertices. Then

there is only one path homotopy class and is trivially strongly 2-multiplicative.

Second, consider S4 with vertices v1,v2,v3 and v4. Here v2, v3, v4 are pendent vertices.

Then there are three distinct path homotopy classes P1, P2 and P3, corresponding to paths

having the vertex sets {v2, v1, v3}, {v2, v1, v4} and {v3, v1, v4} respectively. We label the vertices

as follows : vi = i, 1 ≤ i ≤ 4. Then h(P1) = 6, h(P2) = 8, h(P3) = 12. Clearly h is injective

and S4 is strongly 2-multiplicative.

Third, consider S5 with vertices v1, v2, v3, v4 and v5. Here v2, v3, v4, v5 are pendent vertices.

Then there are six distinct path homotopy classes P1, P2, P3, P4, P5 and P6, corresponding

to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v3, v1, v4}, {v3, v1, v5} and

{v4, v1, v5} respectively. We label the vertices as follows : vi = i, 1 ≤ i ≤ 5. Then h(P1) = 6,

h(P2) = 8, h(P3) = 10, h(P4) = 12, h(P5) = 15, h(P6) = 20. Clearly h is injective and S5 is

strongly 2-multiplicative.

Fourth, consider S6 with vertices v1, v2, v3, v4, v5 and v6. Here v2, v3, v4, v5, v6 are pendent

vertices. Then there are ten distinct path homotopy classes P1, P2, P3, P4, P5, P6, P7, P8,

P9 and P10, corresponding to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5},
{v2, v1, v6}, {v3, v1, v4}, {v3, v1, v5}, {v3, v1, v6}, {v4, v1, v5}, {v4, v1, v6} and {v5, v1, v6} respec-

tively. We label the vertices as follows: v1 = 2, v2 = 1, vi = i, 3 ≤ i≤ 6. Then h(P1) = 6,

h(P2) = 8, h(P3) = 10, h(P4) = 12, h(P5) = 24, h(P6) = 30, h(P7) = 36, h(P8) = 40,

h(P9) = 48, h(P10) = 60. Clearly h is injective and S6 is strongly 2-multiplicative.

Fifth, consider S7 with vertices v1, v2, v3, v4, v5, v6 and v7. Here v2, v3, v4, v5, v6, v7 are

pendent vertices. Then there are fifteen distinct path homotopy classes P1, P2, P3, P4, P5,

P6, P7, P8, P9, P10, P11, P12, P13, P14 and P15, corresponding to paths having the ver-

tex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v2, v1, v6}, {v2, v1, v7}, {v3, v1, v4}, {v3, v1, v5},
{v3, v1, v6}, {v3, v1, v7}, {v4, v1, v5}, {v4, v1, v6}, {v4, v1, v7}, {v5, v1, v6}, {v5, v1, v7} and {v6, v1,
v7} respectively. We label the vertices as follows : v1=2, v2 = 1, vi=i, 3 ≤ i ≤ 7. Then

h(P1) = 6, h(P2) = 8, h(P3) = 10, h(P4) = 12, h(P5) = 14, h(P6) = 24, h(P7) = 30,

h(P8) = 36, h(P9) = 42, h(P10) = 40, h(P11) = 48, h(P12) = 56, h(P13) = 60, h(P14) = 70,
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h(P15) = 84. Clearly h is injective and S7 is strongly 2-multiplicative.

Finally, consider a star graph Sn, where n ≥ 8. In any labeling of the vertices we can find

two path homotopy classes P and P ′

such that P 6= P ′

but h(P) = h(P ′

). Hence for n ≥ 8,

Sn is not strongly 2-multiplicative. 2
Theorem 2.13 The fan graph Fn is strongly 2-multiplicative if and only if 3 ≤ n ≤ 6.

Proof First, consider F2 = K1 +P2. Let the vertex of K1 be v1 and the vertices of P2 be v2

and v3. Then there is only one path homotopy class and is trivially strongly 2-multiplicative.

Second, consider F3 = K1 +P3. Let the vertex of K1 be v1 and the vertices of P3 be v2, v3

and v4. Then there are four distinct path homotopy classes P1,P2,P3 and P4, corresponding

to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v3, v1, v4} and {v2, v3, v4} respectively.

We label the vertices as follows : vi = i, 1 ≤ i ≤ 4. Then h(P1) = 6, h(P2) = 8, h(P3) = 12,

h(P4) = 24. Clearly h is injective and F3 is strongly 2-multiplicative.

Third, consider F4 = K1+P4. Let the vertex of K1 be v1 and the vertices of P4 be v2, v3, v4

and v5. Then there are eight distinct path homotopy classes P1,P2,P3,P4,P5,P6,P7 and P8,

corresponding to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v3, v1, v4},
{v3, v1, v5}, {v4, v1, v5}, {v2, v3, v4} and {v3, v4, v5} respectively. We label the vertices as follows

: vi = i, 1 ≤ i ≤ 5. Then h(P1) = 6, h(P2) = 8, h(P3) = 10, h(P4) = 12, h(P5) = 15,

h(P6) = 20, h(P7) = 24, h(P8) = 60. Clearly h is injective and F4 is strongly 2-multiplicative.

Fourth, consider F5 = K1 + P5. Let the vertex of K1 be v1 and the vertices of P5 be v2,

v3, v4,v5 and v6. Then there are thirteen distinct path homotopy classes P1,P2,P3, P4,P5,

P6,P7,P8,P9,P10,P11,P12 and P13, corresponding to paths having the vertex sets {v2, v1, v3},
{v2, v1, v4}, {v2, v1, v5}, {v2, v1, v6}, {v3, v1, v4}, {v3, v1, v5}, {v3, v1, v6}, {v4, v1, v5}, {v4, v1, v6},
{v5, v1, v6}, {v2, v3, v4}, {v3, v4, v5} and {v4, v5, v6} respectively. We label the vertices as fol-

lows: v1 = 3, vi = i − 1, i = 2, 3, vi = i, 4 ≤ i ≤ 6. Then h(P1) = 6, h(P2) = 12,

h(P3) = 15, h(P4) = 18, h(P5) = 24, h(P6) = 30, h(P7) = 36, h(P8) = 60, h(P9) = 72,

h(P10) = 90, h(P11) = 8, h(P12) = 40, h(P13) = 120. Clearly h is injective and F5 is strongly

2-multiplicative.

Fifth, consider F6 = K1 + P6. Let the vertex of K1 be v1 and the vertices of P6 be

v2, v3, v4, v5, v6 and v7. Then there are nineteen distinct path homotopy classes P1, P2, P3, P4,

P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18 and P19, corresponding to paths

having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v2, v1, v6}, {v2, v1, v7}, {v3, v1, v4},
{v3, v1, v5}, {v3, v1, v6}, {v3, v1, v7}, {v4, v1, v5}, {v4, v1, v6}, {v4, v1, v7}, {v5, v1, v6}, {v5, v1, v7},
{v6, v1, v7}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v6} and {v5, v6, v7} respectively. We label the ver-

tices as follows : v1 = 3, vi = i − 1, i = 2, 3, vi = i, 4 ≤ i ≤ 7. Then h(P1) = 6,

h(P2) = 12, h(P3) = 15, h(P4) = 18, h(P5) = 21, h(P6) = 24, h(P7) = 30, h(P8) = 36,

h(P9) = 42, h(P10) = 60, h(P11) = 72, h(P12) = 84, h(P13) = 90, h(P14) = 105, h(P15) = 126

,h(P16) = 8, h(P17) = 40, h(P18) = 120, h(P19) = 210. Clearly h is injective and F6 is strongly

2-multiplicative.

Finally, consider a fan graph Fn, where n ≥ 7. In any labeling of the vertices we can find

two path homotopy classes P and P ′

such that P 6= P ′

but h(P) = h(P ′

). Hence for n ≥ 7,

Fn is not strongly 2-multiplicative. 2
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Theorem 2.14 The wheel graph Wn is strongly 2-multiplicative if and only if 4 ≤ n ≤ 7.

Proof First, consider W4 = K1 + C3. Let the vertex of K1 be v1 and the vertices of C3

be v2, v3 and v4. Then there are four distinct path homotopy classes P1, P2, P3 and P4 cor-

responding to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v3, v1, v4} and {v2, v3, v4}
respectively. We label the vertices as follows : vi = i, 1 ≤ i ≤ 4. Then h(P1) = 6, h(P2) = 8,

h(P3) = 12, h(P4) = 24. Clearly h is injective and W4 is strongly 2-multiplicative.

Second, considerW5 = K1+C4. Let the vertex of K1 be v1 and the vertices of C4 be v2, v3,

v4 and v5. Then there are ten distinct path homotopy classes P1, P2, P3, P4, P5, P6, P7, P8,

P9 and P10 corresponding to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5},
{v3, v1, v4}, {v3, v1, v5}, {v4, v1, v5}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v2} and {v5, v2, v3} respec-

tively. We label the vertices as follows : vi = i, 1 ≤ i ≤ 5. Then h(P1) = 6, h(P2) = 8,

h(P3) = 10, h(P4) = 12, h(P5) = 15, h(P6) = 20, h(P7) = 24, h(P8) = 60, h(P9) = 40,

h(P10) = 30. Clearly h is injective and W5 is strongly 2-multiplicative.

Third, consider W6 = K1 + C5. Let the vertex of K1 be v1 and the vertices of C5

be v2, v3, v4, v5 and v6. Then there are fifteen distinct path homotopy classes P1, P2,

P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14 and P15 corresponding to paths hav-

ing the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v2, v1, v6}, {v3, v1, v4}, {v3, v1, v5},
{v3, v1, v6}, {v4, v1, v5}, {v4, v1, v6}, {v5, v1, v6}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v6}, {v5, v6, v2}
and {v6, v2, v3} respectively. We label the vertices as follows: v1 = 2, v2 = 1, v3 = 3, v4 = 6,

v5 = 4, v6 = 5. Then h(P1) = 6, h(P2) = 12, h(P3) = 8, h(P4) = 10, h(P5) = 36, h(P6) = 24,

h(P7) = 30, h(P8) = 48, h(P9) = 60, h(P10) = 40, h(P11) = 18, h(P12) = 72, h(P13) = 120,

h(P14) = 20, h(P15) = 15. Clearly h is injective and W6 is strongly 2-multiplicative.

Fourth, consider W7 = K1 + C6. Let the vertex of K1 be v1 and the vertices of C6 be

v2, v3, v4, v5, v6 and v7. Then there are twenty one distinct path homotopy classes P1, P2,

P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20 and P21,

corresponding to paths having the vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v2, v1, v6},
{v2, v1, v7}, {v3, v1, v4}, {v3, v1, v5}, {v3, v1, v6}, {v3, v1, v7}, {v4, v1, v5}, {v4, v1, v6}, {v4, v1, v7},
{v5, v1, v6}, {v5, v1, v7}, {v6, v1, v7}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v6}, {v5, v6, v7}, {v6, v7, v2}
and {v7, v2, v3} respectively. We label the vertices as follows : v1 = 2, v2 = 1, vi = i, for i = 3, 7,

v4 = 6, v5 = 4, v6 = 5. Then h(P1) = 6, h(P2) = 12, h(P3) = 8, h(P4) = 10, h(P5) = 14,

h(P6) = 36, h(P7) = 24, h(P8) = 30, h(P9) = 42, h(P10) = 48, h(P11) = 60, h(P12) = 84,

h(P13) = 40, h(P14) = 56, h(P15) = 70, h(P16) = 18, h(P17) = 72, h(P18) = 120, h(P19) = 140,

h(P20) = 35, h(P21) = 21. Clearly h is injective and W7 is strongly 2-multiplicative.

Finally, consider a wheel graph Wn, where n ≥ 8. In any labeling of the vertices we can

find two path homotopy classes P and P ′

such that P 6= P ′

but h(P) = h(P ′

). Hence for

n ≥ 8, Wn is not strongly 2-multiplicative. 2
Theorem 2.15 The complete bipartite graph K2,n is strongly 2-multiplicative if and only if

2 ≤ n ≤ 3.

Proof First, consider complete bipartite graph K2,2. Let A = {v1, v2} and B = {v3, v4}
be the two partitions of vertex set of K2,2. Then A consists of 4 distinct path homotopy classes
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P1,P2,P3 and P4, corresponding to paths having vertex sets {v3, v1, v4}, {v3, v2, v4}, {v1, v3, v2}
and {v1, v4, v2} respectively. We label the vertices as follows: vi = i, for all i ∈ {1, 2, 3, 4}.
Then h(P1) = 12, h(P2) = 24, h(P3) = 6, h(P4) = 8. Clearly h is injective K2,2 is strongly

2-multiplicative.

Second, consider complete bipartite graph K2,3. Let A = {v1, v2} and B ={v3, v4, v5} be

the two partitions of vertex set of K2,3. Then A consists of 9 distinct path homotopy classes

P1,P2,P3 P4,P5,P6,P7,P8 and P9, corresponding to paths having vertex sets {v3, v1, v4},
{v3, v1, v5}, {v3, v2, v4}, {v3, v2, v5}, {v2, v5, v1}, {v2, v4, v1}, {v4, v2, v5}, {v1, v4, v5} and {v2, v3,
v1} respectively. We label the vertices as follows: vi = i, for all i ∈ {1, 2, 3, 4, 5}. Then

h(P1) = 12, h(P2) = 15, h(P3) = 24, h(P4) = 30, h(P5) = 10, h(P6) = 8, h(P7) = 40,

h(P8) = 20, h(P9) = 6. Clearly h is injective K2,3 is strongly 2-multiplicative.

Finally, consider a complete bipartite graph K2,4. In any labelling of the vertices we get

as the value of h(P) one of 12,24 and 30. Since 12 = 1 · 3 · 4 = 1 · 6 · 2, 24 = 1 · 6 · 4 = 3 · 4 · 2 and

30 = 3 · 2 · 5 = 1 · 6 · 5, we get two distinct path homotopy classes P and P ′

with h(P)=h(P ′

).

Hence K2,4 is not strongly 2-multiplicative. Like this one can show that, a complete bipartite

graph K2,n, for n > 4 is not strongly 2-multiplicative. 2
Theorem 2.16 The graph P2 + Pn is strongly 2-multiplicative if and only if n ≤ 3.

Proof First, consider the graph P2 + P2. This is same as K4, which is strongly 2-

multiplicative by Theorem 2.11.

Second, consider the graph P2 +P3. Then A consists of 10 distinct path homotopy classes

P1,P2,P3 P4,P5,P6,P7,P8, P9 and P10 corresponding to paths having vertex sets {v3, v1, v4},
{v3, v1, v5}, {v3, v2, v4}, {v3, v2, v5}, {v2, v5, v1}, {v2, v4, v1}, {v4, v2, v5}, {v1, v4, v5}, {v2, v3, v1}
and {v3, v4, v5} respectively. We label the vertices as follows: vi = i, for all i ∈ {1, 2, 3, 4, 5}.
Then h(P1) = 12, h(P2) = 15, h(P3) = 24, h(P4) = 30, h(P5) = 10, h(P6) = 8, h(P7) =

40, h(P8) = 20, h(P9) = 6, h(P10) = 60. Clearly h is injective and P2 + P3 is strongly

2-multiplicative.

Finally, consider graph P2 + Pn where n ≥ 4. In any labeling of the vertices we can find

two path homotopy classes P and P ′

such that P 6= P ′

but h(P) = h(P ′

). Hence for n ≥ 4,

P2 + Pn is not strongly 2-multiplicative. 2
Theorem 2.17 The peterson graph is strongly 2-multiplicative.

Proof Consider a peterson graph with vertices v1, v2, v3, v4, · · · , v10.

����
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Figure 5

Then A consists of 21 distinct path homotopy classes P1,P2,P3, · · · ,P21, corresponding to

paths having vertex sets {v4, v1, v3}, {v5, v2, v4}, {v5, v3, v1}, {v1, v4, v2}, {v2, v5, v3}, {v6, v7, v8},
{v7, v8, v9}, {v8, v9, v10}, {v9, v10, v6}, {v9, v10, v4}, {v10, v6, v7}, {v6, v1, v4}, {v6, v1, v3}, {v7, v2,
v5}, {v7, v2, v3}, {v8, v3, v1}, {v8, v3, v5}, {v9, v4, v2}, {v9, v4, v1}, {v10, v5, v3} and {v10, v5, v2}
respectively. We label the vertices as follows: vi = i, for 1 ≤ i ≤ 7, v8 = 9, v9 = 8, v10 = 10.

Then h(P1) = 12, h(P2) = 40, h(P3) = 15, h(P4) = 8, h(P5) = 30, h(P6) = 378, h(P7) = 504,

h(P8) = 720, h(P9) = 480, h(P10) = 320, h(P11) = 420, h(P12) = 24, h(P13) = 18, h(P14) = 70,

h(P15) = 42, h(P16) = 27, h(P17) = 135, h(P18) = 64, h(P19) = 32, h(P20) = 150, h(P21) = 100

. Clearly h is injective peterson graph is strongly 2-multiplicative. 2
Theorem 2.18 The windmill Km

n is strongly 2-multiplicative if and only if m ≤ 3, n ≤ 3.

Proof First, if m = 2, then the proof follows from the proof of Theorem 2.5, with n = 3.

Second, consider the K3
3 with vertices v1, v2, v3, v4, v5, v6 and v7 such that v1 be the

common vertex as shown in the figure.

s sv5
v4

�������� sPPPPP
s

sss v1

v6

v7 v2

v3

s
Figure 6

Then A consists of 15 distinct path homotopy classes P1, P2, P3, P4,. . . , P15 correspond-

ing to paths having vertex sets {v2, v1, v3}, {v2, v1, v4}, {v2, v1, v5}, {v2, v1, v6}, {v2, v1, v7},
{v3, v1, v4}, {v3, v1, v5}, {v3, v1, v6}, {v3, v1, v7}, {v4, v1, v5}, {v4, v1, v6}, {v4, v1, v7}, {v5, v1, v6},
{v5, v1, v7} and {v6, v1, v7} respectively. We label the vertices as follows: v1 = 2, v2 = 1 and

vi = i for all i for 3 ≤ i ≤ 7. Then h(P1) = 6, h(P2) = 8, h(P3) = 10, h(P4) = 12, h(P5) = 14,

h(P6) = 24, h(P7) = 30, h(P8) = 36, h(P9) = 42, h(P10) = 40, h(P11) = 48, h(P12) = 56,

h(P13) = 60, h(P14) = 70, h(P15) = 84. Clearly h is injective K3
3 is strongly 2-multiplicative.

Finally, consider a windmill Km
n for m ≥ 3, n > 3. In any labelling of the vertices, we

can find two path homotopy classes P and P ′

such that P 6= P ′

, but h(P) = h(P ′

). Hence for

n ≥ 3,m ≥ 3, Km
n is not strongly 2-multiplicative. 2
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Abstract: For an arborescence Ar, a directed pathos line digraph Q = DPL(Ar) has vertex

set V (Q) = A(Ar) ∪ P (Ar), where A(Ar) is the arc set and P (Ar) is a directed pathos set

of Ar. The arc set A(Q) consists of the following arcs: ab such that a, b ∈ A(Ar) and the

head of a coincides with the tail of b; Pa such that a ∈ A(Ar) and P ∈ P (Ar) and the arc

a lies on the directed path P ; PiPj such that Pi, Pj ∈ P (Ar) and it is possible to reach the

head of Pj from the tail of Pi through a common vertex, but it is possible to reach the head

of Pi from the tail of Pj . The purpose of this note is to characterize DPL(Ar), i.e., when

is a digraph a directed pathos line digraph of an arborescence Ar and is Ar reconstructible

from DPL(Ar)?

Key Words: Line digraph, complete bipartite subdigraph, directed pathos vertex.

AMS(2010): 05C20.

§1. Introduction

Notations and definitions not introduced here can be found in [2]. There are many digraph

operators (or digraph valued functions) with which one can construct a new digraph from a

given digraph, such as the line digraph, the total digraph, and their generalizations. One such

a digraph operator is called a directed pathos line digraph of an arborescence.

The concept of pathos of a graphG was introduced by Harary [3] as a collection of minimum

number of edge disjoint open paths whose union is G. The path number of a graph G is the

number of paths in any pathos. The path number of a tree T equals k, where 2k is the number

of odd degree vertices of T .

For a tree T with vertex set V (T ) = {v1, v2, · · · , vn} and edge set E(T ) = {e1, e2, · · · , en−1},
the authors in [4] gave the following definition. A pathos line graph of T , written PL(T ), is

a graph whose vertices are the edges and paths of a pathos of T , with two vertices of PL(T )

adjacent whenever the corresponding edges of T have a vertex in common or the edge lies on

the corresponding path of the pathos.

1Received February 8, 2018, Accepted December 5, 2018.
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The order and size of PL(T ) are n+ k − 1 and 1
2

n
∑

i=1

d2
i , respectively, where k is the path

number and di is the degree of vertices of T . The characterization of graphs whose PL(T )

are planar, outerplanar, and maximal outerplanar were presented. A necessary and sufficient

condition for PL(T ) to be Eulerian was given. They also showed that for any tree T , PL(T ) is

not minimally nonouterplanar.

See Figure.1 for an example of a tree T and its pathos line graph PL(T ).r rrr rrq qq qq q rr rrrq q q
r rrr rrqq q q qq rrr rrq q q

Figure 1

A directed graph (or just digraph) D consists of a finite non-empty set V (D) of elements

called vertices and a finite set A(D) of ordered pair of distinct vertices called arcs. Here V (D)

is the vertex set and A(D) is the arc set of D. For an arc (u, v) or uv of D the first vertex u is

its tail and the second vertex v is its head. An arborescence is a directed graph in which, for

a vertex u called the root and any other vertex v, there is exactly one directed path from u to

v. We shall use Ar to denote an arborescence. A vertex with an in-degree (out-degree) zero is

called a source (sink).

M. Aigner [1] defines the line digraph of a digraph as follows. Let D be a digraph with n

vertices v1, v2, · · · , vn and m arcs, and L(D) its associated line digraph with n
′

vertices and m
′

arcs. We immediately have n
′

= m and m
′

=

n
∑

i=1

d−(vi) · d+(vi). Furthermore, the in-degree

and out-degree of a vertex v
′

= (vi, vj) in L(D) are d−(v
′

) = d−(vi) and d+(v
′

) = d+(vj),

respectively. A digraph D is said to be a line digraph if it is isomorphic to the line digraph of

a certain digraph H .

The authors in [5] extended the definition of a pathos line graph of a tree to an arborescence

by introducing the concept of directed pathos line digraph of an arborescence and studied some

of the characterization problems such planarity, outer planarity, etc. It is the object of this

paper to discuss the problem of reconstructing an arborescence from its directed pathos line

digraph.
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§2. Definition of DPL(Ar)

Definition 2.1 If a directed path ~Pn starts at one vertex and ends at a different vertex, then
~Pn is called an open directed path.

Definition 2.2 The directed pathos of an arborescence Ar is defined as a collection of minimum

number of arc disjoint open directed paths whose union is Ar.

Definition 2.3 The directed path number k
′

of Ar is the number of directed paths in any

directed pathos of Ar and is equal to the number of sinks in Ar, i.e., k
′

= number of sinks in

Ar.

Definition 2.4 A directed pathos vertex is a vertex corresponding to a directed path of the

directed pathos of Ar.

Definition 2.5 For an arborescence Ar, a directed pathos line digraph Q = DPL(Ar) has

vertex set V (Q) = A(Ar) ∪ P (Ar), where A(Ar) is the arc set and P (Ar) is a directed pathos

set of Ar. The arc set A(Q) consists of the following arcs: ab such that a, b ∈ A(Ar) and the

head of a coincides with the tail of b; Pa such that a ∈ A(Ar) and P ∈ P (Ar) and the arc a

lies on the directed path P ; PiPj such that Pi, Pj ∈ P (Ar) and it is possible to reach the head of

Pj from the tail of Pi through a common vertex, but it is possible to reach the head of Pi from

the tail of Pj.

Note that the directed path number k
′

of an arborescence Ar is minimum only when the

out-degree of the root of Ar is one. Therefore, unless otherwise specified, the out-degree of the

root of every arborescence is one. Finally, we assume that the direction of the directed pathos

is along the direction of the arcs in Ar.

See Figure.2 for an example of an arborescence Ar and its directed pathos line digraph

DPL(Ar).

s+ -r r+ -p p W jz>� Rrp r
- - - -r r r r -p - - -r r r} ℄ Æ >p

Figure 2
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§3. A Criterion for Directed Pathos Line Digraphs

The main objective is to determine a necessary and sufficient condition that a digraph be a

directed pathos line digraph.

A complete bipartite digraph is a directed graph D whose vertices can be partitioned into

nonempty disjoint sets A and B such that each vertex of A has exactly one arc directed towards

each vertex of B and such that D contains no other arc.

Theorem 3.1 A digraph A
′

r is a directed pathos line digraph of an arborescence Ar if and only

if V (A
′

r) = A(Ar) ∪ P (Ar) and arc sets :

(i) ∪n
i=1Xi × Yi, where Xi and Yi are the sets of in-coming and out-going arcs at vi of Ar,

respectively;

(ii) ∪r
k=1 ∪r

j=1 Pk × Zj such that Pk × Zj = φ for k 6= j, where Zj is the set of arcs on which

Pk lies in Ar;

(iii) ∪r
k=1 ∪r

j=1 Pk × Z
′

j such that Pk × Z
′

j = φ for k 6= j, where Z
′

j is the set of directed paths

whose heads are reachable from the tail of Pk through a common vertex in Ar.

Proof Suppose that Ar is an arborescence with vertex set V (Ar) = {v1, v2, · · · , vn} and a

directed pathos set P (Ar) = {P1, P2, · · · , Pr}. We consider the following three cases.

Case 1. Let v be a vertex of Ar with d−(v) = α and d+(v) = β. Then α arcs incident into v

and the β arcs incident out of v give rise to a complete bipartite subdigraph with α tails and

β heads and α · β arcs joining each tail with each head.

Case 2. Let Pi be a directed path which lies on α
′

arcs in Ar. Then α
′

arcs give rise to a

complete bipartite subdigraph with a single tail (i.e., Pi) and α
′

heads and α
′

arcs joining Pi

with each head.

Case 3. Let Pi be a directed path, and let β
′

be the number of directed paths whose heads

are reachable from the tail of Pi through a common vertex in Ar. Then β
′

arcs give rise to a

complete bipartite subdigraph with a single tail (i.e., Pi) and β
′

heads and β
′

arcs joining Pi

with each head.

Hence by all the above cases, DPL(Ar) is decomposed into mutually arc-disjoint complete

bipartite subdigraphs with vertex set A(Ar) ∪ P (Ar) and arc sets:

(i) ∪n
i=1Xi × Yi, where Xi and Yi are the sets of in-coming and out-going arcs at vi of Ar,

respectively;

(ii) ∪r
k=1 ∪r

j=1 Pk × Zj such that Pk × Zj = φ for k 6= j, where Zj is the set of arcs on

which Pk lies in Ar;

(iii) ∪r
k=1 ∪r

j=1 Pk × Z
′

j such that Pk × Z
′

j = φ for k 6= j, where Z
′

j is the set of directed

paths whose heads are reachable from the tail of Pk through a common vertex in Ar.

Conversely, let A
′

r be a digraph of the type described above. Let t1, t2, . . . , tl be the vertices

corresponding to complete bipartite subdigraphs Ar1, Ar2, · · · , Arl of Case 1, respectively, and

let t1, t2, . . . , tr be the vertices corresponding to complete bipartite subdigraphs P
′

1, P
′

2, · · · , P
′

r

of Case 2, respectively. Finally, let t0 be a vertex chosen arbitrarily.

For each vertex v of the complete bipartite subdigraphs Ar1, Ar2, · · · , Arl, we draw an arc
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av as follows.

(i) If d+(v) > 0 and d−(v) = 0, then av := (t0, ti), where i is the base (or index) of Ari

such that v ∈ Yi.

(ii) If d+(v) > 0 and d−(v) > 0, then av := (ti, tj), where i and j are the indices of Ari

and Arj such that v ∈ Xj ∩ Yi.

(c) If d+(v) = 0 and d−(v) = 1, then av := (tj , t
n), n = 1, 2, · · · , r, where j is the base of Arj

such that v ∈ Xj .

Note that in (tj , t
n) no matter what the value of j is, n varies from 1 to r such that the

number of arcs of the form (tj , t
n) is exactly r.

We now mark the directed pathos as follows. It is easy to observe that the directed path

number k
′

equals the number of subdigraphs of Case 2. Let ψ1, ψ2, · · · , ψr be the number of

heads of subdigraphs P
′

1, P
′

2, · · · , P
′

r , respectively. Suppose we mark the directed path P1. For

this we choose any ψ1 number of arcs and mark P1 on ψ1 arcs such that the direction of P1

must be along the direction of ψ1 arcs. Similarly, we choose ψ2 number of arcs and mark P2

on ψ2 arcs. This process is repeated until all directed paths are marked. The digraph Ar with

directed paths thus constructed apparently has A
′

r as directed pathos line digraph. 2
Given a directed pathos line digraph Q, the proof of the sufficiency of the Theorem above

shows how to find an arborescence Ar such that DPL(Ar) = Q. This obviously raises the

question of whether Q determines Ar uniquely. Although the answer to this in general is no,

the extent to which Ar is determined is given as follows. One can easily check that using

reconstruction procedure of the sufficiency of the Theorem above, any arborescence (without

directed pathos) is uniquely reconstructed from its directed pathos line digraph. Since the

pattern of directed pathos for an arborescence is not unique, there is freedom in marking the

directed pathos for an arborescence in different ways. This clearly shows that if the directed

path number is one, any arborescence with directed pathos is uniquely reconstructed from

its directed pathos line digraph. It is known that the directed path is a special case of an

arborescence. Since the directed path number of a directed path of order n (n ≥ 2) is exactly

one, it follows that a directed path is uniquely reconstructed from its directed pathos line

digraph.
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adjacent to u but no other vertex in S. A set S ⊆ V is open irredundant if every vertex in

S has an external private neighbor with respect to S. A set S is called an independent open

irredundant set or ioir-set if S is an independent set and every vertex in S has an external

private neighbor with respect to S. An independent open irredundant coloring of a graph G
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§1. Introduction

By a graph G = (V,E) we mean a finite, undirected graph without loops or multiple edges.

The order and size of G are denoted by n and m respectively. For graph theoretic terminology

we refer to Chartrand and Lesniak [2].

Domination is a well studied concept in graph theory. For an excellent treatment of fun-

damentals of domination we refer to the book by Haynes et al. [6]. Several advanced topics in

domination are given in the book edited by Haynes et al. [7].

The neighbourhood of a vertex x ∈ V (G) in the graph G is denoted by N(x) and the closed

neighbourhood {x} ∪ N(x) by N [x]. If X is a subset of V (G), then N [X ] =
⋃

x∈X N [x] and

the subgraph induced by X is denoted by G[X ].

In 1999, Cockayne [3] introduced the study of a large class of generalized irredundant sets

in graphs. Each type of a generalized irredundant set S ⊂ V is defined by the types of private

neighbors (i.e self, internal or external) that each vertex in the set must have. A subset S of

V in a graph G is said to be independent if no two vertices in S are adjacent. Let u ∈ S. A

vertex v ∈ V − S is an external private neighbor of u with respect to S if v is adjacent to u

but no other vertex in S. A vertex u ∈ S is its own private neighbor if it is not adjacent to any

vertex in S. A set S is called irredundant if every vertex in S is either its own private neighbor

or has an external private neighbor, with respect to S. A set S is called an independent open

1Received March 6, 2018, Accepted December 6, 2018.
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irredundant set or ioir-set if S is an independent set and every vertex in S has an external

private neighbor.

Generally, a set S is called a Smarandachely k-independent open irredundant set if there

is a subset V0 ⊂ V with |V0| = k such that S is an independent set and every vertex in S has

an external private neighbor in V0. Clearly, if V0 = V , a Smarandachely |G|-independent open

irredundant set is nothing else but an ioir-set.

In [3], Cockayne identifies 12 types of generalised irredundant sets the properties of which

are hereditary. Perhaps the most interesting of these are the ioir-sets. One can therefore define

ioir(G) to equal the minimum size of a maximal ioir-set and IOIR(G) to equal the maximum

size of an ioir-set. These generalized irredundant sets are also studied by Finbow in [5] and

Cockayne and Finbow in [4].

If a collection of edges between two sets of vertices, say A and B, define a bijection between

A and B, then we call such a perfect matching a bijective matching.

A proper k-coloring of a graph G is a partition π = {V1, V2, · · · , Vk} of V into k non-empty

independent sets. The chromatic number χ(G) equals the minimum integer k for which G

has a k-coloring. More generally given a property P concerning subsets of V , a P -coloring

is a partition π = {V1, V2, · · · , Vk} of V into sets, such that each Vi has the property P . If

the property P is independence, the P -coloring is the usual coloring and if the property P is

domination, the corresponding P -coloring gives the concept of domatic partition. Haynes et al.

[8] introduced the concept of irredundant colorings and open irredundant colorings of graphs.

Arumugam et al. [1] initiate a study of open irredundant colorings and obtain some results

on irredundant colorings and open irredundant colorings. Motivated by the work on [1,8], we

initiate a study of independent open irredundant colorings. An independent open irredundant

coloring of a graph G is a partition of V into nonempty independent open irredundant sets.

The independent open irratic number is the minimum order of an independent open irredundant

coloring of G, and it is denoted by χioir(G). In section 2, we obtain some results on independent

open irredundant colorings. A study of harmonious, achromatic coloring on middle graph,

central graph, total graph, line graph of various classes of graphs can be found in [10, 11, 12,

13]. In Section 3, we investigate the independent open irratic number for the middle graph,

central graph, total graph, line graph of double star graph families.

We need the following theorems.

Theorem 1.1([6]) If a graph G has no isolated vertices, then G has a minimum dominating

set which is also open irredundant.

Theorem 1.2([8]) For any graph G, n/IR(G) ≤ χir(G) ≤ n− IR(G) + 1.

Observation 1.3([1]) Since any oir-coloring of G is an ir-coloring ofG, it follows that χir(G) ≤
χoir(G).

Theorem 1.4([8]) For any graph G, χoir(G) = 2 if and only if V (G) can be partitioned into

two subsets V1 and V2 such that there exists a bijective matching between V1 and V2.

Throughout, we assume that G is a graph without isolated vertices.
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§2. Independent Open Irredundant Colorings

Observation 2.1 Since any ioir-coloring of G is an oir-coloring and χ-coloring of G, it follows

that χir(G) ≤ χoir(G) ≤ χioir(G) and χir(G) ≤ χ(G) ≤ χioir(G).

Observation 2.1 Since V (G) is not an ioir-set of G, it follows that 2 ≤ χioir(G) ≤ n.

Theorem 2.3 For any graph G, χioir(G) = 2 if and only if V (G) can be partitioned into two

independent subsets V1 and V2 such that there exists a bijective matching between V1 and V2.

Proof The proof follows from Theorem 1.4. 2
Theorem 2.4 Let G be a graph of order n. Then χioir(G) = n if and only if for any independent

set S ⊂ V , there exists v, w ∈ S such that N(v) ⊆ N(w) or N(w) ⊆ N(v).

Proof Assume that χioir(G) = n. Suppose there is an independent set S ⊂ V such that

N(v) * N(w) and N(w) * N(v) ∀v, w ∈ S. Then there exists a vertex z1 ∈ N(v) such that z1

is not adjacent to w and there exists a vertex z2 ∈ N(w) such that z2 is not adjacent to v. Hence

{v, w} is an ioir-set and IOIR(G) ≥ 2. Therefore χioir(G) ≤ n − 1 which is a contradiction.

The converse is obvious. 2
Observation 2.5 For any complete graph Kn and complete bipartite graph Km,n, we have

χioir(Kn) = n and χioir(Km,n) = m+ n.

Observation 2.6 For any tree T , χioir(T ) = n if and only if T is a star.

Theorem 2.7 For the path Pn = (v1, v2, · · · , vn), we have χioir(Pn) = 3.

Proof Let V1 = {v1, v4, v7, v10, · · · }, V2 = {v2, v5, v8, v11, · · · }, V3 = {v3, v6, v9, v12, · · · }.
Clearly {V1, V2, V3} is a partition of V (G) into independent open irredundant sets. Hence

χioir(Pn) ≤ 3. By Theorem 2.3, χioir(Pn) ≥ 3 and so χioir(Pn) = 3. 2
Theorem 2.8 For the cycle Cn = (v1, v2, · · · , vn), we have

χioir(Cn) =







4 if n = 4 or n = 7

3 otherwise

Proof We can easily observe that χioir(C4) = 4. We now prove that χioir(Cn) = 3 for

n 6= 4 or 7. By Theorem 2.3, χioir(Cn) ≥ 3. Now we consider three cases.

Case 1. n ≡ 0(mod3).

Let V1 = {v1, v4, v7, v10, · · · , vn−2}, V2 = {v2, v5, v8, v11, · · · , vn−1} and V3 = {v3, v6, v9, v12,
· · · , vn}. Clearly {V1, V2, V3} is a partition of V (G) into independent open irredundant sets

since any three consecutive vertices in the cycle receives distinct colors. Hence χioir(Cn) ≤ 3.

Case 2. n ≡ 1(mod3).

Let V1 = {v1, v3, v6, v8, v11, v14, v17, · · · , vl−3, vl, vl+3, · · · , vn−2}, V2 = {v2, v4, v7, v9, v12,
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v15, v18, · · · , vl−3, vl, vl+3, · · · , vn−1}, V3 = {v5, v10, v13, v16, v19, · · · , vl−3, vl, vl+3, · · · , vn}. We

now prove that {V1, V2, V3} is a partition of V (G) into independent open irredundant sets.

Clearly the sets Vi, i = 1, 2, 3 are independent. Hence it is enough to prove that every vertex

in the set Vi has an external private neighbour with respect to Vi, i = 1, 2, 3. Note that v1, v5,

v6 are the external private neighbors of v2, v4, v7 respectively and vn, v4, v7 and v10 are the

external private neighbors of v1, v3, v8 and v9 respectively. All other remaining vertices vi have

external private neighbor vi−1.

Case 3. n ≡ 2(mod3).

Let V1 = {v1, v4, v7, v10, · · · , vn−1}, V2 = {v2, v5, v8, v11, · · · , vn} and V3 = {v3, v6, v9, v12,
· · · , vn−2}. Since v2, vn−1, vn−2 are the external private neighbors of v1, vn, vn−1 respectively

and remaining vertices vi have external private neighbor vi+1, {V1, V2, V3} is a partition of V (G)

into independent open irredundant sets. Hence χioir(Cn) ≤ 3. Now we prove that χioir(C7) = 4.

Since any independent open irredundant set of C7 has at most two vertices, minimum four colors

are required to color the vertices of C7. Let V1 = {v1, v3}, V2 = {v2, v6}, V3 = {v3, v5} and

V4 = {v7}. Clearly {V1, V2, V3, V4} is an ioir-coloring of C7. Hence χioir(C7) = 4. 2
Proposition 2.9 For any graph G, n/IOIR(G) ≤ χioir(G) ≤ n−IOIR(G)+1, where IOIR(G)

is the upper independent open irredundance number of G.

Proof Let χioir(G) = k. Let {V1, V2, · · · , Vk} be an ioir-coloring of G. Since |Vi| ≤
IOIR(G), it follows that n =

∑k
i=1 |Vi| ≤ k.IOIR(G). Hence n/IOIR(G) ≤ χioir(G).

Now, let S be an independent open irredundant set of G with |S| = IOIR(G). Then {S} ∪
{{v} : v ∈ V − S} is an ioir-coloring of G. Hence χioir(G) ≤ n− IOIR(G) + 1. 2
Theorem 2.10 Let G be a connected graph with δ = 1 and let r denote the maximum number

of leaves adjacent to a support vertex v of G. Then χioir(G) ≥ r + 2.

Proof Let v1, v2, · · · , vr be the leaves adjacent to v. Since any independent open irredun-

dant set in G contains at most one of the leaves vi, the result follows. 2
Observation 2.11 Let T 6= K1,n be any tree and let r denote the maximum number of leaves

adjacent to a support vertex v of T . Then χioir(T ) ≥ r + 2.

§3. IOIR-Coloring on Double Star Graph Families

In this section we investigate the independent open irratic number for the central graph, middle

graph, total graph, line graph of star graph K1,n and double star graph K1,n,n.

The central graph C(G) of a graphG is formed by adding an extra vertex on each edge ofG,

and then joining each pair of vertices of the original graph which were previously non-adjacent.

Let G be a graph with vertex set V (G) and edge set E(G). The middle graph of G, denoted

by M(G) is defined as follows. The vertex set of M(G) is V (G)∪E(G). Two vertices x, y in the

vertex set M(G) are adjacent in M(G) in case one of the following holds: (i)x, y are in E(G)

and x, y are adjacent in G. (ii)x is in V (G), y is in E(G), and x, y are incident in G.
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The total graph of G has vertex set V (G) ∪ E(G), and edges joining all elements of this

vertex set which are adjacent or incident in G.

The line graph of G denoted by L(G) is the graph with vertices are the edges of G with

two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

A star is a complete bipartite graph K1,m with m ≥ 2, and the unique vertex v of this star

of degree m is called the center.

Double star K1,n,n is a tree obtained from the star K1,n by adding a new pendant edge

of the existing n pendant vertices. It has 2n + 1 vertices and 2n edges. Let V (K1,n,n) =

{v} ∪ {v1, v2, · · · , vn} ∪ {u1, u2, · · · , un} and E(K1,n,n) = {e1, e2, · · · , en} ∪ {s1, s2, · · · , sn}.

Proposition 3.1 For any star graph K1,n, we have

(i) χioir(M(K1,n)) = n+ 2;

(ii) χioir(C(K1,n)) = n+ 1;

(iii) χioir(T (K1,n)) = n+ 2;

(iv) χioir(L(K1,n)) = n.

Proof (i) By the definition of middle graph, each edge vvi in K1,n is subdivided by the

vertex ei in M(K1,n) and the vertices v, e1, e2, · · · , en induce a clique of order n+1 in M(K1,n).

i.e V (M(K1,n) = {v}∪{vi : 1 ≤ i ≤ n}∪{ei : 1 ≤ i ≤ n}. Hence n+1 distinct colors are required

to color the vertices v, e1, e2, · · · , en. Note that ei is the only external private neighbour of vi

with respect to any set S ⊆ V . Therefore we assign the color which is different from the

already assigned colors to vi. Hence χioir(M(K1,n)) ≥ n + 2. Assign ioir-coloring as follows:

For 1 ≤ i ≤ n, assign the color ci for ei and assign the color cn+1 to v. For 1 ≤ i ≤ n, assign

the color cn+2 to all the vertices v1, v2, · · · , vn. Hence χioir(M(K1,n)) ≤ n+ 2.

(ii) By the definition of central graph, each edge vvi in K1,n is subdivided by the vertex ei

in C(K1,n) and the vertices v1, v2, · · · , vn induce a clique of order n in C(K1,n). i.e V (C(K1,n) =

{v}∪{vi : 1 ≤ i ≤ n}∪{ei : 1 ≤ i ≤ n}. Since vi (1 ≤ i ≤ n) induce a clique of order n, we have

χioir(C(K1,n)) ≥ n. We now prove that χioir(C(K1,n)) ≥ n+ 1. Suppose χioir(C(K1,n)) = n.

Let Vi be the set of vertices which are colored with ci, i = 1 to n. Let we assign the color ci

to vi (1 ≤ i ≤ n) and assign the color c1 to v. Therefore the vertices e1, e2, · · · , en are colored

by c2, c3, · · · , cn−1, cn in some arrangement. Hence at least two of the vertices ei and ej are

colored with the same color cm. Clearly any vertex adjacent to vertices ei and ej is also joined

to vertex of color cm. It follows that there is no external private neighbour for the vertices ei

and ej with respect to Vm. This is a contradiction. Hence χioir(C(K1,n)) ≥ n + 1. Assign

ioir-coloring as follows: For 1 ≤ i ≤ n, assign the color ci for vi and assign the color cn+1 for

each ei. Finally we assign the color c1 to v. Hence χioir(C(K1,n)) ≤ n+ 1.

(iii) By the definition of total graph, we have V (T (K1,n)) = {v} ∪ {vi : 1 ≤ i ≤ n}
∪ {ei : 1 ≤ i ≤ n}, in which the vertices v, e1, e2, · · · , en induce a clique of order n+ 1. Clearly

χioir(T (K1,n)) ≥ n+ 1. Let we assign the color ci to ei (1 ≤ i ≤ n) and assign the color cn+1

to v. Since ei and v are the external private neighbors of vi with respect to Vi and Vn+1, we

need one more color to vi. Hence χioir(T (K1,n)) ≥ n + 2. Assign ioir-coloring as follows: For

1 ≤ i ≤ n, assign the color ci for ei and assign the color cn+1 to v. Finally we assign the color

cn+2 to each vi. Hence χioir(T (K1,n)) ≤ n+ 2.
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(iv) Since L(K1,n) ∼= Kn, χioir(L(K1,n)) = n. 2
Proposition 3.2 For any double star graph K1,n,n, we have

χioir(M(K1,n,n)) =







n+ 1 ∀n ≥ 3

4 n = 2

Proof Clearly we observe that χioir(M(K1,2,2)) = 4. By the definition of middle graph, each

edge vvi and viui (1 ≤ i ≤ n) in K1,n,n are subdivided by the vertices ei and si in M(K1,n,n)

and the vertices v, e1, e2, · · · , en induce a clique of order n + 1 (say Kn+1) in M(K1,n,n). i.e

V (M(K1,n,n)) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ n}.
Clearly χioir(M(K1,n,n)) ≥ n + 1. Assign ioir-coloring as follows: For 1 ≤ i ≤ n, assign the

color ci for ei and assign the color cn+1 to v. For 1 ≤ i ≤ n, assign two distinct colors cl

and cm other than cn+1 and ci to the vertices vi and si. Finally, assign the color cn+1 to each

ui(1 ≤ i ≤ n). Let Vi be the set of vertices which are colored with ci, i = 1 to n+ 1. Note that

v is the external private neighbor of all the vertices ei with respect to Vi, 1 ≤ i ≤ n and ei’s

are the external private neighbors of v with respect to Vn+1. For 1 ≤ i ≤ n, si is the external

private neighbor of ui and vi with respect to Vn+1 and Vl. Finally, vi is the external private

neighbor of si with respect to Vm. Hence χioir(M(K1,n,n)) ≤ n+ 1. 2
Proposition 3.3 For any double star graph K1,n,n, we have χioir(C(K1,n,n)) = n+ 2.

Proof By the definition of central graph, each edge vvi and viui (1 ≤ i ≤ n) in K1,n,n are

subdivided by the vertices ei and si in C(K1,n,n). The vertices v, u1, u2, · · · , un induce a clique

of order n+1 (say Kn+1) and the vertices vi(1 ≤ i ≤ n) induce a clique of order n in C(K1,n,n).

i.e V (C(K1,n,n)) = {v}∪{vi : 1 ≤ i ≤ n}∪{ui : 1 ≤ i ≤ n}∪{ei : 1 ≤ i ≤ n}∪{si : 1 ≤ i ≤ n}.
Clearly χioir(C(K1,n,n)) ≥ n + 1. We now prove that χioir(C(K1,n,n)) ≥ n + 2. Suppose

χioir(C(K1,n,n)) = n+1. Since v, ui (1 ≤ i ≤ n) induce a clique of order n+1, let us assign the

color cn+1 to v and assign the color ci to ui(1 ≤ i ≤ n). Since ei has degree 2 and v is adjacent

to the vertex of color ci ∀i, vi is the only external private neighbour of ei. But vi is adjacent to

the vertex of color cj , ∀j 6= i. Therefore ei must be colored only with ci and vi must be colored

only with cn+1. Since vi (1 ≤ i ≤ n) induce a clique of order n, vl, it leads to a contradiction.

Hence χioir(C(K1,n,n)) ≥ n + 2. Consider the colors c1, c2, · · · , cn+2. Assign ioir-coloring as

follows: Assign the colour cn+1 to v and assign the color ci to ui, where 1 ≤ i ≤ n. Assign

the color cn+1 to all the vertices s1, s2, · · · , sn and assign the color cn+2 to all the vertices

e1, e2, · · · , en. Finally, we assign the color ci to vi for 1 ≤ i ≤ n. Let Vi be the set of vertices

which are colored with ci, i = 1 to n + 2. For 1 ≤ i ≤ n, ei is the external private neighbor of

v with respect to Vn+1 and vi is the external private neighbor of ei with respect to Vn+2. For

1 ≤ i ≤ n, ei is the external private neighbor of vi with respect to Vi and vi is the external

private neighbor of si with respect to Vn+1. Finally, v is the external private neighbor of all

the vertices ui with respect to Vi. Hence χioir(C(K1,n,n)) ≤ n+ 2. 2
Proposition 3.4 For any double star graph K1,n,n, we have χioir(T (K1,n,n)) = n+ 1.

Proof By the definition of total graph, we have V (T (K1,n,n)) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪
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{ui : 1 ≤ i ≤ n}∪{ei : 1 ≤ i ≤ n}∪{si : 1 ≤ i ≤ n} in which the vertices v, e1, e2, · · · , en induce

a clique of order n+ 1. Clearly χioir(T (K1,n,n)) ≥ n+ 1. Consider the colors c1, c2, · · · , cn+1.

Assign ioir-coloring as follows: Assign the color cn+1 to v and assign the colour ci to ei, where

1 ≤ i ≤ n. For 1 ≤ i ≤ n, assign two distinct colors other than cn+1 and ci to the vertices vi

and si. Finally, assign the color cn+1 to each ui(1 ≤ i ≤ n). Hence χioir(T (K1,n,n)) ≤ n+1. 2
Proposition 3.5 For any double star graph K1,n,n, we have χioir(L(K1,n,n)) = n+ 1.

Proof By the definition of line graph, each edge of K1,n,n taken to be as vertex in

(L(K1,n,n)). The vertices e1, e2, · · · , en induce a clique of order n and the vertices s1, s2, · · · , sn

are all pendant in (L(K1,n,n)). i.e V (L(K1,n,n)) = {ei : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ n}. From

Theorem 2.10, we have χioir(L(K1,n,n)) ≥ n + 1. Assign ioir-coloring as follows: Assign the

color cn+1 to all the vertices si, where 1 ≤ i ≤ n and assign the color ci to ei, where 1 ≤ i ≤ n.

Hence χioir(L(K1,n,n)) ≤ n+ 1. 2
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Sampath Kumar. Let G(V, E) be a graph and S ⊆ V be a set of vertices. We can represent

the set S by means of a matrix as follows, in the adjacency matrix A(G) of G replace the

aii element by 1 if and only if, vi ∈ S. In this paper we study the special case of set S being

dominating set and corresponding domination energy of some class of graphs.

Key Words: Adjacency matrix, Smarandachely k-dominating set, domination number,

eigenvalues, energy of graph.

AMS(2010): 15A45, 05C50, 05C69.

§1. Introduction

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of

G is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k =1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

The concept of graph energy arose in theoretical chemistry where certain numerical quan-

tities like the heat of formation of a hydrocarbon are related to total π electron energy that

can be calculated as the energy of corresponding molecular graph. The molecular graph is a

representation of the molecular structure of a hydrocarbon whose vertices are the position of

carbon atoms and two vertices are adjacent if there is a bond connecting them.

Eigen values and eigenvectors provide insight into the geometry of the associated linear

transformation. The energy of a graph is the sum of the absolute values of the Eigen values of

its adjacency matrix. From the pioneering work of Coulson [1] there exists a continuous interest

towards the general mathematical properties of the total π electron energy ε as calculated within

the framework of the Huckel Molecular Orbital (HMO) model. These efforts enabled one to

get an insight into the dependence of ε on molecular structure. The properties of ε(G) are

discussed in detail in [2,3,4,5].

The importance of Eigen values is not only used in theoretical chemistry but also in ana-

lyzing structures. Car designers analyze Eigen values in order to damp out the noise to reduce

1Received March 7, 2018, Accepted December 8, 2018.
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the vibration of the car due to music. Eigen values can be used to test for cracks or deformities

in a solid. Oil companies frequently use Eigen value analysis to explore land for oil. Eigen

values are also used to discover new and better designs for the future [6].

Representation of a set of vertices in a graph by means of a matrix was first introduced

by E. Sampath Kumar [7]. Let G(V,E)be a graph and S ⊆ V be a set of vertices. We can

represent the set S by means of a matrix as follows:

In the adjacency matrix A(G) of G replace the aii element by 1 if and only if vi ∈ S.

The matrix thus obtained from the adjacency matrix can be taken as the matrix of the set S

denoted by AS(G). The energy E(G) obtained from the matrix AS(G) is called the set energy

denoted by ES(G). In this paper we consider the set S as dominating set and the corresponding

matrix as domination matrix denoted by Aγ(G) of G. Thus the energy E(G) obtained from

the domination matrix Aγ(G) is defined as domination energy denoted by Eγ(G).

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The domination matrix of G is

defined to be the square matrix Aγ(G) corresponding to the dominating set of G. The Eigen

values of the domination matrix denoted by κ1, κ2, κ3, · · · , κn are said to be the Aγ Eigen

values of G. Since the Aγ matrix is symmetric, its Eigen values are real and can be ordered

κ1 > κ2 > κ3 > · · · > κn. Therefore, the domination energy

Eγ = Eγ(G) =
n
∑

i=1

|κi|. (1)

This equation has been chosen so as to be fully analogous to the definition of graph energy [2].

E = E(G) =

n
∑

i=1

|λi|, (2)

where λ1 > λ2 > λ3 > · · · ,> λn are the Eigen values of the adjacency matrix A(G). Recall that

in the last few years, the graph energyE(G) and domination energy [20,21] or covering energy [8]

has been extensively studied in mathematics [8-13] and mathematic-chemical literature [14-24].

Definition 1.1(Minimal domination energy) A dominating set D in G is a minimal dominating

set if no proper subset of D is a dominating set. The domination energy Eγ(G) obtained for a

minimal dominating set is called the minimal domination energy denoted by Eγ−min(G).

Definition 1.2(Maximal domination energy) A dominating set D in G is a maximal dominating

set if D contains all the vertices of G. The domination energy Eγ(G) obtained for a maximal

dominating set is called the maximal domination energy denoted by Eγ−max(G).

Similarly to domination energy of graph G, distance domination energy can also be defined

as follows:

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The distance matrix of G is denoted by

D(G) is defined to be the square matrixD(G) = [dij ], where dij is the shortest distance between

the vertex vi and vj in G. The Eigen values of the distance matrix denoted by µ1, µ2, µ3, · · · , µn

are said to be the D Eigen values of G. Since the D(G) matrix is symmetric, its Eigen values
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are real and can be ordered µ1 > µ2 > µ3 > · · · > µn. Therefore, the distance energy

ED = ED(G) =

n
∑

i=1

|µi|. (3)

This equation has been chosen so as to be fully analogous to the definition of graph energy [2].

In the distance matrix D(G) of G replace the aii element by 1 if and only if vi ∈ S. The

matrix thus obtained from the distance matrix can be considered as the distance matrix of the

set S denoted by DS(G). The energy E(G) obtained from the matrix DS(G) is called the

distance set energy denoted by DS(G). In this paper we consider the set S as dominating set

and the corresponding matrix is distance domination matrix denoted by Dγ(G) of G. Thus

the energy E(G) obtained from the distance domination matrix Dγ(G) is defined as distance

domination energy denoted by EDγ(G).

The distance domination matrix of G is defined to be the square matrix Dγ(G) correspond-

ing to the dominating set of G. The Eigen values of the distance domination matrix denoted

by σ1, σ2, σ3, · · · , σn are said to be the Dγ Eigen values of G. Since the Dγ(G) matrix is sym-

metric, its D-Eigen values are real and can be ordered σ1 > σ2 > σ3 > · · · > σn. Therefore,

the distance domination energy

EDγ = EDγ(G) =

n
∑

i=1

|σi|. (4)

This equation has been chosen so as to be fully analogous to the definition of graph energy [2].

E = E(G) =
n
∑

i=1

|λi|, (5)

where λ1 > λ2 > λ3 > . . . ,> λn are the Eigen values of the adjacency matrix A(G).

Definition 1.3(Minimal distance domination energy) A dominating set D in G is a minimal

dominating set if no proper subset of D is a dominating set. The distance domination energy

EDγ(G) obtained for a minimal dominating set is called the minimal domination energy denoted

by EDγ−min(G).

Definition 1.4(Maximal distance domination energy) A dominating set D in G is a maximal

dominating set if D contains all the vertices of G. The distance domination energy EDγ(G)

obtained for a maximal dominating set is called the maximal domination energy denoted by

EDγ−max(G).

§2. Different Energies of Graph with γ(G) = 1

In this section, we characterize graphs with respect to the unique domination set and hence

find their different domination energies.

Remark 2.1 For the complete graph Kn the matrices A(G) = D(G) and Aγ(G) = Dγ(G).
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Hence, the energy of complete graph Kn is given by 2(n−1), i.e., E(Kn) = ED(Kn) = 2(n−1).

Theorem 2.1 Let G = Kn. Then,

Eγ−min(Kn) = EDγ−min(Kn) =
√

n2 − 2n+ 5 + (n− 2), n > 3.

Proof Calculation enables one to find the characteristic polynomial of Kn for n > 3

directly. Label the vertices of Kn as v1, v2, v3, · · · , vn such that v1 is the dominating set. The

domination matrix and the distance domination matrix are same. Hence, in the domination

matrix or distance domination matrix a11 = 1 and aii = 0, i 6= 1.

The characteristic polynomial of domination matrix and the distance domination matrix is

given by κn+q1κ
n−1+q2κ

n−2+· · ·+qn−1κ+qn = 0 and σn+q1σ
n−1+q2σ

n−2+· · ·+qn−1σ+qn =

0 respectively.

The domination matrix and the characteristic polynomial of K3 are given by

Aγ(G) = Dγ(G) =









1 1 1

1 0 1

1 1 0









and κ3 − κ2 − 3κ− 1 = (κ+ 1)
(

κ2 − 2κ− 1
)

.

The domination matrix and the characteristic polynomial of K4 are given by

Aγ(G) = Dγ(G) =















1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and κ4 − κ3 − 6κ2 − 5κ− 1 = (κ+ 1)
2 (
κ2 − 3κ− 1

)

.

The domination matrix and the characteristic polynomial of K5 are given by

Aγ(G) = Dγ(G) =





















1 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0





















and κ5 − κ4 − 10κ3 − 14κ2 − 7κ− 1 = (κ+ 1)
3 (
κ2 − 4κ− 1

)

.

Therefore, the characteristic polynomial of Kn using domination matrix is

(κ+ 1)
n−2 (

κ2 − (n− 1)κ− 1
)

= 0.
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Solving the equation we get

(κ+ 1)
n−2

= 0 or
(

κ2 − (n− 1)κ− 1
)

= 0.

κ = −1,−1,−1, · · · ,−1(n− 2) times

κ2 − (n− 1)κ− 1 = 0

Therefore,

κ =
n− 1±

√

(n− 1)2 − 4(1)(−1)

2
=
n− 1±

√
n2 − 2n+ 5

2
,

where n > 3. Hence the roots are

κ1 =
n− 1 +

√
n2 − 2n+ 5

2
, κ2 = −

(√
n2 − 2n+ 5− (n− 1)

2

)

and

Eγ−min(Kn) =

n
∑

i=1

|κi|

=
n− 1 +

√
n2 − 2n+ 5 +

√
n2 − 2n+ 5− (n− 1)

2
+ n− 2,

Eγ−min(Kn) = EDγ−min(Kn) =
√

n2 − 2n+ 5 + (n− 2).

Hence, we get the proof. 2
Remark 2.2 All four types of energies of a complete graph can be compared as follows:

E(Kn) = ED(Kn) = 2(n− 1) > Eγ−min(Kn)

= EDγ−min(Kn) =
√

n2 − 2n+ 5 + (n− 2).

Remark 2.3 Energy of a star graph K1,n−1 is given by 2
√
n− 1.

Theorem 2.2([21]) Let G = K1,n−1, n > 3. Then,

Eγ−min (K1,n−1) =
√

4n− 3.

Remark 2.4 E (K1,n−1) = 2
√
n− 1 6 Eγ−min (K1,n−1) =

√
4n− 3.

Theorem 2.3 Let G = K1,n−1, n > 3. Then,

ED (K1,n−1)= 2n− 4 +
√

n2 − 3n+ 3.

Proof Calculation enables one to find the characteristic polynomial of K1,n−1 for n > 3

directly. Label the vertices of K1,n−1 as v1, v2, v3, · · · , vn. The characteristic polynomial of
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distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of K1,2 are given by

D(G) =









0 1 1

1 0 2

1 2 0









and µ3 − 6µ− 4 = (µ+ 2)
(

µ2 − 2µ− 2
)

.

The distance matrix and the characteristic polynomial of K1,3 are given by

D(G) =















0 1 1 1

1 0 2 2

1 2 0 2

1 2 2 0















and µ4 − 15µ2 − 28µ− 12 = (µ+ 2)
2 (
µ2 − 4µ− 3

)

.

The distance matrix and the characteristic polynomial of K1,4 are given by

D(G) =





















0 1 1 1 1

1 0 2 2 2

1 2 0 2 2

1 2 2 0 2

1 2 2 2 0





















and µ5 − 28µ3 − 88µ2 − 96µ− 32 = (µ+ 2)
3 (
µ2 − 6µ− 4

)

.

The distance matrix and the characteristic polynomial of K1,5 are given by

D(G) =



























0 1 1 1 1 1

1 0 2 2 2 2

1 2 0 2 2 2

1 2 2 0 2 2

1 2 2 2 0 2

1 2 2 2 0 2



























and µ6 − 45µ4 − 200µ3 − 360µ2 − 288µ− 80 = (µ+ 2)
4 (
µ2 − 8µ− 5

)

.

Therefore the characteristic polynomial of K1,n−1 using distance matrix is

(µ+ 2)
n−2 (

µ2 − (2n− 4)µ− (n− 1)
)

.
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Solving the equation we get

(µ+ 2)
n−2

= 0 or µ2 − (2n− 4)µ− (n− 1) = 0,

µ = −2,−2,−2, · · · ,−2(n− 2)(times) or µ2 − (2n− 4)µ− (n− 1) = 0.

Therefore,

µ =
(2n− 4)±

√

(2n− 4)2 − 4(−(n− 1))

2
=

(2n− 4)±
√

4 (n2 − 3n+ 3)

2

where n > 3. Hence the roots are

µ1 =
(n− 4) +

√
n2 − 3n+ 3

2
and µ2 = −

(√
n2 − 3n+ 3− (n− 4)

2

)

.

ED (K1,n−1) =

n
∑

i=1

|µi|

=
2
√
n2 − 3n+ 3

2
+ 2(n− 2)

= 2n− 4 +
√

n2 − 3n+ 3.

Hence, we get the proof. 2
Theorem 2.4 Let G = K1,n−1, n > 3. Then,

EDγ (K1,n−1)= 4n− 7.

Proof Calculation enables one to find the characteristic polynomial of K1,n−1 for n > 3

directly. Label the vertices of K1,n−1 as v1, v2, v3, · · · , vn.

The characteristic polynomial of distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of K1,2 are given by

Dγ(G) =









1 1 1

1 0 2

1 2 0









and σ3 − σ2 − 6σ = (σ + 2)
(

σ2 − 3σ + 0
)

.

The distance domination matrix and the characteristic polynomial of K1,3 are given by
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Dγ(G) =















1 1 1 1

1 0 2 2

1 2 0 2

1 2 2 0















and σ4 − σ3 − 15σ2 − 16σ + 4 = (σ + 2)
2 (
σ2 − 5σ + 1

)

.

The distance domination matrix and the characteristic polynomial of K1,4 are given by

Dγ(G) =





















1 1 1 1 1

1 0 2 2 2

1 2 0 2 2

1 2 2 0 2

1 2 2 2 0





















and σ5 − σ4 − 28σ3 − 64σ2 − 32σ + 16 = (σ + 2)
3 (
σ2 − 7σ + 2

)

.

The distance domination matrix and the characteristic polynomial of K1,5 are given by

Dγ(G) =



























1 1 1 1 1 1

1 0 2 2 2 2

1 2 0 2 2 2

1 2 2 0 2 2

1 2 2 2 0 2

1 2 2 2 0 2



























and σ6 − σ5 − 45σ4 − 160σ3 − 200σ2 − 48σ + 48 = (σ + 2)
4 (
σ2 − 9σ + 3

)

.

Therefore the characteristic polynomial of K1,n−1 using distance domination matrix is

(σ + 2)
n−2 (

σ2 − (2n− 3)σ + (n− 3)
)

= 0.

Solving the equation we get

(σ + 2)n−2 = 0 or σ2 − (2n− 3)σ + (n− 3) = 0.

Whence, σ = −2,−2,−2, · · · ,−2 ((n− 2) times) or σ2 − (2n− 3)σ + (n− 3) = 0. Therefore,

σ =
(2n− 3)±

√

(2n− 3)2 − 4((n− 3))

2
=

(2n− 3)±
√

4n2 − 16n+ 21

2
,



Different Domination Energies in Graphs 111

where n > 3, i.e., the roots are

σ1 =
(2n− 3) +

√
4n2 − 16n+ 21

2
,

σ2 =
(2n− 3)−

√
4n2 − 16n+ 21

2

and

EDγ (K1,n−1) =

n
∑

i=1

|σi|

= (2n− 3) + 2(n− 2) = 4n− 7.

Hence, we get the proof. 2
§3. Domination Energies for the Graph with γ(G) = 2

During the study of chemical graphs and its Weiner number, the Yugoslavian chemist Ivan

Gutman introduced the concept of Thorn graphs. This idea was further extended to the broader

concept of generalized thorny graphs by Danail Bonchev and Douglas J Klein of USA. This

class of graphs gain importance in Spectral theory as it represents the structural formula of

aliphatic and aromatic hydrocarbons9[.

Theorem 3.1 Let G = P2,t, n = 2t. Then,

E (P2,t) = 2
√

4t− 3.

Proof Calculation enables one to find the characteristic polynomial of G = P2,t for n = 2t

directly. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2 is a path with 4 vertices.

The adjacency matrix and the characteristic polynomial of P2,3 are given by

A(G) =



























0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0



























and λ6 − 5λ4 + 4λ2 = λ2(λ2 − λ− 2)(λ2 + λ− 2).
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The adjacency matrix and the characteristic polynomial of P2,4 are given by

A(G) =







































0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0







































and λ8 − 7λ6 + 9λ4 = λ4(λ2 − λ− 3)(λ2 + λ− 3).

The adjacency matrix and the characteristic polynomial of P2,5 are given by

A(G) =



















































0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0

0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0



















































and λ10 − 9λ8 + 16λ6 = λ6(λ2 − λ− 4)(λ2 + λ− 4).

The adjacency matrix and the characteristic polynomial of P2,6 are given by

A(G) =































































0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0






























































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and λ12 − 11λ10 + 25λ8 = λ8(λ2 − λ− 5)(λ2 + λ− 5).

Therefore the characteristic polynomial of P2,t using adjacency matrix is

λ2t−4(λ2 − λ− (t− 1))(λ2 + λ− (t− 1)).

Solving the equation we get

λ2t−4 = 0, λ2 − λ− (t− 1) = 0 or λ2 + λ− (t− 1) = 0,

i.e.,

λ = 0, 0, 0, · · · , 0((2t− 4) times), λ2 − λ− (t− 1) = 0.

Therefore,

λ =
1±
√

1 + 4t− 4

2
= 1±

√
4t− 3,

where t > 3. Hence the roots are

λ1 = 1 +
√

4t− 3 and λ2 = −
(√

4t− 3− 1
)

and

E =

n
∑

i=1

|λi| =
1 +
√

4t− 3 +
√

4t− 3− 1

2
=
√

4t− 3.

Similarly, solving the equation λ2 + λ− (t− 1) = 0 we get that

E =
√

4t− 3.

Whence,

E (P2,t) = 2
√

4t− 3.

Hence, we get the proof. 2
Theorem 3.2([21]) Let G = P2,t, n = 2t. Then,

Eγ−min (P2,t) = 2
√
t− 1 + 2

√
t.

Theorem 3.3 Let G = P2,t, n = 2t. Then,

ED (P2,t)=

√

25t2 − 28t+ 20 + (5t− 6).

Proof Calculation enables one to find the characteristic polynomial of P2,t for n = 2t

directly. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2 is a path with 4 vertices.

The characteristic polynomial of P2,t using distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.
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The distance matrix and the characteristic polynomial of P2,3 are given by

D(G) =



























0 2 1 2 3 3

2 0 1 2 3 3

1 1 0 1 2 2

2 2 1 0 1 1

3 3 2 1 0 2

3 3 2 1 2 0



























and

µ6 − 65µ4 − 296µ3 − 504µ2 − 352µ− 80 = (µ+ 2)
2 (
µ2 − 9µ− 10

) (

µ2 + 5µ+ 2
)

.

The distance matrix and the characteristic polynomial of P2,4 are given by

D(G) =







































0 2 2 1 2 3 3 3

2 0 2 1 2 3 3 3

2 2 0 1 2 3 3 3

1 1 1 0 1 2 2 2

2 2 2 1 0 1 1 1

3 3 3 2 1 0 2 2

3 3 3 2 1 2 0 2

3 3 3 2 1 2 2 0







































and

µ8 − 136µ6 − 1040µ5 − 3468µ4 − 6112µ3 − 5792µ2 − 2688µ− 448

= (µ+ 2)
4 (
µ2 − 14µ− 14

) (

µ2 + 6µ+ 2
)

.

The distance matrix and the characteristic polynomial of P2,5 are given by

D(G) =



















































0 2 2 2 1 2 3 3 3 3

2 0 2 2 1 2 3 3 3 3

2 2 0 2 1 2 3 3 3 3

2 2 2 0 1 2 3 3 3 3

1 1 1 1 0 1 2 2 2 2

2 2 2 2 1 0 1 1 1 1

3 3 3 3 2 1 0 2 2 2

3 3 3 3 2 1 2 0 2 2

3 3 3 3 2 1 2 2 0 2

3 3 3 3 2 1 2 2 2 0


















































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and

µ10 − 233µ8 − 2512µ7 − 12624µ6 − 36800µ5 − 66400µ4 − 74496µ3

−49664µ2 − 17408µ− 2304 = (µ+ 2)
6 (
µ2 − 19µ− 18

) (

µ2 + 7µ+ 2
)

.

Therefore, the characteristic polynomial of P2,t using distance matrix is

(µ+ 2)2t−4 (µ2 − (5t− 6)µ− (4t− 2)
) (

µ2 + (t+ 2)µ+ 2
)

,

i.e.,

(µ+ 2)
2t−4

= 0, µ2 − (5t− 6)µ− (4t− 2), or µ2 + (t+ 2)µ+ 2 (µ+ 2)
2t−4

= 0.

Solving the equation (µ+ 2)
2t−4

we get µ = −2,−2,−2, · · · ,−2((2t− 4) times. Similarly,

Solving the equation µ2 − (5t− 6)µ− (4t− 2) we get

µ =
(5t− 6)±

√

(5t− 6)2 + 4(4t− 2)

2

, and the equation +(t+ 2)µ+ 2 we get

µ =
−(t+ 2)±

√

(t+ 2)2 − 8

2
.

Therefore,

ED (P2,t) =

n
∑

i=1

|µi| =
√

25t2 − 28t+ 20 + (t+ 2) + (4t− 8)

=
√

25t2 − 28t+ 20 + (5t− 6).

Hence, we get the proof. 2
Theorem 3.4 Let G = P2,t, n = 2t. Then,

EDγ (P2,t) =







√
25t2 − 54t+ 45 +

√
t2 + 6t− 3 + (4t− 8) t = 3, 4

(5t− 5) +
√
t2 + 6t− 3 + (4t− 8) t > 5

and for t = 5,

EDγ (P2,t) =
(5t− 5) +

√
25t2 + 54t+ 45

2
+
√

t2 + 6t− 3 + (4t− 8).

Proof Calculation enables one to find the characteristic polynomial of P2,t for n = 2t

directly. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2 is a path with 4 vertices.

The characteristic polynomial of P2,t using distance domination matrix Dγ(G) is given by
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σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of P2,3 are given by

Dγ(G) =



























0 2 1 2 3 3

2 0 1 2 3 3

1 1 1 1 2 2

2 2 1 1 1 1

3 3 2 1 0 2

3 3 2 1 2 0



























and σ6 − 2σ5 − 64σ4 − 188σ3 − 124σ2 + 64σ + 16 = (σ + 2)
2 (
σ2 − 10σ − 2

) (

σ2 + 4σ − 2
)

.

The distance domination matrix and the characteristic polynomial of P2,4 are given by

Dγ(G) =







































0 2 2 1 2 3 3 3

2 0 2 1 2 3 3 3

2 2 0 1 2 3 3 3

1 1 1 1 1 2 2 2

2 2 2 1 1 1 1 1

3 3 3 2 1 0 2 2

3 3 3 2 1 2 0 2

3 3 3 2 1 2 2 0







































and

σ8 − 2σ7 − 135σ6 − 800σ5 − 1877σ4 − 1704σ3 + 88σ2 + 736σ + 48

= (σ + 2)4
(

σ2 − 15σ − 1
) (

σ2 + 5σ − 3
)

.

The distance domination matrix and the characteristic polynomial of P2,5 are given by

Dγ(G) =



















































0 2 2 2 1 2 3 3 3 3

2 0 2 2 1 2 3 3 3 3

2 2 0 2 1 2 3 3 3 3

2 2 2 0 1 2 3 3 3 3

1 1 1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1 1 1

3 3 3 3 2 1 0 2 2 2

3 3 3 3 2 1 2 0 2 2

3 3 3 3 2 1 2 2 0 2

3 3 3 3 2 1 2 2 2 0



















































and
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σ10 − 2σ9 − 232σ8 − 2088σ7 − 8480σ6 − 18208σ5 − 19584σ4

−5504σ3 + 7424σ2 + 5120σ = (σ + 2)
6 (
σ2 − 20σ − 0

) (

σ2 + 6σ − 4
)

.

The distance domination matrix and the characteristic polynomial of P2,6 are given by

Dγ(G) =





























































0 2 2 2 2 1 2 3 3 3 3 3

2 0 2 2 2 1 2 3 3 3 3 3

2 2 0 2 2 1 2 3 3 3 3 3

2 2 2 0 2 1 2 3 3 3 3 3

2 2 2 2 0 1 2 3 3 3 3 3

1 1 1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 1 1 1 1 1 1 1

3 3 3 3 3 2 1 0 2 2 2 2

3 3 3 3 3 2 1 2 0 2 2 2

3 3 3 3 3 2 1 2 2 0 2 2

3 3 3 3 3 2 1 2 2 2 0 2

3 3 3 3 3 2 1 2 2 2 2 0





























































and

σ12 − 2σ11 − 355σ10 − 4300σ9 − 24885σ8 − 83856σ7 − 172368σ6 − 206400σ5 − 108000σ4

+39680σ3 + 80384σ2 + 28672σ − 1280 = (σ + 2)
8 (
σ2 − 25σ + 1

) (

σ2 + 7σ − 5
)

.

Therefore, the characteristic polynomial of P2,t using distance domination matrix is

(σ + 2)
2t−4 (

σ2 − (5t− 5)σ + (t− 5)
) (

σ2 + (t+ 1)σ − (t− 1)
)

,

i.e.,

(σ + 2)
2t−4

, σ2 − (5t− 5)σ + (t− 5) or σ2 + (t+ 1)σ − (t− 1).

Solving the equation (σ + 2)
2t−4

= 0 we get σ = −2,−2,−2, · · · ,−2 ((2t − 4) times).

Similarly, solving the equation σ2 − (5t− 5)σ + (t− 5) we get

σ =
(5t− 5)±

√

(5t− 5)2 − 4(t− 5)

2

and the equation σ2 + (t+ 1)σ − (t− 1) implies

σ =
(t+ 1)±

√

(t+ 2)2 + 4(t− 1)

2
.
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Therefore,

EDγ (P2,t) =

n
∑

i=1

|σi| =







√
25t2 − 54t+ 45 +

√
t2 + 6t− 3 + (4t− 8), t = 3, 4

(5t− 5) +
√
t2 + 6t− 3 + (4t− 8), t > 5.

and for t = 5,

EDγ (P2,t) =
(5t− 5) +

√
25t2 + 54t+ 45

2
+
√

t2 + 6t− 3 + (4t− 8). 2
Theorem 3.5 Let G = P3,t, n = 2t+ 1. Then,

E (P3,t) = 2
√
t− 1 + 2

√
t+ 1.

Proof Calculation enables one to find the characteristic polynomial of P3,t for n = 2t+ 1

directly. For t = 1, P3,1 is a path with 3 vertices, t = 2, P3,2 is a path with 5 vertices.

The adjacency matrix and the characteristic polynomial of P3,3 are given by

A(G) =

































0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 1

0 0 0 0 1 0 0

0 0 0 0 1 0 0

































and λ7 − 6λ5 + 8λ3 = λ3(λ2 − 2)(λ2 − 4).

The adjacency matrix and the characteristic polynomial of P3,4 are given by

A(G) =













































0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

1 1 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 1 1 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0













































and λ9 − 8λ7 + 15λ5 = λ5(λ2 − 3)(λ2 − 5).
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The adjacency matrix and the characteristic polynomial of P3,5 are given by

A(G) =























































0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0























































and λ11 − 10λ9 + 24λ7 = λ7(λ2 − 4)(λ2 − 6).

Therefore the characteristic polynomial of P3,t using adjacency matrix is

λ2t−3(λ2 − (t− 1))(λ2 − (t+ 1)).

Solving the equation we get

E (P3,t) = 2
√
t− 1 + 2

√
t+ 1.

Hence, we get the proof. 2
Theorem 3.6([21]0) Let G = P3,t, n = 2t+ 1. Then,

Eγ−min (P3,t) =
√

4t− 3 +
√

4t+ 5.

Theorem 3.7 Let G = P3,t, n = 2t + 1 Then, the characteristic polynomial of P3,t using

distance matrix of G is

(µ+ 2)2t−4 (µ2 + (2t+ 2)µ+ 4
) (

µ3 − (6t− 6)µ2 − (12t− 6)µ− 4t
)

= 0.

Proof Calculation enables one to find the characteristic polynomial of P3,t for n = 2t+ 1

directly. For t = 1, P3,1 is a path with 3 vertices, t = 2, P3,2 is a path with 5 vertices.

The characteristic polynomial of distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.
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The distance matrix and the characteristic polynomial of P3,3 are given by

D(G) =

































0 2 1 2 3 4 4

2 0 1 2 3 4 4

1 1 0 1 2 3 3

2 2 1 0 1 2 2

3 3 2 1 0 1 1

4 4 3 2 1 0 2

4 4 3 2 1 2 0

































and

µ7 − 134µ5 − 804µ4 − 1904µ3 − 2112µ2 − 1056µ− 192

= (µ+ 2)2
(

µ2 + 8µ+ 4
) (

µ3 − 12µ2 − 30µ− 12
)

.

The distance matrix and the characteristic polynomial of P3,4 are given by

D(G) =













































0 2 2 1 2 3 4 4 4

2 0 2 1 2 3 4 4 4

2 2 0 1 2 3 4 4 4

1 1 1 0 1 2 3 3 3

2 2 2 1 0 1 2 2 2

3 3 3 2 1 0 1 1 1

4 4 4 3 2 1 0 2 2

4 4 4 3 2 1 2 0 2

4 4 4 3 2 1 2 2 0













































and

µ9 − 258µ7 − 2412µ6 − 9864µ5 − 21984µ4 − 28128µ3 − 20160µ2

−7296µ− 1024 = (µ+ 2)
4 (
µ2 + 10µ+ 4

) (

µ3 − 18µ2 − 42µ− 16
)

.
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The distance matrix and the characteristic polynomial of P3,5 are given by

D(G) =

























































0 2 2 2 1 2 3 4 4 4 4

2 0 2 2 1 2 3 4 4 4 4

2 2 0 2 1 2 3 4 4 4 4

2 2 2 0 1 2 3 4 4 4 4

1 1 1 1 0 1 2 3 3 3 3

2 2 2 2 1 0 1 2 2 2 2

3 3 3 3 2 1 0 1 1 1 1

4 4 4 4 3 2 1 0 2 2 2

4 4 4 4 3 2 1 2 0 2 2

4 4 4 4 3 2 1 2 2 0 2

4 4 4 4 3 2 1 2 2 2 0

























































and

µ11 − 422µ9 − 5380µ8 − 31584µ7 − 108160µ6 − 233920µ5− 326784µ4 − 290560µ3

−155648µ2− 44544µ− 5120 = (µ+ 2)
6 (
µ2 + 12µ+ 4

) (

µ3 − 24µ2 − 54µ− 20
)

.

Therefore, the characteristic polynomial of P3,t using distance matrix is

(µ+ 2)
2t−4 (

µ2 + (2t+ 2)µ+ 4
) (

µ3 − (6t− 6)µ2 − (12t− 6)µ− 4t
)

= 0. 2
Theorem 3.8 Let G = P3,t, n = 2t + 1 Then, the characteristic polynomial of P2,t using

distance domination matrix of G, is given by

(σ + 2)
2t−4 (

σ2 + (2t+ 1)σ − (2t− 4)
) (

σ3 − (6t− 5)σ2 − (6t+ 2)σ + (4t+ 8)
)

= 0.

Proof Calculation enables one to find the characteristic polynomial of P3,t for n = 2t+ 1

directly. For t = 1, P3,1 is a path with 3 vertices, t = 2, P3,2 is a path with 5 vertices.

The characteristic polynomial of distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of P3,3 are given by

Dγ(G) =

































0 2 1 2 3 4 4

2 0 1 2 3 4 4

1 1 1 1 2 3 3

2 2 1 0 1 2 2

3 3 2 1 1 1 1

4 4 3 2 1 0 2

4 4 3 2 1 2 0
































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and

σ7 − 2σ6 − 133σ5 − 586σ4 − 824σ3 − 176σ2 + 240σ − 32

= (σ + 2)
2 (
σ2 + 7σ − 2

) (

σ3 − 13σ2 − 20σ + 4
)

.

The distance domination matrix and the characteristic polynomial of P3,4 are given by

Dγ(G) =













































0 2 2 1 2 3 4 4 4

2 0 2 1 2 3 4 4 4

2 2 0 1 2 3 4 4 4

1 1 1 1 1 2 3 3 3

2 2 2 1 0 1 2 2 2

3 3 3 2 1 1 1 1 1

4 4 4 3 2 1 0 2 2

4 4 4 3 2 1 2 0 2

4 4 4 3 2 1 2 2 0













































and

σ9 − 2σ8 − 257σ7 − 1966σ6 − 6152σ5 − 8816σ4 − 4048σ3 + 2464σ2 + 1792σ − 512

= (σ + 2)
4 (
σ2 + 9σ − 4

) (

σ3 − 19σ2 − 26σ + 18
)

.

The distance domination matrix and the characteristic polynomial of P3,5 are given by

Dγ(G) =























































0 2 2 2 1 2 3 4 4 4 4

2 0 2 2 1 2 3 4 4 4 4

2 2 0 2 1 2 3 4 4 4 4

2 2 2 0 1 2 3 4 4 4 4

1 1 1 1 1 1 2 3 3 3 3

2 2 2 2 1 0 1 2 2 2 2

3 3 3 3 2 1 1 1 1 1 1

4 4 4 4 3 2 1 0 2 2 2

4 4 4 4 3 2 1 2 0 2 2

4 4 4 4 3 2 1 2 2 0 2

4 4 4 4 3 2 1 2 2 2 0






















































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and

σ11 − 2σ10 − 421σ9 − 4626σ8 − 22736σ7 − 60832σ6 − 89568σ5 − 59072σ4 + 9728σ3

+32768σ2 + 6912σ − 4608 = (σ + 2)
6 (
σ2 + 11σ − 6

) (

σ3 − 25σ2 − 32σ + 12
)

.

Therefore the characteristic polynomial of P2,t using distance domination matrix of G is

(σ + 2)2t−4 (σ2 + (2t+ 1)σ − (2t− 4)
) (

σ3 − (6t− 5)σ2 − (6t+ 2)σ + (4t+ 8)
)

= 0. 2
Theorem 3.9 Let G = P4,t, n = 2t+ 2. Then, the characteristic polynomial using adjacency

matrix of G is given by

λ2t−4(λ3 − λ2 − tλ+ (t− 1))(λ3 + λ2 − tλ− (t− 1)).

Proof Calculation enables one to find the characteristic polynomial of P4,t for n = 2t+ 2

directly. For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices.

The adjacency matrix and the characteristic polynomial of P4,3 are given by

A(G) =







































0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0







































and λ8 − 7λ6 + 13λ4 − 4λ2 = λ2(λ3 − λ2 − 3λ+ 2)(λ3 + λ2 − 3λ− 2).

The adjacency matrix and the characteristic polynomial of P4,4 are given by

A(G) =

















































0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0
















































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and λ10 − 9λ8 + 22λ6 − 9λ4 = λ4(λ3 − λ2 − 4λ+ 3)(λ3 + λ2 − 4λ− 3).

The adjacency matrix and the characteristic polynomial of P4,5 are given by

Aγ(G) =





























































0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0





























































and

λ12 − 11λ10 + 33λ8 − 16λ6 = λ6(λ3 − λ2 − 5λ+ 4)(λ3 + λ2 − 5λ− 4).

Therefore, the characteristic polynomial of P4,t using adjacency matrix of G is

λ2t−4(λ3 − λ2 − tλ+ (t− 1))(λ3 + λ2 − tλ− (t− 1)).

Hence, we get the proof. 2
Theorem 3.10([21]) Let G = P4,t, n = 2t + 2. Then, the characteristic polynomial using

domination matrix of G is given by

κ2t−4(κ3 − (t+ 1)κ− (t− 1))(κ3 − 2κ2 − (t− 1)κ+ (t− 1)).

Theorem 3.11 Let G = P4,t, n = 2t+ 2. Then, the characteristic polynomial using distance

matrix of G is given by

(µ+ 2)
2t−4

(µ3 − (7t− 5)µ2 − (22t− 8)µ− (8t+ 4))(µ3 + (3t+ 2)µ2 + (2t+ 8)µ+ 4).

Proof Calculation enables one to find the characteristic polynomial of P4,t for n = 2t+ 2

directly. For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices.
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The distance matrix and the characteristic polynomial of P4,3 are given by

D(G) =







































0 2 1 2 3 4 5 5

2 0 1 2 3 4 5 5

1 1 0 1 2 3 4 4

2 2 1 0 1 2 3 3

3 3 2 1 0 1 2 2

4 4 3 2 1 0 1 1

5 5 4 3 2 1 0 2

5 5 4 3 2 1 2 0







































and µ8 − 248µ6 − 1904µ5 − 5932µ4− 9248µ3 − 7456µ2− 2944µ− 448 = (µ+ 2)2 (µ3 − 16µ2 −
58µ− 28)(µ3 + 12µ2 + 14µ+ 4).

The distance matrix and the characteristic polynomial of P4,4 are given by

D(G) =



















































0 2 2 1 2 3 4 5 5 5

2 0 2 1 2 3 4 5 5 5

2 2 0 1 2 3 4 5 5 5

1 1 1 0 1 2 3 4 4 4

2 2 2 1 0 1 2 3 3 3

3 3 3 2 1 0 1 2 2 2

4 4 4 3 2 1 0 1 1 1

5 5 5 4 3 2 1 0 2 2

5 5 5 4 3 2 1 2 0 2

5 5 5 4 3 2 1 2 2 0



















































and µ10−449µ8−5032µ7−24768µ6−67808µ5−110944µ4−109440µ3−62720µ2−18944µ−2304 =

(µ+ 2)4 (µ3 − 23µ2 − 80µ− 36)(µ3 + 15µ2 + 16µ+ 4).

The distance matrix and the characteristic polynomial of P4,5 are given by

D(G) =





























































0 2 2 2 1 2 3 4 5 5 5 5

2 0 2 2 1 2 3 4 5 5 5 5

2 2 0 2 1 2 3 4 5 5 5 5

2 2 2 0 1 2 3 4 5 5 5 5

1 1 1 1 0 1 2 3 4 4 4 4

2 2 2 2 1 0 1 2 3 3 3 3

3 3 3 3 2 1 0 1 2 2 2 2

4 4 4 4 3 2 1 0 1 1 1 1

5 5 5 5 4 3 2 1 0 2 2 2

5 5 5 5 4 3 2 1 2 0 2 2

5 5 5 5 4 3 2 1 2 2 0 2

5 5 5 5 4 3 2 1 2 2 2 0




























































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and

µ12 − 708µ10 − 10464µ9 − 70860µ8 − 281664µ7 − 718016µ6 − 1214208µ5

−1365888µ4− 998400µ3 − 448512µ2 − 110592µ− 11264

= (µ+ 2)6 (µ3 − 30µ2 − 102µ− 44)(µ3 + 18µ2 + 18µ+ 4).

Therefore the characteristic polynomial of P4,t using distance matrix of G is

(µ+ 2)
2t−4

(µ3 − (7t− 5)µ2 − (22t− 8)µ− (8t+ 4))

×(µ3 + (3t+ 2)µ2 + (2t+ 8)µ+ 4).

Hence, we get the proof. 2
Theorem 3.12 Let G = P4,t, n = 2t+ 2. Then, the characteristic polynomial using distance

domination matrix of G is given by

(σ + 2)
2t−4

(σ3 − (7t− 4)σ2 − (5t)σ + (10t− 20))

×(σ3 + (3t+ 2)σ2 + (8 − t)σ + 4).

Proof Calculation enables one to find the characteristic polynomial of P4,t for n = 2t+ 2

directly. For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices.

The distance domination matrix and the characteristic polynomial of P4,3 are given by

Dγ(G) =







































0 2 1 2 3 4 5 5

2 0 1 2 3 4 5 5

1 1 1 1 2 3 4 4

2 2 1 0 1 2 3 3

3 3 2 1 0 1 2 2

4 4 3 2 1 1 1 1

5 5 4 3 2 1 0 2

5 5 4 3 2 1 2 0







































and

σ8 − 2σ7 − 247σ6 − 1504σ5 − 3277σ4 − 2472σ3 + 216σ2 + 480σ − 80

= (σ + 2)
2
(σ3 − 17σ2 − 45σ + 10)(σ3 + 11σ2 + 5σ − 2).

The distance domination matrix and the characteristic polynomial of P4,4 are given by
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Dγ(G) =



















































0 2 2 1 2 3 4 5 5 5

2 0 2 1 2 3 4 5 5 5

2 2 0 1 2 3 4 5 5 5

1 1 1 1 1 2 3 4 4 4

2 2 2 1 0 1 2 3 3 3

3 3 3 2 1 0 1 2 2 2

4 4 4 3 2 1 1 1 1 1

5 5 5 4 3 2 1 0 2 2

5 5 5 4 3 2 1 2 0 2

5 5 5 4 3 2 1 2 2 0



















































and

σ10 − 2σ9 − 448σ8 − 4264σ7 − 16936σ6 − 33376σ5 − 29968σ4 − 3328σ3 + 10496σ2

+2560σ− 1280 = (σ + 2)
4
(σ3 − 24σ2 − 60σ + 20)(σ3 + 14σ2 + 4σ − 4).

The distance domination matrix and the characteristic polynomial of P4,5 are given by

Dγ(G) =































































0 2 2 2 1 2 3 4 5 5 5 5

2 0 2 2 1 2 3 4 5 5 5 5

2 2 0 2 1 2 3 4 5 5 5 5

2 2 2 0 1 2 3 4 5 5 5 5

1 1 1 1 1 1 2 3 4 4 4 4

2 2 2 2 1 0 1 2 3 3 3 3

3 3 3 3 2 1 0 1 2 2 2 2

4 4 4 4 3 2 1 1 1 1 1 1

5 5 5 5 4 3 2 1 0 2 2 2

5 5 5 5 4 3 2 1 2 0 2 2

5 5 5 5 4 3 2 1 2 2 0 2

5 5 5 5 4 3 2 1 2 2 2 0































































and

σ12 − 2σ11 − 707σ10 − 9212σ9 − 53597σ8 − 173456σ7 − 326864σ6 − 332864σ5 − 107744σ4

+105216σ3 + 90624σ2 − 11520 = (σ + 2)6 (σ3 − 31σ2 − 75σ + 30)(σ3 + 17σ2 + 3σ − 6).

Therefore the characteristic polynomial of P4,t using distance domination matrix of G is

(σ + 2)
2t−4

(σ3 − (7t− 4)σ2 − (5t)σ + (10t− 20))(σ3 + (3t+ 2)σ2 + (8− t)σ + 4).

Hence, we get the proof. 2
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§4. Generalized Characteristic Polynomial Can Not Be Obtained

It is not easy to find the generalized characteristic polynomial with respect to domination

energies for all class of graphs, as the problem of finding the characteristic polynomial for an

arbitrary matrix is still open. Here we illustrate that for paths, cycles and wheel graphs finding

the generalized characteristic polynomial is not possible. Hence for this kind of graphs the

absolute energies cannot be found. Therefore only the upper and lower bound can be obtained.

Theorem 4.1 Let G = Pn, n > 3. Then the exact E(Pn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of adjacency matrix A(G) is given by

λn + q1λ
n−1 + q2λ

n−2 + · · ·+ qn−1λ+ qn = 0.

The adjacency matrix and the characteristic polynomial of P3 are given by

A(G) =









0 1 0

1 0 1

0 1 0









and λ3 − 2λ = λ(λ2 − 1).

The adjacency matrix and the characteristic polynomial of P4 are given by

A(G) =















0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0















and λ4 − 3λ2 + 1 = (λ2 − λ− 1)(λ2 + λ− 1).

The adjacency matrix and the characteristic polynomial of P5 are given by

A(G) =





















0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0





















and λ5 − 4λ3 + 3λ = λ (λ− 1) (λ+ 1)(λ2 − 3).
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The adjacency matrix and the characteristic polynomial of P6 are given by

A(G) =



























0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0



























and

λ6 − 5λ4 + 6λ2 − 1 = (λ3 − λ2 − 2λ+ 1)(λ3 + λ2 − 2λ− 1).

Hence, we get the proof. 2
Theorem 4.2 Let G = Pn, n > 3. Then the exact Eγ(Pn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of domination matrix Aγ(G) is given by κn + q1κ
n−1 +

q2κ
n−2 + · · ·+ qn−1κ+ qn = 0.

The domination matrix and the characteristic polynomial of P3 are given by

Aγ(G) =









0 1 0

1 1 1

0 1 0









and κ3 − κ2 − 2κ = κ(κ+ 1)(κ− 2).

The domination matrix and the characteristic polynomial of P4 are given by

Aγ(G) =















0 1 0 0

1 1 1 0

0 1 0 1

0 0 1 1















, Aγ(G) =















0 1 0 0

1 1 1 0

0 1 1 1

0 0 1 0















or Aγ(G) =















1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1















whose polynomial are respectively

κ4 − 2κ3 − 2κ2 + 3κ+ 1,

κ4 − 2κ3 − 2κ2 + 2κ+ 1 = (κ− 1)(κ+ 1)(κ2 − 2κ− 1),

κ4 − 2κ3 − 2κ2 + 4κ = κ(κ− 2)(κ2 − 2).
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The domination matrix and the characteristic polynomial of P5 are given by

Aγ(G) =





















1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 1 1

0 0 0 1 0





















or Aγ(G) =





















0 1 0 0 0

1 1 1 0 0

0 1 0 1 0

0 0 1 1 1

0 0 0 1 0





















whose polynomial are respectively

κ5 − 2κ4 − 3κ3 + 5κ2 + 2κ− 1 = (κ2 − κ− 1)(κ3 − κ2 − 3κ+ 1)

κ5 − 2κ4 − 3κ3 + 4κ2 + 3κ = κ(κ2 − κ− 3)(κ2 − κ− 1).

The domination matrix and the characteristic polynomial of P6 are given by

Aγ(G) =



























0 1 0 0 0 0

1 1 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 1 1

0 0 0 0 1 0



























and

κ6 − 2κ5 − 4κ4 + 6κ3 + 5κ2 − 2κ− 1 = (κ3 − 3κ− 1)(κ3 − 2κ2 − κ+ 1).

Hence, we get the proof. 2
Theorem 4.3 Let G = Pn, n > 3. Then the exact ED(Pn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance matrix D(G) is given by µn + q1µ
n−1 +

q2µ
n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of P3 are given by

D(G) =









0 1 2

1 0 1

2 1 0









and µ3 − 6µ− 4 = (µ+ 2)
(

µ2 − 2µ− 2
)

.
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The distance matrix and the characteristic polynomial of P4 are given by

D(G) =















0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0















and µ4 − 20µ2 − 32µ− 12 =
(

µ2 − 4µ− 6
) (

µ2 + 4µ+ 2
)

.

The distance matrix and the characteristic polynomial of P5 are given by

D(G) =





















0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0





















and µ5 − 50µ3 − 140µ2 − 120µ− 32 =
(

µ2 + 6µ+ 4
) (

µ3 − 6µ2 − 18µ− 8
)

.

The distance matrix and the characteristic polynomial of P6 are given by

D(G) =



























0 1 2 3 4 5

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 0 1 2

4 3 2 1 0 1

5 4 3 2 1 0



























and µ6 − 105µ4 − 448µ3 − 648µ2 − 384µ− 80 = (µ+ 1)
(

µ2 + 8µ+ 4
) (

µ3 − 9µ2 − 36µ− 20
)

.

Hence, we get the proof. 2
Theorem 4.4 Let G = Pn, n > 3. Then the exact EDγ(Pn) cannot be calculated as character-

istic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.
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The distance domination matrix and the characteristic polynomial of P3 are given by

Dγ(G) =









0 1 2

1 1 1

2 1 0









and σ3 − σ2 − 6σ = σ (σ + 2) (σ − 3) .

The distance domination matrix and the characteristic polynomial of P4 are given by

Dγ(G) =















0 1 2 3

1 1 1 2

2 1 0 1

3 2 1 1















, Dγ(G) =















0 1 2 3

1 1 1 2

2 1 1 1

3 2 1 0















or Dγ(G) =















1 1 2 3

1 0 1 2

2 1 0 1

3 2 1 1















and

σ4 − 2σ3 − 19σ2 − 12σ =
(

σ2 − 5σ − 3
) (

σ2 + 3σ − 1
)

,

σ4 − 2σ3 − 19σ2 − 4σ + 3 = σ (σ + 3)
(

σ2 − 5σ − 4
)

,

σ4 − 2σ3 − 19σ2 − 20σ − 5 =
(

σ2 − 5σ − 5
) (

σ2 + 3σ + 1
)

.

The distance domination matrix and the characteristic polynomial of P5 are given by

Dγ(G) =





















0 1 2 3 4

1 1 1 2 3

2 1 0 1 2

3 2 1 1 1

4 3 2 1 0





















or Dγ(G) =





















1 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 1 1

4 3 2 1 0





















and

σ5 − 2σ4 − 49σ3 − 70σ2 = σ2 (σ + 5)
(

σ2 − 7σ − 14
)

,

σ5 − 2σ4 − 49σ3 − 85σ2 − 30σ.

The distance domination matrix and the characteristic polynomial of P6 are given by

Dγ(G) =



























0 1 2 3 4 5

1 1 1 2 3 4

2 1 0 1 2 3

3 2 1 0 1 2

4 3 2 1 1 1

5 4 3 2 1 0


























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and

σ6 − 2σ5 − 104σ4 − 300σ3 − 180σ2 = σ2
(

σ2 − 10σ − 30
) (

σ2 + 8σ + 6
)

.

Hence, we get the proof. 2
Theorem 4.5 Let G = Cn, n > 3. Then the exact E(Cn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of adjacency matrix A(G) is given by

λn + q1λ
n−1 + q2λ

n−2 + · · ·+ qn−1λ+ qn = 0.

The adjacency matrix and the characteristic polynomial of C3 are given by

A(G) =









0 1 1

1 0 1

1 1 0









and λ3 − 3λ− 2 = (λ− 2)(λ+ 1)2.

The adjacency matrix and the characteristic polynomial of C4 are given by

A(G) =















0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0















and λ4 − 4λ2 = λ2(λ− 2)(λ+ 2).

The adjacency matrix and the characteristic polynomial of C5 are given by

A(G) =





















0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0





















and λ5 − 5λ3 + 5λ− 2 = (λ− 2) (λ2 + λ− 1)2.
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The adjacency matrix and the characteristic polynomial of C6 are given by

A(G) =



























0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0



























and λ6 − 6λ4 + 9λ2 − 4 = (λ− 2) (λ− 1)2(λ+ 1)2(λ + 2).

The adjacency matrix and the characteristic polynomial of C7 are given by

A(G) =

































0 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 1 0

































and λ7 − 7λ5 + 14λ3 − 7λ− 2 = (λ− 2)(λ3 + λ2 − 2λ− 1)2. Hence, we get the proof. 2
Theorem 4.6 Let G = Cn, n > 3. Then the exact Eγ(Cn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of domination matrix Aγ(G) is given by

κn + q1κ
n−1 + q2κ

n−2 + · · ·+ qn−1κ+ qn = 0.

The domination matrix and the characteristic polynomial of C3 are given by

Aγ(G) =









0 1 1

1 1 1

1 1 0









and κ3 − κ2 − 3κ− 1 = (κ+ 1)(κ2 − 2κ− 1).
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The domination matrix and the characteristic polynomial of C4 are given by

Aγ(G) =















1 1 0 1

1 0 1 0

0 1 1 1

1 0 1 0















or Aγ(G) =















0 1 0 1

1 1 1 0

0 1 1 1

1 0 1 0















and

κ4 − 2κ3 − 3κ2 + 4κ = κ(κ− 1)(κ2 − κ− 4) or κ4 − 2κ3 − 3κ2 + 4κ− 1.

The domination matrix and the characteristic polynomial of C5 are given by

Aγ(G) =





















1 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 1 1

1 0 0 1 0





















and κ5 − 2κ4 − 4κ3 + 6κ2 + 4κ− 4 = (κ2 − 2)(κ3 − 2κ2 − 2κ+ 2).

The domination matrix and the characteristic polynomial of C6 are given by

Aγ(G) =



























1 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 1 1 0

0 0 0 1 0 1

1 0 0 0 1 0



























and κ6 − 2κ5 − 5κ4 + 8κ3 + 7κ2 − 6κ− 3 = (κ− 1) (κ+ 1)
(

κ2 − 3
)

(κ2 − 2κ− 1).

The domination matrix and the characteristic polynomial of C7 are given by

Aγ(G) =

































1 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 1 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 1 1 0

0 0 0 0 1 0 1

0 0 0 0 1 0

































and κ7−3κ6−4κ5 +14κ4 +5κ3−17κ2−3κ+1 = (κ3−3κ−1)(κ4−3κ3−κ2 +6κ−1). Hence,
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we get the proof. 2
Theorem 4.7 Let G = Cn, n > 3. Then the exact ED(Cn) cannot be calculated as character-

istic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of C3 are given by

D(G) =









0 1 1

1 0 1

1 1 0









and µ3 − 3µ− 2 = (µ− 2)(µ+ 1)2.

The distance matrix and the characteristic polynomial of C4 are given by

D(G) =















0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0















and µ4 − 12µ2 − 16µ = µ (µ− 4) (µ+ 2)
2
.

The distance matrix and the characteristic polynomial of C5 are given by

D(G) =





















0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0





















and µ5 − 25µ3 − 60µ2 − 35µ− 6 = (µ− 6)
(

µ2 + 3µ+ 1
)2
.
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The distance matrix and the characteristic polynomial of C6 are given by

D(G) =



























0 1 2 3 2 1

1 0 1 2 3 2

2 1 0 1 2 3

3 2 1 0 1 2

2 3 2 1 0 1

1 3 2 2 1 0



























and µ6 − 56µ4 − 203µ3 − 190µ2 − 72µ = µ (µ+ 4) (µ− 9)
(

µ3 + 5µ2 + 5µ+ 2
)

.

The distance matrix and the characteristic polynomial of C7 are given by

D(G) =

































0 1 2 3 3 2 1

1 0 1 2 3 3 2

2 1 0 1 2 3 3

3 2 1 0 1 2 3

3 3 2 1 0 1 2

2 3 3 2 1 0 1

1 2 3 3 2 1 0

































and µ7 − 98µ5 − 490µ4 − 707µ3 − 434µ2 − 119µ− 12 = (µ− 12)
(

µ3 + 6µ2 + 5µ+ 1
)2
. Hence,

we get the proof. 2
Theorem 4.8 Let G = Cn, n > 3. Then the exact EDγ(Cn) cannot be calculated as charac-

teristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of C3 are given by

Dγ(G) =









0 1 1

1 1 1

1 1 0









and σ3 − σ2 − 3σ − 1 = (σ + 1)(σ2 − 2σ − 1).
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The distance domination matrix and the characteristic polynomial of C4 are given by

Dγ(G) =















1 1 2 1

1 0 1 2

2 1 1 1

1 2 1 0















and σ4 − 2σ3 − 11σ2 − 4σ + 4 = (σ + 1) (σ + 2)
(

σ2 − 5σ + 2
)

.

The distance domination matrix and the characteristic polynomial of C5 are given by

Dγ(G) =





















1 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 1 1

1 2 2 1 0





















and σ5 − 2σ4 − 24σ3 − 30σ2 + 4σ = σ (σ + 2)
(

σ3 − 4σ2 − 16σ + 2
)

.

The distance domination matrix and the characteristic polynomial of C6 are given by

Dγ(G) =



























1 1 2 3 2 1

1 0 1 2 3 2

2 1 0 1 2 3

3 2 1 1 1 2

2 3 2 1 0 1

1 3 2 2 1 0



























and

σ6 − 2σ5 − 55σ4 − 129σ3 − 12σ2 + 38σ + 24

= (σ + 4)
(

σ2 − 10σ + 6
) (

σ3 + 4σ2 + 3σ + 1
)

.

The distance matrix and the characteristic polynomial of C7 are given by

Dγ(G) =

































1 1 2 3 3 2 1

1 0 1 2 3 3 2

2 1 1 1 2 3 3

3 2 1 0 1 2 3

3 3 2 1 1 1 2

2 3 3 2 1 0 1

1 2 3 3 2 1 0
































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and

σ7 − 3σ6 − 95σ5 − 281σ4 − 10σ3 + 60σ2 + 8σ

= σ
(

µ2 + 5σ + 2
) (

µ4 − 8µ3 − 57µ2 + 20µ+ 4
)

.

Hence, we get the proof. 2
Theorem 4.9 Let G = Wn, n > 3. Then the exact E(Wn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of adjacency matrix A(G) is given by

λn + q1λ
n−1 + q2λ

n−2 + · · ·+ qn−1λ+ qn = 0.

The adjacency matrix and the characteristic polynomial of W4 are given by

A(G) =















0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and λ4 − 6λ2 − 8λ− 3 = (λ− 3)(λ+ 1)3.

The adjacency matrix and the characteristic polynomial of W5 are given by

A(G) =





















0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0





















and λ5 − 8λ3 − 8λ2 = λ2 (λ+ 2) (λ2 − 2λ− 4).

The adjacency matrix and the characteristic polynomial of W6 are given by

A(G) =



























0 1 1 1 1 1

1 0 1 0 0 1

1 1 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 1

1 1 0 0 1 0



























and λ6 − 10λ4 − 10λ3 + 10λ2 + 8λ− 5 =
(

λ2 − 2λ− 5
) (

λ2 + λ− 1
)2
.



140 M.Kamal Kumar, Johnson Johan Jayersy and R. Winson

The adjacency matrix and the characteristic polynomial of W7 are given by

A(G) =































0 1 1 1 1 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0

1 0 1 0 1 0 0

1 0 0 1 0 1 0

1 0 0 0 1 0 1

1 1 0 0 0 1 0































and

λ7 − 12λ5 − 12λ4 + 21λ3 + 24λ2 − 10λ− 12 = (λ− 1)2(λ+ 1)2(λ+ 2)(λ2 − 2λ− 6).

Hence, we get the proof. 2
Theorem 4.10 Let G = Wn, n > 3. Then the exact Eγ(Wn) cannot be calculated as charac-

teristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of domination matrix Aγ(G) is given by

κn + q1κ
n−1 + q2κ

n−2 + · · ·+ qn−1κ+ qn = 0.

The domination matrix and the characteristic polynomial of W4 are given by

Aγ(G) =















1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and κ4 − κ3 − 6κ2 − 5κ− 1 = (κ+ 1)2(κ2 − 3κ− 1).

The domination matrix and the characteristic polynomial of W5 are given by

Aγ(G) =





















1 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0





















and κ5 − κ4 − 8κ3 − 4κ2 = κ2(κ+ 2)(κ2 − 3κ− 2).
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The domination matrix and the characteristic polynomial of W6 are given by

Aγ(G) =



























1 1 1 1 1 1

1 0 1 0 0 1

1 1 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 1

1 1 0 0 1 0



























and κ6 − κ5 − 10κ4 − 5κ3 + 10κ2 + 3κ− 3 = (κ2 − 3κ− 3)(κ2 + κ− 1)2.

The domination matrix and the characteristic polynomial of W7 are given by

Aγ(G) =

































1 1 1 1 1 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0

1 0 1 0 1 0 0

1 0 0 1 0 1 0

1 0 0 0 1 0 1

1 1 0 0 0 1 0

































and κ7 − κ6 − 12κ5 − 6κ4 + 21κ3 + 15κ2 − 10κ− 8 = (κ− 1)2(κ+ 1)3(κ+ 2)(κ+ 4). Hence, we

get the proof. 2
Theorem 4.11 Let G = Wn, n > 3. Then the exact ED(Wn) cannot be calculated as charac-

teristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Wn using distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of W4 are given by

D(G) =















0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and µ4 − 6µ2 − µ− 3 = (µ− 3) (µ+ 1)
3
.
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The distance matrix and the characteristic polynomial of W5 are given by

D(G) =





















0 1 1 1 1

1 0 1 2 1

1 1 0 1 2

1 2 1 0 1

1 1 2 1 0





















and µ5 − 16µ3 − 32µ2 − 16µ = µ (µ+ 2)
2 (
µ2 − 4µ− 4

)

.

The distance matrix and the characteristic polynomial of W6 are given by

D(G) =



























0 1 1 1 1 1

1 0 1 2 2 1

1 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0



























and µ6 − 30µ4 − 90µ3 − 90µ2 − 36µ− 5 =
(

µ2 − 6µ− 5
) (

µ2 + 3µ+ 1
)2
.

The distance matrix and the characteristic polynomial of W7 are given by

D(G) =

































0 1 1 1 1 1 1

1 0 1 2 2 2 1

1 1 0 1 2 2 2

1 2 1 0 1 2 2

1 2 2 1 0 1 2

1 2 2 2 1 0 1

1 1 2 2 2 1 0

































and µ7 − 48µ5 − 200µ4 − 315µ3 − 216µ2 − 54µ = µ (µ+ 1)
2
(µ+ 3)

2 (
µ2 − 8µ− 6

)

. Hence, we

get the proof. 2
Theorem 4.12 Let G = Wn, n > 3. Then the exact EDγ(Wn) cannot be calculated as

characteristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Wn using distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.
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The distance domination matrix and the characteristic polynomial of W4 are given by

Dγ(G) =















1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and σ4 − σ3 − 6σ2 − 5σ − 1 = (σ + 1)2
(

σ2 − 3σ − 1
)

.

The distance domination matrix and the characteristic polynomial of W5 are given by

Dγ(G) =





















1 1 1 1 1

1 0 1 2 1

1 1 0 1 2

1 2 1 0 1

1 1 2 1 0





















and σ5 − σ4 − 16σ3 − 20σ2 = σ2 (σ − 5) (σ + 2)
2
.

The distance domination matrix and the characteristic polynomial of W6 are given by

Dγ(G) =



























1 1 1 1 1 1

1 0 1 2 2 1

1 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0



























and σ6 − σ5 − 30σ4 − 65σ3 − 30σ2 − σ + 1 =
(

σ2 − 7σ + 1
) (

σ2 + 3σ + 1
)2
.

The distance matrix and the characteristic polynomial of W7 are given by

Dγ(G) =

































1 1 1 1 1 1 1

1 0 1 2 2 2 1

1 1 0 1 2 2 2

1 2 1 0 1 2 2

1 2 2 1 0 1 2

1 2 2 2 1 0 1

1 1 2 2 2 1 0

































and σ7 − σ6 − 48σ5 − 158σ4 − 163σ3 − 33σ2 + 18σ = σ (σ + 1)2 (σ + 3)2
(

µ2 − 9µ+ 2
)

. Hence,

we get the proof. 2
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§5. Open Problems

Problem 5.1 Finding the characteristic polynomial for an arbitrary graph.

Problem 5.2 Find upper and lower bound for various kinds of energies with respect to different

parameters of graph.

References

[1] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules,

Proc. Cambridge Phil. Soc., 36 (1940), 201–203.

[2] Ivan Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz,

103 (1978), 1–22.

[3] Ivan Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-

Verlag, Berlin, 1986.

[4] Ivan Gutman, The energy of a graph: old and new results, In A. Betten, A. Kohnert,

R. Laue and A. Wassermann (eds), Algebraic Combinatorics and Applications, Springer-

Verlag, Berlin, pp. 196–211, 2000.

[5] Ivan Gutman, Topology and stability of conjugated hydrocarbons: The dependence of total

π-electron energy on molecular topology, J. Serb. Chem. Soc., 70 (2005) 441–456.

[6] Tamara Anthony Carter, Richard A. Tapia and Anne Papakonstantinou, An introduction

to Linear Algebra for Pre-Calculus Students, CEEE, 1995.

[7] E. Sampath Kumar, Graphs and matrices, Proceedings of National Workshop on Graph

theory Applied to chemistry, Chapter-2, Centre for Mathematical Sciences, Pala Campus,

Kerala, 1–3, Feb 2010.

[8] Chandra Shekar Adiga, Abdelmejid Bayad, Ivan Gutman and Shrikanth Avant Srinivas,

The Minimum covering energy of a graph, Kragujevac J. Sci., 34 (2012), 39–56.

[9] Danail Bonchev and Douglas J. Klein, On the Wiener number of thorn trees, stars, rings,

and rods, CROATICA CHEMICA ACTA, CCACAA, 75(2) (2002), 613–620.

[10] G. Indulal, Ivan Gutman and A. Vijaya Kumar, On the distance matrix of a graph, MATCH

Commun. Math. Comput. Chem., 60 (2008), 461–472.

[11] Ivan Gutman, Natassa Cmiljanovic, Svetlana Milosavljevic and Slavko Radenkovic, De-

pendence of total π-electron energy on the number of non- bonding molecular orbitals,

Monatshefte Fur Chemie-MONATSH CHEM, 135(7) (2004), 765–772.

[12] Ivan Gutman, Sekt. Forchungsz, J.A. de la Pena and J. Rada, On the energy of regular

graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 351–361.

[13] H.B. Walikar, The energy of a graph: Bounds, Graph Theory Lecture Notes, Department

of Computer Science, Karnatak University, Dharwad, 2007.

[14] H.S. Ramane, D.S. Revankar, Ivan Gutman, Siddani Bhaskara Rao, B.D. Acharya and

H.B. Walikar, Estimating the distance energy of graphs, Graph theory Notes of New York

LV, New York Academy of Sciences, 2008.

[15] H.S. Ramane, H.B. Walikar, S.B. Rao, B.D. Acharya, P.R. Hampiholi, S.R. Jog and Ivan

Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl. Math. Lett.,



Different Domination Energies in Graphs 145

18 (2005) 679–682.

[16] H. Hua and M. Wang, Unicyclic with given number of vertices and minimal energy, Lin.

Algebra Appl., 426 (2007), 478–489.

[17] J.H. Koolen and V. Moulton, Maximal energy graph, Adv. Appl. Math., 26 (2001) 47–52.

[18] J.H. Koolen and V. Moulton, Maximal energy of bipartite graph, Graphs Combin., 19

(2003), 131–35.

[19] L. Ye and X. Yuan, On the minimal energies of trees with a given number of pendent

vertices, MATCH Commun. Math. Comput. Chem., 57 (2007) 197–201.

[20] M. Kamal Kumar, Domination energy of some well-known graphs, International Journal

of Applied Mathematics, 3(1) (2012), 417–424.

[21] M. Kamal Kumar, Characteristic polynomial and domination energy of some special class

of graphs, International Journal of Mathematical Combinatorics, 1(1) (2014) 37–48.

[22] V. Nikiforov, The energy of graphs and matrices J. Math. Anal. Appl., 326 (2007) 1472–

1475.

[23] V. Nikiforov, Graphs and matrices with maximal energy, J. Math. Anal. Appl., 327 (2007),

735–738.

[24] Massoud Malek, Linear Algebra–Characteristic Polynomial, California State University,

East Bay, pp. 4–5, 2008.



Math.Combin.Book Ser. Vol.4(2018), 146-159

Product Cordial Labeling of Extensions of Barbell Graph

S.K.Patel1, U.M.Prajapati2 and A.N.Kansagara3

1. Department of Mathematics, Government Engineering College, Bhuj-370001, India

2. Department of Mathematics, St. Xavier’s College, Ahmedabad-380009, India

3. Department of Mathematics, Shree D K V Arts and Science College, Jamnagar-361008, India

E-mail:skpatel27@yahoo.com, udayan64@yahoo.com, ankur14685@gmail.com

Abstract: A barbell graph B(r, n) is a graph consists of path Pn joining two complete

graphs Kr. This paper deals with study of the product cordial labeling of graphs that are

obtained by applying various graph operations on barbell graph.
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§1. Introduction

All the graphs considered in this paper are finite, simple, connected and undirected. Through

out this work, |X | denotes the cardinality of the set X . By order and size of a graph we means

the cardinality of vertex set and the cardinality of edge set respectively. For various graph

theoretic notations and terminology we follow [1].

A graph labeling is an assignment of integers to the vertices or edges or both subject to

certain condition(s). If the domain of the mapping is the set of vertices(or edges) then the

labeling is called vertex labeling(or edge labeling). A mapping f : V (G) → {0, 1} is called

binary vertex labeling of a graph G = (V (G), E(G)). Also the number of vertices(or edges)

having label i under the map f are denoted by vf (i)(or ef (i)) and the set of all vertices

adjacent to v are denoted by N(v).

A product cordial labeling of a graph G = (V (G), E(G)) is a function f from V (G) to

{0, 1} such that if each edge uv is assigned the label f(u)f(v), the number vf (0) of vertices

labeled with 0 and the number vf (1) of vertices labeled with 1 differ by at most 1, and the

number ef (0) of edges labeled with 0 and the number ef (1) of edges labeled with 1 differ by at

most 1. A graph with a product cordial labeling is called a product cordial graph. Opposed to

the product cordial labeling, a Smarandachely product cordial labeling on G is such a labeling

f : V (G)→ {0, 1} with induced labeling f(u)f(v) on edge uv ∈ E(G) that |vf (0)− vf (1)| ≥ 2

or |ef(0)− ef (1)| ≥ 2.

The product cordial labeling was introduced by Sundaram et. al. [3], [4]. They proved

that many graphs are product cordial: trees; unicyclic graphs of odd order; triangular snakes;

1Received March 10, 2018, Accepted December 10, 2018.
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dragons; helms; path and cycle related graphs. They also proved that a graph having p vertices

and q edges is product cordial, then q ≤ (p−1)(p+1)
4 + 1. For further results on product cordial

labeling we refer to the dynamic survey of graph labeling by Gallian [2].

A barbell graph consists of a path graph of order n connecting two complete graphs of order

r ≥ 3 each and it is denoted by B(r, n). S K Vaidya and Chirag Barasara [5] proved that if G

and G′ are the graphs such that their orders or sizes differ at most by 1, then the new graph

obtained by joining G and G′ by a path Pk of k ∈ N length is product cordial. This result

along with the definition of barbell graph shows that barbell graph is product cordial. In this

paper we study the product cordial labeling of graphs that are obtained by performing certain

operations on barbell graph. We first define these operations.

Definition 1.1 The duplication of a vertex v of graph G produces a new graph G′ by adding a

new vertex v′ such that N(v′) = N(v). In other words a vertex v′ is said to be duplication of v

if all the vertices which are adjacent to v in G are also adjacent to v′ in G′.

Definition 1.2 The duplication of vertex vk by a new edge e = v′kv
′′
k in a graph G produce a

new graph G′ such that N(v′k) = {vk, v
′′
k} and N(v′′k ) = {vk, v

′
k}.

Definition 1.3 The duplication of an edge e = uv by a new vertex w in a graph G produce a

new graph G′ such that N(w) = {u, v}.

Definition 1.4 The duplication of an edge e = uv of a graph G produce a new graph G′ by

adding an edge e′ = u′v′ such that N(u′) = {N(u)∪{v′}}\{v} and N(v′) = {N(v)∪{u′}}\{u}.

Definition 1.5 A vertex switching Gv of a graph G is the graph obtained by taking a vertex

v of G, removing all the edges incident to v and adding edges joining v to every other vertex

which are not adjacent to v in G.

Definition 1.6 Let G = (V (G), E(G)) be a graph with V (G) = S1∪S2∪· · ·∪St∪T where each Si

is a set of vertices having at least two vertices and having the same degree and T = V (G)\∪Si.

Then the degree splitting graph of G is a graph obtained from G by adding vertices w1, w2, · · ·wt

and joining wi to each vertex of Si(1 ≤ i ≤ t).

In the present work we proved that graphs obtained from barbell graph B(r, n) by dupli-

cating all vertices by edges and duplicating all edges by vertices in path joining complete graphs

are product cordial for all r and n. We also show that a graph obtained by switching a vertex

of path in barbell graph B(r; n) admits product cordial labeling for all r and n. We also derive

partial results for the product cordial labeling of graphs that are obtained from barbell graph

B(r, n) by duplicating vertex by vertex and edge by edge in the path joining complete graphs.

Further we show that for certain values of r and n the degree splitting graph of barbell graph

as well as degree splitting graph of path in barbell graph are product cordial.

§2. Main Results

Theorem 2.1 A barbell graph B(r, n) with duplication of edges of path joining complete graphs

by vertices, is product cordial for all possible values of r and n.
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Proof In a barbell graph G = B(r, n), let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices

of complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1

is adjacent to u1. Let G′ be graph obtained from Barbell graph by taking duplication of

edges of path by vertices and also v′1, v
′
2, · · · , v′n−1 be vertices of duplication of path edges

v1v2, v2v3, · · · , vn−1vn respectively. Then |V (G′)| = 2r+2n−1 and |E(G′)| = r(r−1)+3n−1.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r

f(u′i) = 0; 1 6 i 6 r

f(vj) =







1, 1 ≤ j ≤
⌈

n
2

⌉

;

0,
⌈

n
2

⌉

+ 1 ≤ j ≤ n.

f(v′j) =







1, 1 ≤ j ≤
⌈

n
2

⌉

;

0,
⌈

n
2

⌉

+ 1 ≤ j ≤ n− 1.

According to above definition of f , we have vf (0)+1 = r+n = vf (1). Thus |vf (0)−vf(1)| ≤
1. For the edges labeled with 0 and 1 consider the following cases.

Case 1. n is odd.

In this case we have ef (0) = r(r−1)
2 + 3n−1

2 = ef(1). So, |ef(0)− ef (1)| ≤ 1.

Case 2. n is even

In this case we have ef (0) = r(r−1)
2 + 3n−2

2 = ef(1) + 1. Hence, |ef (0)− ef (1)| ≤ 1.

Thus G′ has product cordial labeling. 2
Example 2.1 A barbell graph B(5, 4) with duplication of edges of path joining complete graphs

by vertices and its product cordial labeling is shown in Figure 1.

����rr r r r r r rr rr r r rr r r
u1

u2

u3

u4 u5

1

1

1

1 1

v′2v′1 v′3

v1 v2 v3 v4

1

1
1

1
0

0

0 u′1

u′2

u′3

u′4u′5
0 0

0 0

0

Figure 1 Barbell graph B(5, 4) with duplication of edges of path by vertices

Theorem 2.2 A barbell graph B(r, n) with duplication of vertices of path joining complete

graphs by edges, is product cordial for all r and n.

Proof In a barbell graph G = B(r, n), let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices

of complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1

is adjacent to u1. Let G′ be graph obtained from barbell graph by taking duplication of
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vertices of path by edges and also v′1v
′
2, v

′
2v

′
3, · · · , v′2n−1v

′
2n be edges of duplication of path

vertices v1, v2, · · · , vn. Then |V (G′)| = 2r + 3n and |E(G′)| = r(r − 1) + 4n + 1. We define

f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r

f(u′i) = 0; 1 6 i 6 r

f(vj) =







1, 1 ≤ j ≤
⌈

n
2

⌉

;

0,
⌈

n
2

⌉

+ 1 ≤ j ≤ n.

f(v′j) =







1, 1 ≤ j ≤ n;

0, n+ 1 ≤ j ≤ 2n.

According to above definition of f , we have ef (0) = r(r−1)
2 + 2n + 1 = ef (1) + 1. Thus

|ef (0)− ef (1)| ≤ 1. For the vertices labeled with 0 and 1 consider the following cases.

Case 1. n is odd

In this case we have vf (0) = r + 3n−1
2 = vf (1) + 1. So |vf (0)− vf (1)| ≤ 1.

Case 2. n is even

In this case we have vf (0) = r + 3n
2 = vf (1). Thus |vf (0)− vf (1)| ≤ 1.

And hence G′ is product cordial. 2
Example 2.2 A barbell graph B(5, 6) with duplication of vertices of path joining complete

graphs by edges and its product cordial labeling is shown in Figure 2.

����ss s s s s s st su1

u2

u3

u4 u5

1

1

1

1 1

u′1

u′2

u′3

u′4u′5
0 0

0 0

0s s s s s sAAA ���s s s s s ss s s s s s
v′1 v′2

v′3 v′4

v′5 v′6

v′7 v′8

v′9 v′10

v′11 v′12

1 1

1

v1

v2

v3

v4

v5

v6

1
1 1

1

1 1 0

0
0 0

0

0

0 0
0

Figure 2 Barbell graph B(5, 6) with duplication of vertices by edges

Theorem 2.3 A barbell graph B(r, n) with switching of a vertex of path joining complete graphs

is product cordial for all possible values of r and n.

Proof Let G be a barbell graph and let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices of

complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1 is

adjacent to u1. Let G′ be graph obtained from G by switching vertex v of path. Here for v we

have two choices either v is end vertex of path or internal vertex of path.

Case 1. v is end vertex say v1.
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In this case we have |V (G′)| = 2r+n and |E(G′)| = r(r− 1) + 2n− 3. Define f : V (G′)→
{0, 1} as

f(ui) = 0; 1 6 i 6 r,

f(u′i) = 1; 1 6 i 6 r,

f(vj) =







1, j = 1, n, n− 1, · · · ,
⌈

n
2

⌉

+ 2;

0, j = 2, 3, · · · ,
⌉

n
2

⌉

+ 1.

Subcase 1.1 is n odd.

In this case we have ef (1) = r(r−1)
2 + n− 1 = ef(0) + 1 and vf (1) = r + n+1

2 = vf (0) + 1.

Subcase 1.2 n is even.

In this case we have ef (1) + 1 = r(r−1)
2 + n− 1 = ef(0) and vf (1) = r + n

2 = vf (0).

Thus from both the sub cases we have |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1.

Case 2. v is internal vertex say v2.

In this case we have |V (G′)| = 2r+n and |E(G′)| = r(r− 1)+2n− 4. Define f : V (G′)→
{0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) = 0; 1 6 i 6 r,

f(vj) =







1, j = 2, n, n− 1, · · · ,
⌉

n
2

⌉

+ 2;

0, j = 1, 3, 4, · · · ,
⌉

n
2

⌉

+ 1.

Then we have ef (1) = r(r−1)
2 + n− 2 = ef (0) and vf (1) = r + n+1

2 = vf (0) + 1. Hence in this

case we have |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1.

Thus G′ is product cordial graph. 2
Example 2.3 Consider a barbell graph B(6, 6) with switching of end vertex of path joining

complete graphs. Then it is product cordial and its labeling is as shown in Figure 3.������� 
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Figure 3 Barbell graph B(6, 6) with switching of end vertex of path
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Theorem 2.4 A barbell graph with duplication of vertices of path joining complete graphs by

vertices is product cordial for the following choices of r and n:

(1) r > 3 and n = 4;

(2) r ≥ 5 and n ≥ 6.

Proof In a barbell graph G = B(r, n), let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices

of complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1 is

adjacent to u1. Let G′ be graph obtained from barbell graph by taking duplication of edges of

path by vertices and also v′1, v
′
2, · · · , v′n be vertices of duplication of path edges v1, v2, · · · , vn

respectively. Then |V (G′)| = 2r + 2n and |E(G′)| = r(r − 1) + 3n+ 1.

Case 1. r > 3 and n = 4.

We consider the following sub cases for r to define the function on V (G′).

Subcase 1.1 r = 3.

We define f : V (G′)→ {0, 1} as

f(ui) = 0; 1 6 i 6 3,

f(u′i) = 0; 1 6 i 6 3,

f(vj) =







1, 1 6 i 6 3;

0, i = 4,

f(v′j) = 1; 1 6 j 6 4.

Subcase 1.2 r > 4.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 6 i 6 4;

0, 5 6 i 6 r,

f(vj) = 0; 1 6 j 6 4,

f(v′j) = 0; 1 6 j 6 4.

According to above definitions of f in different sub cases, we have vf (0) = r + 4 = vf (1)

and ef (0) = r(r−1)
2 + 7 = ef(1) + 1. So, Thus |vf (0)− vf (1)| ≤ 1. |ef (0)− ef(1)| ≤ 1.

Case 2. r ≥ 5 and n ≥ 6.

We consider the following sub cases for r to define the function on V (G′).

Subcase 2.1 n = 6.
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We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 6 i 6 5;

0, 6 6 i 6 r,

f(vj) =







1, j = 2;

0, 3 ≤ j ≤ n,

f(v′j) = 0; 3 ≤ j ≤ n.

Subcase 2.2 n = 7.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 6 i 6 5;

0, 6 6 i 6 r,

f(vj) =







1, j = 2;

0, 3 ≤ j ≤ n,

f(v′j) = 0; 3 ≤ j ≤ n.

Subcase 2.3 n ≥ 8.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 6 i 6 5;

0, 6 6 i 6 r,

f(vj) =







1, 2 ≤ j ≤
⌈

n
2

⌉

− 1;

0, j = 1,
⌉

n
2

⌉

≤ j ≤ n,

f(v′j) =







1, 3 ≤ j ≤
⌈

n
2

⌉

− 1;

0, j = 1, 2,
⌈

n
2

⌉

≤ j ≤ n.

According to above definitions of f in different subcases, we have vf (0) = r + n = vf (1).

Thus |vf (0)− vf (1)| ≤ 1. For the number of edges labeled with 0 and 1 consider the following

cases.

Case 1. n is odd.

In this case we have ef (0) = r(r−1)
2 + 3n+1

2 = ef (1). So, |ef (0)− ef (1)| ≤ 1.
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Case 2. n is even.

In this case we have ef (0) = r(r−1)
2 + 3n

2 + 1 = ef(1) + 1. Hence, |ef (0)− ef (1)| ≤ 1.

Thus G′ has product cordial labeling. 2
Example 2.4 A barbell graph B(5, 6) with duplication of vertices of path joining complete

graphs by vertices is product cordial and its product cordial labeling is shown in Figure 4.
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v1 v2 v3 v4 v5 v6

v′1 v′2 v′3 v′4 v′5 v′6

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

1 1

Figure 4 Barbell graph B(5, 6) with duplication of vertices by vertices

Theorem 2.5 A barbell graph B(r, n) with duplication of edges of path joining complete graphs

by edges is product cordial for

(1) r ≥ 4 and n = 4;

(2) r ≥ 4 and n is odd with n ≥ 5.

Proof In a barbell graph G = B(r, n), let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices

of complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1 is

adjacent to u1. Let G′ be graph obtained from barbell graph by taking duplication of edges

of path by edges and also v′1v
′
2, v

′
2v

′
3, · · · , v′2n−3v

′
2n−2 be edges of duplication of path vertices

v1v2, v2v3, · · · , vn−1vn respectively. Then |V (G)| = 2r+ 3n− 2 and |E(G)| = r(r− 1)+ 4n− 2.

Case 1. r ≥ 4 and n = 4.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 6 i 6 4;

0, 5 6 i 6 r,

f(vj) =







1, j = 1;

0, 2 ≤ j ≤ 4,

f(v′j) = 0; 1 6 j 6 6.

According to above definitions of f in different subcases, we have vf (0) = r + 5 = vf (1)

and ef (0) = r(r−1)
2 + 7 = ef(1). So, |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1.

Case 2. r ≥ 4 and odd n ≥ 5.
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We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 6 i 6 4;

0, 5 6 i 6 r,

f(vj) =







1, 1 ≤ j ≤ n+1
2 ;

0, j = 1, n+3
2 ≤ j ≤ n,

f(v′j) =







1, 3 ≤ j ≤ n− 5;

0, n− 4 ≤ j ≤ 2n− 2.

According to above definitions of f in different subcases, we have vf (0) = r + 3
(

n−1
2

)

=

vf (1) and ef (0) = r(r−1)
2 + 2n− 1 = ef (1). So, |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1.

Thus G′ has product cordial labeling. 2
Example 2.5 A barbell graph B(5, 5) with duplication of edges of path joining complete

graphs by edges is product cordial and its product cordial labeling is shown in Figure 5.
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u4 u5
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1

1

1 1
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1
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v1 v2 v3 v4 v5

s s s ss s s sv′1 v′2 v′5 v′6

v′3 v′4 v′7 v′8

0 0 0 0

0 0 0 0
0

0011 1

Figure 5 Barbell graph B(5, 5) with duplication of edges by edges

Theorem 2.6 A degree splitting graph of barbell graph B(r, n) is product cordial for r = 3 and

n is odd.

Proof For a barbell graph G = B(r, n), let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices

of complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1 is

adjacent to u1.

Let G′ be degree splitting graph of G and w1, w2 be inserting vertices with the properties.

N(w1) = {v ∈ V (G) : d(v) = r}, N(w2) = {v ∈ V (G) : d(v) = 2}.
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We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) = 0; 1 6 i 6 r,

f(vj) =







1, 1 ≤ j ≤
⌈

n
2

⌉

;

0,
⌈

n
2

⌉

+ 1 ≤ j ≤ n,

f(w1) = 0,

f(w2) = 1.

Then we have ef (1) = 6 + n = ef (0)− 1 and vf (1)− 1 = 4 + n
2 − 1

2 = vf (0).

Hence in this case we have |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. Thus G′ is product

cordial graph. 2
Example 2.6 Consider the degree splitting graph of B(3, 5).Then it is product cordial and its

product cordial labeling is shown in Figure 6.
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Figure 6 Degree splitting graphs of B(3, 5)

Theorem 2.7 A graph obtained by taking degree splitting graph of path joining complete graphs

in barbell graph B(r, n) is product cordial for

(1) r ≥ 3 and n is even;

(2) r = 3 and n is odd with n 6= 1;

(3) r = 4 and n is odd with n 6= 1, 3, 5;

(4) r ≥ 5 and n is odd with n 6= 1, 3, 5, 7, 13.

Proof For a barbell graph G = B(r, n), let u1, u2, · · · , ur and u′1, u
′
2, · · · , u′r be vertices

of complete graphs and v1, v2, · · · , vn be vertices of path joining complete graphs where v1 is

adjacent to u1. Let G′ be graph obtained from B(r, n) by taking degree splitting graph of path

joining complete graphs and v′ be the inserting vertex. Then we have |V (G)| = 2r+ n+ 1 and

|E(G)| = r(r − 1) + 2n+ 1.
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Case 1. r ≥ 3 and n is even.

We define f : V (G′)→ {0, 1} as

f(ui) = 0; 1 6 i 6 r,

f(u′i) = 1; 1 6 i 6 r,

f(vj) =







1, 1 ≤ j ≤
⌈

n
2

⌉

;

0,
⌈

n
2

⌉

+ 1 ≤ j ≤ n,

f(v′) = 1.

Then we have ef(1) = r(r−1)
2 +n = ef (0)+1 and vf (1)− 1 = r+ n

2 = vf (0). Hence in this case

we have |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. Thus G′ is product cordial graph in this

case.

Case 2. r = 3 and n is odd with n 6= 1.

Subcase 2.1 n = 3.

We define f : V (G′)→ {0, 1} as

f(ui) =







1, i = 1;

0, 2 ≤ i ≤ r,

f(u′i) = 0; 1 6 i 6 r;

f(vj) = 1; 1 ≤ j ≤ n,
f(v′) = 1.

Subcase 2.2 n ≥ 5.

We define f : V (G′)→ {0, 1} as

f(ui) = f(u′i) = 0; 1 6 i 6 r,

f(vj) =







1, 1 ≤ j ≤ n+5
2 ;

0, n+7
2 ≤ j ≤ n,

f(v′) = 1.

According to the above definitions of f in different sub cases, we have ef (1) − 1 = n +

3 = ef (0) and vf (1) = n+7
2 = vf (0). Hence in this case we have |vf (0) − vf (1)| ≤ 1 and

|ef (0)− ef (1)| ≤ 1.

Case 3. r = 4 and n is odd with n 6= 1, 3, 5.
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We define f : V (G′)→ {0, 1} as

f(ui) = f(u′i) = 0; 1 6 i 6 rm

f(vj) =







1, 1 ≤ j ≤ n+7
2 ;

0, n+9
2 ≤ j ≤ nm,

f(v′) = 1.

Then we have ef(1)− 1 = n+ 6 = ef (0) and vf (1) = n+9
2 = vf (0). Hence in this case we have

|vf (0)− vf (1)| ≤ 1 and |ef(0)− ef (1)| ≤ 1.

Case 4. r ≥ 5 and n is odd with n 6= 1, 3, 5, 7, 13.

Subcase 4.1 n = 9.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 ≤ i ≤ 5;

0, 6 ≤ i ≤ r,

f(vj) = 0; 1 6 j 6 n,

f(v′) = 0.

Subcase 4.2 n = 11.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 ≤ i ≤ 5;

0, 6 ≤ i ≤ r,

f(vj) =







1, j = 1;

0, 2 ≤ j ≤ n,

f(v′) = 0.

Subcase 4.3 n = 15.
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We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 ≤ i ≤ 6;

0, 7 ≤ i ≤ r,

f(vj) =







1, j = 2, 4;

0, otherwise,

f(v′) = 0.

Subcase 4.4 n ≥ 17.

We define f : V (G′)→ {0, 1} as

f(ui) = 1; 1 6 i 6 r,

f(u′i) =







1, 1 ≤ i ≤ 6;

0, 7 ≤ i ≤ r,

f(vj) =







1, j = 1, 3 ≤ j ≤ n−11
2 ;

0, j = 2, n−9
2 6 j 6 n,

f(v′) = 1.

According to the above definitions of f in different sub cases, we have ef (1)−1 = r(r−1)
2 +

n = ef (0) and vf (1) = r + n+1
2 = vf (0). Hence in this case we have |vf (0) − vf (1)| ≤ 1 and

|ef (0)− ef (1)| ≤ 1. 2
Example 2.7 Consider the degree splitting graphs of path joining complete graphs in barbell

graphs B(3, 5), B(4, 4) and B(7, 9). Then they are product cordials and their labeling are as

shown in Figures 7, 8 and 9.
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Figure 7 Degree splitting graph of path joining complete graphs in barbell graph B(3, 5)
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Figure 8 Degree splitting graph of path joining complete graphs in barbell graph B(4, 4)
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Figure 9 Degree splitting graph of path joining complete graphs in barbell graph B(7, 9)
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By Hua Luogeng, a Chinese mathematician.



Author Information

Submission: Papers only in electronic form are considered for possible publication. Papers

prepared in formats, viz., .tex, .dvi, .pdf, or.ps may be submitted electronically to one member of

the Editorial Board for consideration in the Mathematical Combinatorics (International

Book Series). An effort is made to publish a paper duly recommended by a referee within

a period of 3 − 4 months. Articles received are immediately put the referees/members of the

Editorial Board for their opinion who generally pass on the same in six week’s time or less. In

case of clear recommendation for publication, the paper is accommodated in an issue to appear

next. Each submitted paper is not returned, hence we advise the authors to keep a copy of

their submitted papers for further processing.

Abstract: Authors are requested to provide an abstract of not more than 250 words, lat-

est Mathematics Subject Classification of the American Mathematical Society, Keywords and

phrases. Statements of Lemmas, Propositions and Theorems should be set in italics and ref-

erences should be arranged in alphabetical order by the surname of the first author in the

following style:

Books

[4]Linfan Mao, Combinatorial Geometry with Applications to Field Theory, InfoQuest Press,

2009.

[12]W.S.Massey, Algebraic topology: an introduction, Springer-Verlag, New York 1977.

Research papers

[6]Linfan Mao, Mathematics on non-mathematics - A combinatorial contribution, International

J.Math. Combin., Vol.3(2014), 1-34.

[9]Kavita Srivastava, On singular H-closed extensions, Proc. Amer. Math. Soc. (to appear).

Figures: Figures should be drawn by TEXCAD in text directly, or as EPS file. In addition,

all figures and tables should be numbered and the appropriate space reserved in the text, with

the insertion point clearly indicated.

Copyright: It is assumed that the submitted manuscript has not been published and will

not be simultaneously submitted or published elsewhere. By submitting a manuscript, the

authors agree that the copyright for their articles is transferred to the publisher, if and when,

the paper is accepted for publication. The publisher cannot take the responsibility of any loss

of manuscript. Therefore, authors are requested to maintain a copy at their end.

Proofs: One set of galley proofs of a paper will be sent to the author submitting the paper,

unless requested otherwise, without the original manuscript, for corrections after the paper is

accepted for publication on the basis of the recommendation of referees. Corrections should be

restricted to typesetting errors. Authors are advised to check their proofs very carefully before

return.



December 2018

Contents

A Combinatorial Approach for the Spanning Tree Entropy in Complex Network

By E.M.Badr and B. Mohamed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

On Isomorphism Theorems of Neutrosophic R-Modules

By M. E. Otene, A. D. Akwu and O. Oyewumi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

On 1RJ Moves in Cartesian Product Graphs By O. Oyewumi and A. D. Akwu . . . . . 26

Characteristic Properties of the Indicatrix Under a Kropina Change of

Finsler Metric By Gauree Shanker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Neighbourly Pseudo Irregular Fuzzy Graphs

By N.R.Santhi Maheswari and V.Jeyapratha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Spectra of a New Join in Duplication Graph

By K.Reji Kumar and Renny P. Varghese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The Gourava Index of Four Operations on Graphs

By V. R. Kulli, V. Lokesha, Sushmitha Jain and Manjunath. M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Strongly 2-Multiplicative Graphs By D.D.Somashekara, C.R.Veena and H. E. Ravi . . . 77

A Characteristic of Directed Pathos Line Digraph of an Arborescence

By M.C.Mahesh Kumar and H.M.Nagesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Independent Open Irredundant Colorings of Graphs

By T.Muthulakshmi and M.Subramanian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Different Domination Energies in Graphs

By M.Kamal Kumar, Johnson Johan Jayersy and R.Winson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Product Cordial Labeling of Extensions of Barbell Graph

By A. S.K.Patel, U.M.Prajapati and A.N.Kansagara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Papers Published in MC (Book Series), 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A Book Series on Mathematical Combinatorics


