
ISSN 1937 - 1055

VOLUME 3, 2019

INTERNATIONAL JOURNAL OF

MATHEMATICAL COMBINATORICS

EDITED BY

THE MADIS OF CHINESE ACADEMY OF SCIENCES AND

ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS, USA

September, 2019



Vol.3, 2019 ISSN 1937-1055

International Journal of

Mathematical Combinatorics

(www.mathcombin.com)

Edited By

The Madis of Chinese Academy of Sciences and

Academy of Mathematical Combinatorics & Applications, USA

September, 2019



Aims and Scope: The mathematical combinatorics is a subject that applying combinatorial

notion to all mathematics and all sciences for understanding the reality of things in the universe,

motivated by CC Conjecture of Dr.Linfan MAO on mathematical sciences. The International

J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal,

sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly,

which publishes original research papers and survey articles in all aspects of mathematical

combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry,

topology and their applications to other sciences. Topics in detail to be covered are:

Mathematical combinatorics;

Smarandache multi-spaces and Smarandache geometries with applications to other sciences;

Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and

map enumeration; Combinatorial designs; Combinatorial enumeration;

Differential Geometry; Geometry on manifolds; Low Dimensional Topology; Differential

Topology; Topology of Manifolds;

Geometrical aspects of Mathematical Physics and Relations with Manifold Topology;

Mathematical theory on gravitational fields and parallel universes;

Applications of Combinatorics to mathematics and theoretical physics.

Generally, papers on applications of combinatorics to other mathematics and other sciences

are welcome by this journal.

It is also available from the below international databases:

Serials Group/Editorial Department of EBSCO Publishing

10 Estes St. Ipswich, MA 01938-2106, USA

Tel.: (978) 356-6500, Ext. 2262 Fax: (978) 356-9371

http://www.ebsco.com/home/printsubs/priceproj.asp

and

Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning

27500 Drake Rd. Farmington Hills, MI 48331-3535, USA

Tel.: (248) 699-4253, ext. 1326; 1-800-347-GALE Fax: (248) 699-8075

http://www.gale.com

Indexing and Reviews: Mathematical Reviews (USA), Zentralblatt Math (Germany), Refer-

ativnyi Zhurnal (Russia), Mathematika (Russia), Directory of Open Access (DoAJ), Interna-

tional Statistical Institute (ISI), International Scientific Indexing (ISI, impact factor 1.972),

Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA).

Subscription A subscription can be ordered by an email directly to

Linfan Mao

The Editor-in-Chief of International Journal of Mathematical Combinatorics

Chinese Academy of Mathematics and System Science Beijing, 100190, P.R.China, and also the
President of Academy of Mathematical Combinatorics & Applications (AMCA), Colorado, USA

Email: maolinfan@163.com

Price: US$48.00



Editorial Board (4th)

Editor-in-Chief

Linfan MAO

Chinese Academy of Mathematics and System

Science, P.R.China

and

Academy of Mathematical Combinatorics &

Applications, Colorado, USA

Email: maolinfan@163.com

Deputy Editor-in-Chief

Guohua Song

Beijing University of Civil Engineering and

Architecture, P.R.China

Email: songguohua@bucea.edu.cn

Editors

Arindam Bhattacharyya

Jadavpur University, India

Email: bhattachar1968@yahoo.co.in

Said Broumi

Hassan II University Mohammedia

Hay El Baraka Ben M’sik Casablanca

B.P.7951 Morocco

Junliang Cai

Beijing Normal University, P.R.China

Email: caijunliang@bnu.edu.cn

Yanxun Chang

Beijing Jiaotong University, P.R.China

Email: yxchang@center.njtu.edu.cn

Jingan Cui

Beijing University of Civil Engineering and

Architecture, P.R.China

Email: cuijingan@bucea.edu.cn

Shaofei Du

Capital Normal University, P.R.China

Email: dushf@mail.cnu.edu.cn

Xiaodong Hu

Chinese Academy of Mathematics and System

Science, P.R.China

Email: xdhu@amss.ac.cn

Yuanqiu Huang

Hunan Normal University, P.R.China

Email: hyqq@public.cs.hn.cn

H.Iseri

Mansfield University, USA

Email: hiseri@mnsfld.edu

Xueliang Li

Nankai University, P.R.China

Email: lxl@nankai.edu.cn

Guodong Liu

Huizhou University

Email: lgd@hzu.edu.cn

W.B.Vasantha Kandasamy

Indian Institute of Technology, India

Email: vasantha@iitm.ac.in

Ion Patrascu

Fratii Buzesti National College

Craiova Romania

Han Ren

East China Normal University, P.R.China

Email: hren@math.ecnu.edu.cn

Ovidiu-Ilie Sandru

Politechnica University of Bucharest

Romania



ii International Journal of Mathematical Combinatorics

Mingyao Xu

Peking University, P.R.China

Email: xumy@math.pku.edu.cn

Guiying Yan

Chinese Academy of Mathematics and System

Science, P.R.China

Email: yanguiying@yahoo.com

Y. Zhang

Department of Computer Science

Georgia State University, Atlanta, USA

Famous Words:

Errors can not stand failure, but truth is not afraid of failure.

By R.Tagore, an Indian polymath, poet, musician and artist.



International J.Math. Combin. Vol.3(2019), 1-10
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Abstract: In this paper we consider two special ruled surfaces associated to a space curve α

with curvature k1 6= 0 and its involute curve β. We will define and work on D̃−scroll, which

is known as the rectifying developable surface, of any curve α and the involute D̃ − scroll

of the curve α. Also we have examined the normal vectors of these special ruled surfaces

D̃ − scroll and involute D̃ − scroll, associated to each other. Further, as an example, we

examined the positions of the D̃ − scroll and the involute D̃ − scroll relative to each other

of a cylindrical helix.

Key Words: Darboux vector, involute curve, ruled surface, helix.

AMS(2010): 53A04, 53A05.

§1. Introduction and Preliminaries

Deriving curves based on the other curves is a subject in geometry. Involute-evolute curves,

Bertrand curves are this kind of curves. By using the similar method we produce a new ruled

surface based on the other ruled surface. It is well-known that, if a curve is differentiable in an

open interval, at each point, a set of mutually orthogonal unit vectors can be constructed. And

these vectors are called Frenet frame or moving frame vectors. The rates of these frame vectors

along the curve define curvatures of the curves. The set, whose elements are frame vectors and

curvatures of a curve α, is called Frenet-Serret apparatus of the curves. Involvents play a part

in the construction of gears. The evolute is the locus of the centers of tangent circles of the

given planar curve, [12]. Let Frenet vector fields be V1, V2, V3 of the curve α and let the first and

second curvatures of the curve α be k1 and k2, respectively. The quantities {V1, V2, V3, k1, k2}
are collectively Frenet-Serret apparatus of the curves. Also the Darboux vector provides a

concise way of interpreting curvature k1 and torsion k2 geometrically; curvature is the measure

of the rotation of the Frenet frame about the binormal unit vector, and torsion is the measure

of the rotation of the Frenet frame about the tangent unit vector. For any unit speed curve α,

1Received January 15, 2019, Accepted August 16, 2019.
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in terms of the Frenet-Serret apparatus, the Darboux vector D can be expressed as, [10]

D(s) = k2(s)V1 (s) + k1(s)V3 (s) . (1.1)

Let a vector field be

D̃(s) =
k2

k1
(s)V1 (s) + V3 (s) (1.2)

along α(s) under the condition that k1(s) 6= 0 and it is called the modified Darboux vector

field of α [6]. We will work on the special ruled surface D̃ − scroll which is also the rectifying

developable surface, of the curves evolute α, and involute β. Further we will define and introduce

involute D̃−scroll of α. Also involute D̃−scroll of α will be examined in terms of the Frenet-

Serret apparatus of the curve α.

A ruled surface can always be described (at least locally) as the set of points swept by

a moving straight line. A ruled surface is one which can be generated by the motion of a

straight line ([2],[3]). Choosing a directrix on the surface, i.e. a smooth unit speed curve α (s)

orthogonal to the straight lines, and then choosing v(s) to be unit vectors along the curve in

the direction of the lines, the velocity vector αs and v satisfy

〈

α
′

, v
〉

= 0.

To illustrate the current situation, we bring here the famous example of L. K. Graves, [4],

so called the B − scroll. The special ruled surfaces B − scroll over null curves with null rulings

in 3-dimensional Lorentzian space form has been introduced by L. K. Graves. The Gauss map

of B-scrolls has been examined in [1]. The properties of the B − scroll are also examined and

n − space and in Lorentzian 3 − space and n − space with time-like directrix curve and null

rulings ([7], [8], [9]). Also involutive B − scroll (binormal scroll) of the curve α is defined as

in the following definition and examined in [13]. In [14] the Differential geometric elements of

the Involute D̃-scroll is examined too.

Definition 1.1 Let α and β be the curves . The tangent lines to a curve α generate a surface

called the tores of α. If the curve β which lies on the tores intersect the tangent lines orthogonally

is called an involute of α. If a curve β is an involute of α, then by definition α is an evolute of

β. Hence given α, its evolutes are the curves whose tangent lines intersect α orthogonally.

If the curve β (s) is the involute of α (s) , then we have that

β (s) = α (s) + (c − s)V1 (s) (1.3)

and d (α (s) , β (s)) = |c − s|, where ∀s ∈ I, c = constant, [5].

Theorem 1.1([5]) α, β ⊂ E
3, α and β are the arclengthed curves with the arcparametres.

Let β be the involute of the curve α. The quantities {V1, V2, V3, k1, k2} and {V ∗
1 , V ∗

2 , V ∗
3 , k∗

1 , k∗
2}

are collectively Frenet-Serret apparatus of the curve α and the involute β, respectively. The

Frenet-Serret apparatus of the involute β, in terms of the Frenet-Serret apparatus of the its
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evolute curve α are


















V ∗
1 = V2,

V ∗
2 = − k1√

k2
1
+k2

2

V1 + k2√
k2
1
+k2

2

V3,

V ∗
3 = k2√

k2
1
+k2

2

V1 + k1√
k2
1
+k2

2

V3

(1.4)

k∗
1 =

√

k2
1 + k2

2

(c − s)k1
, k∗

2 = −
k2
2

(

k1

k2

)
′

(c − s)k1 (k2
1 + k2

2)
· (1.5)

Corollary 1.1 If the second curvature k2 of the curve α (s) is a nonzero constant, i.e. k′
2 = 0,

then second curvature of involute β is

k∗
2 =

−k
′

1k2

(c − s) k1 (k2
1 + k2

2)
. (1.6)

Theorem 1.2 Let β be the involute of the curve α. Let the first and second curvatures of the

curve α be k1 and k2, respectively. The modified Darboux vector field of the involute β is

D̃∗ =
k2

√

k2
1 + k2

2

V1 −
k2
2

(

k1

k2

)
′

(k2
1 + k2

2)
3
2

V2 +
k1

√

k2
1 + k2

2

V3. (1.7)

Proof Since the definition of the modified Darboux vector field D̃∗ =
k∗

2

k∗

1

V ∗
1 + V ∗

3 and

Theorem 1.2 it is trivial. 2
Corollary 1.2 If the second curvature k2 of the curve α is constant but not equal to zero, then

k′
2 = 0. Hence, we have that the modified Darboux vector field of the involute β is

D̃∗ =
k2

√

k2
1 + k2

2

V1 −
k′
1k2

(k2
1 + k2

2)
3
2

V2 +
k1V3

√

k2
1 + k2

2

. (1.8)

Definition 1.2([13]) Let α and β be the arclengthed curves. Let β (s) be the involute of the

curve α (s) . The equation

ϕ∗ (s, v) = β (s) + vV ∗
3 (s) (1.9)

is the parametrization of the ruled surface which is called involutive V ∗
3 − scroll (binormal

scroll) of the curve β.

Definition 1.3 The ruled surface

ϕ (s, u) = α (s) + uD̃(s)

ϕ (s, u) = α (s) + u
k2

k1
(s)V1 (s) + uV3 (s)

is the parametrization of the ruled surface which is called rectifying developable surface of the
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curve α in [6]. Here, it is referred to as D̃−scroll cause of generator vector is modified Darboux

vector field D̃.

Definition 1.4 Let the curve β be involute of α, hence

ϕ∗(s, v) = β(s) + v

(

k∗
2

k∗
1

(s)V ∗
1 (s) + V ∗

3 (s)

)

(1.4)

is the parametrization of the D̃−scroll of involute β. Further this rectifying developable surface

is called involute D̃ − scroll of α.

We can write the parametrization of the D̃ − scroll of involute β, in terms of the Frenet-

Serret apparatus of the curve α, as in the following theorem. Hence it can be called involute

D̃ − scroll of the curve α.

§2. On the Involute D̃-scroll in Euclidean 3-Space

In this section to determine the positions of the D̃−scroll and involute D̃−scroll, we questioned

their normal vector vectors.

Theorem 2.1 If β is the involute curve of the curve α, then the parametrization of the involute

D̃ − scroll of the curve α in terms of the Frenet-Serret apparatus of the curve α is

ϕ∗ (s, v) = α +

(

λ +
vk2

√

k2
1 + k2

2

)

V1 −
k2
2

(

k1

k2

)
′

(k2
1 + k2

2)
3
2

V2 +
vk1

√

k2
1 + k2

2

V3. (2.1)

Proof Substituting equation (2.1) into equations (1.3) and (1.8), the proof is complete. 2
Corollary 2.1 If the second curvature k2 of the curve α is constant but not equal to zero, then

k′
2 = 0. Hence, the parametrization of involute D̃ − scroll is

ϕ∗ (s, v) = α +

(

c − s +
vk2

√

k2
1 + k2

2

)

V1 −
vk′

1k2

(k2
1 + k2

2)
3
2

V2 +
vk1

√

k2
1 + k2

2

V3. (2.2)

Theorem 2.2 The equation ϕ (s, u) = α (s)+uD̃ (s) is the parametrization of the ruled surfaces

which is called D̃ − scroll. Then the normal vector field N of ruled surface D̃ − scroll is

N = V2. (2.3)

Proof We can calculate that

D̃′ =

(

k2

k1

)′
V1.
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For the surface

ϕ (s, u) = α (s) + uD̃(s)

the vectors

ϕs =

(

1 + u

(

k2

k1

)′)

V1,

ϕu = D̃(s) =

(

k2

k1
(s)V1 (s) + V3 (s)

)

are not a system of orthogonal vectors. Hence we will use the Gram–Schmidt orthogonalization.

Let us take

e1 =
ϕs

‖ϕs‖
= ∓V1, e2 =

ϕu − 〈ϕs,ϕu〉
〈ϕs,ϕs〉ϕs

‖ϕu − 〈ϕs,ϕu〉
〈ϕs,ϕs〉ϕs‖

= V3

Since {e1, e2} is a system of orthogonal vectors, normal vector field N is

N = e1 ∧ e2 = V2. 2
Theorem 2.3 The normal vector field of involute D̃ − scroll of the curve αis

N∗ =
−k1V1 + k2V3

(k2
1 + k2

2)
1
2

(2.5)

Proof We have already get the equation of the involute D̃ − scroll of the curve α. Also

we know that the normal vector field N∗ of any D̃ − scroll is

N∗ = V ∗
2 .

So normal vector field N∗ of the involute D̃ − scroll is

N∗ =
−k1V1 + k2V3

(k2
1 + k2

2)
1
2

. 2
Lets examine the positions of the ruled surface D̃ − scroll and the involute D̃ − scroll.

Based on their normal vector fields.

Theorem 2.4 The ruled surface D̃ − scroll and the involute D̃ − scroll of the curve α are

perpendicular surfaces.

Proof Using the orthogonality condition; 〈N, N∗〉 = 0,

〈

V2,
−k1V1 + k2V3

(k2
1 + k2

2)
1
2

〉

= 0

it is easy to say that, the normal vector field N of D̃ − scroll of the curve α and the normal
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vector field N∗of involute D̃ − scroll of the curve α are perpendicular. then

N∗ ⊥ N. 2
Theorem 2.5 The tangent vector fields V1 (s) and V ∗

1 (s) are perpendicular, then the ruled

surface D̃ − scrolls along to the curves α and the β are perpendicular surfaces.

Helix is one of the fascinating curve in science and nature. A helix which lies on the cylinder

is called cylindrical helix or general helix. A curve α with k2(s) 6= 0 is called a cylindrical helix

if the tangent lines of make a constant angle with a fixed direction. If the curve is a general

helix, the ratio of the first curvature of the curve to the torsion of the curve must be constant.

Further we call a curve a circular helix if both k2(s) 6= 0 and k1(s) are constant.

Corollary 2.2 If the curve α is a cylindrical helix, then the involute β of the curve α is a

planar curve.

Proof It has been known that the curve α(s) is a cylindrical helix if and only if
(

k1

k2

)

= d

is constant, then
(

k1

k2

)
′

= 0, also k∗
2 = 0. 2

Lemma 2.1([6]) For a the ruled surface ϕ (s, u) = α (s) + uη (s) and its unit speed curve α,

with k1 6= 0, the following are equivalent:

(1) The ruled surface is a non-singular surface;

(2) α is a cylindrical helix;

(3) The ruled surface of α is a cylindrical surface.

Theorem 2.6 The involute D̃ − scroll of the curve of α is a cylindrical surface, if

(

k2
1 + k2

2

)
3
2

k2
2

(

k1

k2

)′
= constant. (2.5)

Proof Let α not be a cylindrical helix , k1 6= 0, involute β is a helix. If involute β is a

cylindrical helix, then
k∗

1

k∗

2

is constant. Hence

k∗
1

k∗
2

= −
(

k2
1 + k2

2

)
3
2

k2
2

(

k1

k2

)′

is constant. Where
k1

k2
6= constant. Cause of the Lemma 2.1; if − (k2

1+k2
2)

3
2

k2
2

(

k1
k2

)′ = constant, then

involute D̃ − scroll is a cylindrical surface. 2
Theorem 2.7 Let β be involute of α, if the curve α is a cylindrical helix, the angle between

the modified Darboux vector field of the involute− evolute pair (α, β) is a nonzero constant. It
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is the function of d = k1

k2
as in the following equality

〈

D̃∗, D̃
〉

=

√
d2 + 1

d
; d =

k1

k2
. (2.6)

Proof Since
〈

D̃∗, D̃
〉

=

√

k2
1 + k2

2

k1

it is trivial. 2
Theorem 2.8 Let the involute curve of a cylindrical helix α be β (s) = α (s) + (c − s)V1 (s) ,

then the involute D̃ − scroll of a cylindrical helix α with k1

k2
= d, is

ϕ∗ (s, v) = α +

(

c − s +
v√

d2 + 1

)

V1 +
vd√

d2 + 1
V3. (2.7)

Proof If α(s) is a cylindrical helix, then
(

k1

k2

)′
= 0. Using the equation D̃∗,

ϕ∗ (s, v) = α +

(

c − s +
vk2

√

k2
1 + k2

2

)

V1 +
vk1

√

k2
1 + k2

2

V3

is the involute D̃ − scroll of a cylindrical helix α. 2
Example 2.1 Lets examine the D̃ − scroll of the a cylindrical helix

α (s) = (a cosws, a sin ws, bws) , a > 0,

with curvatures k1 = w2a and k2 = w2b. Here k1

k2
= a

b = d and w2 = 1
a2+b2 we have the

parametrization of the D̃ − scroll of the cylindrical helix α

ϕ (s, u) = α (s) + uD̃(s)

ϕ (s, u) = α (s) + u
k2

k1
V1 (s) + uV3 (s)

ϕ (s, u) =





a cosws − sinws
(

ubw − abuw3
)

, a sinws + cosws
(

buw − abuw3
)

,

bws + u
(

b2

a w + a2w3
)





where

V3 =
(

abw3 sin ws,−abw3 cosws, a2w3
)

.

Example 2.2 The D̃ − scroll of the a cylindrical helix α,

α (s) =

(

cos
s√
2
, sin

s√
2
,

s√
2

)

, a = 1 > 0
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with curvatures k1 = k2 = 1
2 , we have the parametrization of the D̃−scroll along the cylindrical

helix α

ϕ (s, u) = α (s) + u
k2

k1
(s)V1 (s) + uV3 (s)

=

(

cos
s√
2
− u

2
√

2
sin

s√
2
, sin

s√
2

+
u

2
√

2
cos

s√
2
,

s√
2

+ u
3

2
√

2

)

.

FIGURE 1 D̃− scroll cylindrical helix

Example 2.3 The parametrization of the involute D̃ − scroll along the cylindrical helix

α (s) = (a cosws, a sin ws, bws) , a > 0,with curvatures k1 = w2a and k2 = w2b. Let find the

involute D̃ − scroll along the cylindrical helix α have parametrization as with k1

k2
= a

b = d, is

ϕ∗ (s, v) = α +

(

c − s +
v√

d2 + 1

)

V1 +
vd√

d2 + 1
V3

ϕ∗ (s, v) = α +

(

λ +
vk2

√

k2
1 + k2

2

)

V1 +
vk1

√

k2
1 + k2

2

V3

=









cosws − sinws 0

sin ws cosws 0

0 0 0

















a
[

λaw + vabw2
(

1 − aw2
)]

0









+









0

0

cbw + vw2
(

b2 + a3w2
)









.
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Corollary 2.3 The involute D̃ − scroll of the a cylindrical helix α can be produced by rigid

motion.

Example 2.4 The involute D̃ − scroll of the a cylindrical helix α,

α (s) =

(

cos
s√
2
, sin

s√
2
,

s√
2

)

, a = 1 > 0

with curvatures k1 = k2 = 1
2 , we have the parametrization of the involute D̃− scroll along the

cylindrical helix α,

ϕ∗ (s, v) =

(

cos
s√
2
−
[

c − s√
2

+
v

4

]

sin
s√
2
, sin

s√
2

+

[

c − s√
2

+
v

4

]

cos
s√
2
,

c√
2

+
3v

4

)

.

FIGURE 2 D̃− scroll cylindrical helix
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Abstract: In the present paper we define a simple undirected graph PG2(R) with all the

elements of a ring R as vertices, and two distinct vertices x, y are adjacent if and only if

either x · y = 0 or y ·x = 0 or x + y ∈ Z(R), the set of all zero divisors of R (including zero).

We have proved that PG2(Zn) is Eulerian for any odd positive integer n. Also we discuss

the Planarity and girth of PG2(R) and some cases which gives the degree of all vertices in

PG2(R), over a ring Zn, for n ≤ 100.
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§1. Introduction

The study of graph theory for a commutative ring began when Beck in [1] introduced the notion

of zero divisor of the graph. The graph Γ2(R) defined by R. Sen Gupta et al. [2] as: let R

be a ring with unity and let G = (V, E) be an undirected graph in which V = R - {0} and

for any a, b ∈ V , ab ∈ E if and only if a 6= b and either a · b = 0 or b · a = 0 or a + b is a

zero divisor (including zero). Another graph structure associated to a ring called prime graph

was introduced by Satyanarayana et al. [3]. Prime graph is defined as a graph whose vertices

are all elements of the ring and any two distinct vertices x, y ∈ R are adjacent if and only if

xRy = 0 or yRx = 0. This graph is denoted by PG(R). Pawar and Joshi in [5] gave a simple

formulation for finding the degrees of vertices of prime graph PG(R) as well as it’s complement

(PG(R))c. Also the number of triangles in PG(R) and (PG(R))c have been calculated using

simple combinatorial approach. We introduced the prime graph PG1(R) of a ring and discussed

all the results related to degree of vertices, Eulerianity, planarity and girth in [6]. Here, we

introduced a new type of graph called PG2(R) as a generalization of [2].

In second section of this paper we give definition and some examples of PG2(R). In next

section we try to find the degree of vertices in PG2(R) by distributing the vertex set V (G) into

1Received April 3, 2019, Accepted August 20, 2019.
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two sets viz. the set of all zero-divisors and the set of all units and discussed some more cases

which gives the degree of all vertices in PG2(Zn), for n ≤ 100. In last section, we discussed the

eulerianity, planarity and girth of PG2(R).

We refer to [3]-[4] for basic terminology and definitions.

§2. The Prime Graph PG2(R) of a Ring

Definition 2.1 The prime graph PG2(R) is a graph with all the elements of a ring R as

vertices, and any two distinct vertices x, y are adjacent if and only if x · y = 0 or y · x = 0 or

x + y ∈ Z(R), the set of all zero-divisors of R.

Example 2.2 Consider Zn, the ring of integers modulo n.

(1) Let R = Z2. The vertex set V (PG2(Z2)) = {0, 1}. Since 0R1 = 0, the edge set

E(PG2(Z2)) = {01} and the graph PG2(Z2) as shown in figure below.Æ
�� m0 1

FIGURE 1. PG2(Z2)

(2) Let R = Z3. The vertex set V (PG2(Z3)) = {0, 1, 2}. Since 0R1 = 0, 0R2 = 0, 1+2 = 0,

the edge set E(PG2(Z3)) = {01, 02, 12} and the graph PG2(Z3) as shown in figure below.

Æ
�� m1 2

Æ
��0

FIGURE 2. PG2(Z3)

(3) Let R = Z4. The vertex set V (PG2(Z4)) = {0, 1, 2, 3}, the edge set E(PG2(Z4)) =

{01, 02, 03, 13} and the graph PG2(Z4) as shown in figure below-

Æ
��
Æ
��

Æ
��
Æ
��

0 1

23

FIGURE 3. PG2(Z4)

(4) Let R = Z5. The vertex set V (PG2(Z5)) = {0, 1, 2, 3, 4}, the edge set E(PG2(Z5)) =
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{01, 02, 03, 04, 14, 23} and the graph PG2(Z5) as shown in figure below.�������� �������� Æ
��
0

1

2 3

4

FIGURE 4. PG2(Z5)

§3. Degree of Vertices in PG2(Zn)

In this section, we find the degree of every vertex of PG2(Zn), for n ≤ 100 by giving some

illustrative examples.

Theorem 3.1 PG2(Zn) is never complete graph unless n = 2 or 3.

Proof From Figures 1 and 2 we conclude the theorem. 2
Theorem 3.2 PG2(Z2r ), where r ∈ N − {1}, has two components consisting of zero divisors

and units of (Z2r ) respectively. The first is K2r−1 consists of all zero divisors and the other is

K2r−1+1 consists of all the units and the element zero.

Proof From Figure 3 we conclude the theorem. 2
Theorem 3.3 Let F be a finite field with |F | = pn, p ≥ 3 for some prime p and n ∈ N, then

PG2(F ) is a union of (pn − 1)/2 copies of K3 in which the element zero is adjacent to all the

vertices.

Proof From Figure 4 we conclude the theorem. 2
Example 3.4 Let R = Z6. The vertex set V (PG2(Z6)) = {0, 1, 2, 3, 4, 5}, the edge set

E(PG2(Z6)) = {01, 02, 03, 04, 05, 12, 13, 15, 23, 24, 34, 35, 45} and the graph PG2(Z6) as shown

in figure below.
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FIGURE 5. PG2(Z6)

In Z6, zero-divisors Z(Z6) = {0, 2, 3, 4}, units U(Z6) = {1, 5} and the value of φ(6) = 2.

deg(0) = n − 1 = 6 − 1 = 5

deg(2) = n − φ(n) = 6 − 2 = 4

deg(3) = 2q − 1 = 2 · 3 − 1 = 6 − 1 = 5

deg(4) = n − φ(n) = 6 − 2 = 4

and as n is even,

deg(1) = n − φ(n) = 6 − 2 = 4

deg(5) = n − φ(n) = 6 − 2 = 4.

From Example 3.4 we conclude the following three results.

Theorem 3.5 For any n ∈ N, the degree of vertex zero in PG2(Zn) is n − 1.

Theorem 3.6 Let u be the unit element in a ring Zn, for any n ∈ N, the degree of u in

PG2(Zn) is

deg(u) = n − φ(n), if n is even

= n − φ(n) + 1, if n is odd.

Theorem 3.7 Let z be a non-zero zero-divisor in a ring Zn, for any n ∈ N and n = p ·q, where

p and q are distinct primes. Then the degree of z in PG2(Zn) is

(a) If p = 2, then

deg(z) = 2q − 1, if z is multiple of q

= n − φ(n), otherwise.
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(b) If p 6= 2, then

deg(z) = n − φ(n) + (p − 2), if z is multiple of p

= 2q + (p − 3), if z is multiple of q.

Example 3.8 Let R = Z9. The vertex set V (PG2(Z9)) = {0, 1, 2, 3, 4, 5, 6, 7, 8}, the edge

set E(PG2(Z9)) = {01, 02, 03, 04, 05, 06, 07, 08, 36, 12, 15, 18, 42, 45, 48, 72, 75, 78} and the graph

PG2(Z9) as shown in figure below.

Æ
��m Æ
��
Æ
�� Æ
��Æ
�� Æ
��Æ
�� Æ
��

0

1 2

3 6

4 5

7 8

FIGURE 6. PG2(Z9)

In Z9, zero-divisors Z(Z9) = {0, 3, 6}, units U(Z9) = {1, 2, 4, 5, 7, 8} and the value of

φ(9) = 6 and as n is odd,

deg(3, 6) = 9 − φ(9) − 1 = 9 − 6 − 1 = 2

deg(1, 2, 4, 5, 7, 8) = 9 − φ(9) + 1 = 9 − 6 + 1 = 4.

From Example 3.8 we conclude the following three results.

Theorem 3.9 Let n = pr, where p is an odd prime and r ∈ N−{1} then PG2(Zn) has (p+1)/2

components, one is Kpr−1 consisting of the zero divisors and (p−1)/2 copies of Kpr−1,pr−1

⋃{0}
for the units and the element zero.

Theorem 3.10 Let z be a non-zero zero-divisor in a ring Zn, for any n ∈ N such that z2 ≡
0 (mod n). Then the degree of z in PG2(Zn) is

deg(z) = n − φ(n) − 1.

Theorem 3.11 Let u be the unit element and z be a non-zero zero-divisor in a ring Zp2 , for
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any prime p. Then from the Theorem 3.6 the degree of u is

deg(u) = n − φ(n), if n is even

= n − φ(n) + 1, if n is odd

and from the Theorem 3.10 the degree of z is

deg(z) = n − φ(n) − 1.

Example 3.12 Let R = Z2np, for any n ∈ N, where p is prime,

(a) If p = 2, then

(1) If n = 1, R = Z4, the non-zero zero-divisor is 2. Hence

deg(2) = 4 − φ(4) − 1 = 4 − 2 − 1 = 1.

(2) If n = 2, R = Z8, the set of non-zero zero-divisors, Z(Z8) − {0} = {2, 4, 6}. So

deg(2, 4, 6) = 8 − φ(8) − 1 = 8 − 4 − 1 = 3.

(3) If n = 3, R = Z16, the set of non-zero zero-divisors, Z(Z16)−{0} = {2, 4, 6, 8, 10, 12, 14}.
Therefore

deg(2, 4, 6, 8, 10, 12, 14) = 16 − φ(16) − 1 = 16 − 8 − 1 = 7.

Similarly, we find the degree of all non-zero zero-divisors in R = Z32, Z64 and so on. In

general, we conclude that if p = 2, then

deg(z) = n − φ(n) − 1.

(b) If p 6= 2, then

(1) If n = 1, R = Z2p where p = 3, 5, 7, · · · then by Theorem 3.7

deg(z) = n − φ(n) + (p − 2), if z is multiple of p

= 2q + (p − 3), if z is multiple of q.

The results are same for R = Z10, Z14 and so on.

(2) If n = 2, R = Z4p, where p = 3, 5, 7, · · · . Let p = 3, R = Z12, the set of non-zero

zero-divisors, Z(Z12) − {0} = {2, 4, 6, 8, 10, 3, 9} and 62 ≡ 0(mod 12). Hence

deg(6) = 12 − φ(12) − 1 = 12 − 4 − 1 = 7

deg(3, 9) = 12 − 4 − 1 = 7, if z is multiple of p
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deg(2) = 12 − 4 − 1 = 7, if z is multiple of 21

deg(8) = 12 − 4 − 1 = 7, if z is multiple of 21

deg(10) = 12 − 4 − 1 = 7, if z is multiple of 21

deg(4) = 12 − 4 − 1 + 2 = 9, if z is multiple of 22.

The results are same for R = Z20, Z28 and so on.

(3) If n = 3, R = Z8p, where p = 3, 5, 7, · · · . Let p = 3, R = Z24, the set of non-zero

zero-divisor, Z(Z24) − {0} = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 3, 9, 15, 21}. Therefore

deg(6, 18) = n − φ(n) − 1, if z is multiple of 2p

deg(12) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

deg(3, 9, 15, 21) = n − φ(n) + (p − 2), if z is multiple of p

deg(2, 4, 10, 14, 16, 20, 22) = n − φ(n) − 1, if z is multiple of 21

deg(8) = n − φ(n) − 1 + 2n−1, if z is multiple of 2n.

The results are same for R = Z40, Z56 and so on. In general, we conclude that if p 6= 2,

then

deg(z) = n − φ(n) + (p − 2), if z is multiple of p

= n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of 2p

= n − φ(n) − 1, if z is multiple of 2, 22, ., 2n−1

= n − φ(n) − 1 + 2n−1, if z is multiple of 2n.

From Example 3.12 we conclude the following theorem.

Theorem 3.13 Let z be a non-zero zero-divisor in a ring Z2np, for any n ∈ N, where p is

prime

(a) If p = 2, then

deg(z) = n − φ(n) − 1.

(b) If p 6= 2, then

deg(z) = n − φ(n) + (p − 2), if z is multiple of p

= n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of 2p

= n − φ(n) − 1, if z is multiple of 2, 22, · · · , 2n−1

= n − φ(n) − 1 + 2n−1, if z is multiple of 2n.
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Example 3.14 Let R = Z2np2 , for any n ∈ N, where p is odd prime.

(a) If n = 1, then R = Z2p2 , where p = 3, 5, 7, · · · .

(1) Let p = 3, R = Z18 and 62, 122 ≡ 0(mod 18). Hence

deg(6, 12) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

deg(3, 15) = n − φ(n) − 1, if z is multiple of p

deg(9) = n − φ(n) − 1 + p(p − 1), if z is multiple of p2

deg(2, 4, 8, 10, 14, 16) = n − φ(n), if z is multiple of 21.

(2) Let p = 5, R = Z50 and 102, 202, 302, 402 ≡ 0(mod 50). So

deg(10, 20, 30, 40) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

deg(5, 15, 35, 45) = n − φ(n) − 1, if z is multiple of p

deg(25) = n − φ(n) − 1 + p(p − 1), if z is multiple of p2

deg(2, 4, 6, · · · , 48) = n − φ(n), if z is multiple of 21.

The results are same for R = Z98, Z242 and so on. In general, we conclude that if n = 1,

then

deg(z) = n − φ(n) − 1 + p(p − 1), if z is multiple of p2

= n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p

= n − φ(n), if z is multiple of 2.

(b) If n 6= 1,

(1) If n = 2, R = Z4p2 , where p = 3, 5, 7, · · · , then R = Z36, Z100 and so on. If n = 3,

R = Z8p2 , where p = 3, 5, 7, · · · , then R = Z72, Z200 and so on. Therefore, we conclude the

result as

deg(z) = n − φ(n) − 1 + p(p − 1), if z is multiple of p2

= n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p

= n − φ(n) − 1, if z is multiple of 2, 22, · · · , 2n−1

= n − φ(n) − 1 + 2n−1, if z is multiple of 2n.

From Example 3.14 we conclude the following theorem.

Theorem 3.15 Let z be a non-zero zero-divisor in a ring Z2np2 , for any n ∈ N, where p is odd

prime



On Prime Graph PG2(R) of a Ring 19

(a) If n = 1, then

deg(z) = n − φ(n) − 1 + p(p − 1), if z is multiple of p2

= n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p

= n − φ(n), if z is multiple of 2.

(b) If n 6= 1, then

deg(z) = n − φ(n) − 1 + p(p − 1), if z is multiple of p2

= n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p

= n − φ(n) − 1, if z is multiple of 2, 22, · · · , 2n−1

= n − φ(n) − 1 + 2n−1, if z is multiple of 2n.

Example 3.16 Let R = Z2npq, for any n ∈ N, where p and q are distinct odd primes and p < q.

Then

(a) Let n = 1,

(1) R = Z2pq, where p = 3 and q = 5, 7, 11, · · · . We find the degree of all non-zero

zero-divisors in R = Z30, Z42, Z66, Z78 and so on.

(2) R = Z2pq, where p = 5 and q = 7, 11, 13, · · · . We find the degree of all non-zero

zero-divisors in R = Z70, Z110 and so on.

(b) Let n 6= 1.

(1) If n = 2, R = Z4pq , where p = 3 and q = 5, 7, 11, · · · then we find the degree of all

non-zero zero-divisors in R = Z60, Z84 and so on.

(2) If n = 3, R = Z8pq , where p = 3 and q = 5, 7, 11, · · · then we find the degree of all

non-zero zero-divisors in R = Z120, Z168 and so on.

From Example 3.16 and previous discussion we conclude results following.

Theorem 3.17 Let z be a non-zero zero-divisor in a ring Z2npq, for any n ∈ N, where p and

q are distinct odd primes and p < q.

(a) If n = 1, then

deg(z) = n − φ(n), if z is multiple of 2

= n − φ(n) + p − 2, if z is multiple of p or 2p

= n − φ(n) + q − 2, if z is multiple of q or 2q

= 2pq − 1, if z is multiple of pq.
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(b) If n 6= 1, then

deg(z) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) + pq − (p + q), if z is multiple of pq

= n − φ(n) + p − 2, if z is multiple of p

= n − φ(n) + q − 2, if z is multiple of q

= n − φ(n) − 1 + 2n−1, if z is multiple of 2n

= n − φ(n) − 1 + 2n, if z is multiple of 2np

= n − φ(n)/2 − 1, if z is multiple of 2nq

= n − φ(n) − 1, otherwise.

We are also discussed some more cases in continuation to Theorem 3.5− Theorem 3.17

which calculates the degree of vertices in PG2(Zn), for n ≤ 100.

Case 1. (a) Let z be a non-zero zero-divisor in a ring Zn, n = 3pq where p = 3, q =

5, 7, 11, 13, · · · . Then

deg(z) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) + q − 2, if z is multiple of q

= n − φ(n) + 2p − 1, if z is multiple of 3p

= n − φ(n) − 1, otherwise.

(b) In this case when p = q = 3, then deg(z) = n − φ(n) − 1.

Case 2. Let z be a non-zero zero-divisor in a ring Zn, n = 3p2, p = 3, 5, 7, · · · . Then

deg(z) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p and 3p

= n − φ(n) + 1, if z is multiple of 3

= n − φ(n) − 1 + p(p − 1), if z is multiple of p2.

Case 3. Let z be a non-zero zero-divisor in a ring Zn, n = 2p3, p = 3, 5, 7, · · · , p > 2. Then

deg(z) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p and p2

= n − φ(n), if z is multiple of 2

= n − φ(n) − p, if z is multiple of 2p

= n − φ(n) − p + 1, if z is multiple of 2p2

= n − φ(n) − 1 + 2p2, if z is multiple of p3.
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Case 4. Let z be a non-zero zero-divisor in a ring Zn, n = p4, p = 2, 3, 5, 7, · · · . Then

deg(z) = n − φ(n) − 1.

Case 5. Let z be a non-zero zero-divisor in a ring Zn, n = 2p2q, p = 3, q = 5, 7, 11, · · · . Then

deg(z) = n − φ(n) − 1, if z2 ≡ 0 (mod n)

= n − φ(n) − 1, if z is multiple of p, 2p and pq

= n − φ(n) + 2p − 1, if z is multiple of 2p2 and p2

= n − φ(n) + 2q + 1, if z is multiple of 2q

= n − φ(n) + q − 2, if z is multiple of q

= n − 1, if z is multiple of p2q

= n − φ(n), if z is multiple of 2.

§4. Eulerianity, Planarity and Girth of PG2(Zn)

In this section, we proved that PG2(Zn) is Eulerian for any odd positive integer n and is planar

if and only if n = 4, 6 or n is a prime number. Also, we found that the girth of PG2(Zn) is 3,

for n 6= 2.

Theorem 4.1 PG2(Zn) is Eulerian, when n is odd positive integer.

Proof Let n be even, so from Theorem 3.5, we have that deg(0) = n − 1, which is an odd

number, so not Eulerian. Again if n is odd, then by Theorems 3.6 − 3.11 and from the above

discussion, degree of every vertex in PG2(Zn) is an even number. Hence, PG2(Zn) is Eulerian,

when n is odd positive integer. 2
Theorem 4.2 PG2(Zn) is planar if and only if n = 4, 6 or n is a prime.

Proof We discuss different cases for planarity of PG2(Zn).

Case 1. For n = 2, PG2(Z2) is a complete graph K2. Hence it is a planar graph.

Case 2. For n = 3, PG2(Z3) is complete graph K3. Therefore it is a planar graph.

Case 3. If n is prime and n > 3, PG2(Zn) is a union of copies of K3 in which again zero is a

common vertex. So, the graph is planar when n is prime.

Case 4. If n = 4, PG2(Z4) has two components consisting of zero divisors and units of Z
2
2.

The first is K2 and the other is K3 in which zero is again a common vertex, hence planar.

Case 5. If n = 6, PG2(Z6) is union of eight copies of K3 hence planar.

Case 6. If n = 8, the graph PG2(Z8) contains a subgraph K5. So, it cannot be a planar

graph.
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Case 7. Let n = 2m, m > 2 contains K5 and hence cannot be planar.

Case 8. Let p ≥ 3, PG2(Z
m
p ), where m > 1 contains K3,3, hence it cannot be planar.

Case 9. Let n be even. If n = 10, then the subgraph induced by the vertices {0, 2, 4, 6, 8}
forms K5 and for n = 12, the subgraph induced by the vertices {0, 2, 4, 6, 8} forms again K5.

So, the subgraph of PG2(Zn) where n is even forms K5 and hence the graph is not planar.

Case 10. Let n be odd. If n = 15 then the subgraph induced by {0, 3, 6, 9, 12} forms K5

and for n = 21 the subgraph induced by {0, 3, 6, 9, 12} forms again K5. So, the subgraph of

PG2(Zn), where n is odd forms a subgraph K5 and hence the graph is nonplanar. Hence the

result. 2
Theorem 4.3 The girth, gr(PG2(Zn)) is 3, for n ≥ 3.

Proof We know that PG2(Z2) is a complete graph K2, hence girth of PG2(Z2) is ∞. Now,

let n ≥ 3, then in PG2(Zn) always 3-cycle exist and hence gr((PG2(Zn)) = 3, for n ≥ 3. 2
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§1. Introduction

The concept of non-holonomic space which is more general than a Riemannian space and

generalized the parallelism of Levi-Civita and geodesic curves in that space is introduced by G.

Vranceanu [22]. A non-holonomic region as a space with a non-holonomic dynamical system

was considered by Z. Horak [13] with another aspect. The non-holonomic space in a space of

line elements with an affine connection was first conferred by T. Hosokawa [9]. The theory of

non-holonomic system in Finsler space was introduced by Y. Katsurada [15].

The concept of non-holonomic frame is a deformation arising from the consideration of a

charged particle moving in external electromagnetic field in the studied of a unified formalism

that uses a non-holonomic frame on space-time [11, 12]. Further, the gauge transformation is

studied as a non-holonomic frame on the tangent bundle of a four-dimensional base manifold

[3, 4]. The geometry which arises from these consideration gives a more unified approach to

gravitation and gauge symmetries. In these papers, the common Finsler idea used by the

physicist is the existence of non-holonomic frame on the vertical subbundle of a base manifold

M . In [1, 2], P. L. Antonelli and I. Bucataru, determined such a non-holonomic frame for

the two important classes of Finsler spaces that are dual in the sense of Randers and Kropina

spaces. Since Randers and Kropina spaces are the Finsler space with (α, β)-metric, is a member

of the bigger class of Finsler space. It appears a natural question that how many Finsler spaces

with (α, β) metrics have such a non-holonomic frame [7]? Yes, there is a number of Finsler

space with (α, β) metrics. Some auther’s which discusses the non-holonomic frame for (α, β)

1Received January 30, 2019, Accepted August 21, 2019.
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metrics are [8, 20, 21]. In the present work, we determine the non-holonomic Finsler frame for

the exponential (α, β) metric and Randers change of Matsumoto metric.

§2. Preliminaries

The physicists R. G. Beil in [3, 4] and R. R. Holland in [11, 12] are using non-holonomic Finsler

frames to develop unified field theories. For a Finsler space with (α, β)-metric a non-holonomic

frame is a product of two non-holonomic frames, each of these being determined by Finsler

deformation.

Let U be an open set of TM and

Vi : u ∈ U 7→ Vi(u) ∈ VuTM, i ∈ {1, 2, · · · , n}

be a vertical frame over U . If Vi(u) = V j
i (u) ∂

∂yj |u are the entries of a invertible matrix for all

u ∈ U . Denote by Ṽ j
i (u) the inverse of this matrix, i.e.,

V i
j Ṽ j

k = δi
k, Ṽ i

j V j
k = δi

k.

We call V i
j a non-holonomic Finsler frame.

An important class of Finsler space with (α, β)-metrics are given in [18]. The first Finsler

space with (α, β)-metric was introduced in the forties by G. Randers and known as Randers

space [19].

Definition 2.1 A Finsler space Fn = (M, F (x, y)) is called with (α, β)-metric if there exists a

two homogenius function L of two variables such that the Finsler metric F : TM → ℜ is given

by

F 2(x, y) = L(α(x, y), β(x, y))

where α(x, y) =
√

aijyiyj, where aij is a Riemannian metric on M and β(x, y) = bi(x)yi, is a

1-form on M .

Example 2.2 If L(α, β) = (α + β)2, then the Finsler space with metric

F (x, y) =
√

aijyiyj + bi(x)yi

is called a Randers space.

Example 2.3 If L(α, β) = α4

β2 , then the Finsler space with metric

F (x, y) =
aijy

iyj

|bi(x)yi|

is called a Kropina space.

The Randers space and Kropina space play an important role in Finsler geometry and are

dual in sense of [10]. For a Finsler space with (α, β)-metric F 2(x, y) = L(α(x, y), β(x, y)), the
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Finsler invariants are [17]







ρ = 1
2α

∂L
∂α , ρ0 = 1

2
∂2L
∂β2 , ρ−1 = 1

2α
∂2L

∂α∂β ,

ρ−2 = 1
2α2

(

∂2L
∂α2 − 1

α
∂L
∂α

)

,
(1)

For a Finsler space with (α, β)-metric, we have

ρ−1β + ρ−2α
2 = 0. (2)

With respect to above notation (i.e. Finsler invariants), the metric tensor gij of a Finsler space

with (α, β)-metric is given by [18]

gij = ρaij(x) + ρ0bi(x)bj(x) + ρ−1(bi(x)yj + bj(x)yi) + ρ−2yiyj. (3)

We can be arranged the metric tensor gij of Finsler space into the form

gij = ρaij(x) + 1
ρ−2

(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj)

+ 1
ρ−2

(ρ0ρ−2 − ρ2
−1)bibj.

(4)

From the equation (4), we can see that the metric tensor gij is the result of the two

deformations







aij 7→ hij = ρaij(x) + 1
ρ−2

(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj),

hij 7→ gij = hij + 1
ρ−2

(ρ0ρ−2 − ρ2
−1)bibj.

(5)

The non-holonomic Finsler frame corresponding to the first deformation of equation (5) is

according to Theorem 7.9.1 in reference [7], is given by

X i
j =

√
ρ δi

j −
1

A2

(

√
ρ ±

√

ρ +
A2

ρ−2

)

(ρ−1b
i + ρ−2y

i)(ρ−1bj + ρ−2yj), (6)

where A2 = aij(ρ−1b
i + ρ−2y

i)(ρ−1bj + ρ−2yj) = ρ2
−1b

2 + βρ−1ρ−2. The metric tensor aij and

hij are related by:

hij = Xk
i X l

jakl. (7)

Similarly, a non-holonomic frame Finsler frame corresponding to the second deformation

of equation (5) is according to Theorem 7.9.1 in reference [7] given by

Y i
j = δi

j −
1

B2

(

1 ±
√

1 +
ρ−2B2

ρ0ρ−2 − ρ2
−1

)

bibj, (8)

where B2 = hijb
ibj = ρb2 + 1

ρ−2
(ρ−1b

2 + ρ−2β
2. The metric temsor hij and gij are related by

gmn = Y i
mY j

n hij . (9)
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From (7) and (9), we have V k
m = Xk

i Y i
m, with Xk

i and Y i
m are given by (6) and (8), are the

non-holonomic Finsler frame of the Finsler space with (α, β) metric.

§3. Non-Holonomic Frame for Finsler Space with F = αe
β
α - Metric

We consider a (α, β)- metric given as

F = αe
β
α , (10)

in a Finsler space. For the fundamental function L = α2e
2β
α , the Finsler invariants (1) are given

by:






ρ = (α−β)
α e

2β
α , ρ0 = 2e

2β
α , ρ−1 = (α−2β)

α2 e
2β
α ,

ρ−2 = β(2β−α)
α4 e

2β
α ,

(11)

and










A2 = (α−2β)(α3b2−2α2βb2+2β3−α2β2)
α6 e

4β
α ,

B2 = e
2β
α

[

b2(α−β)
α − (α−2β)

β

(

b2 − β
α2

)2
]

.
(12)

The Finsler invariants satisfies the relation ρ−1β + ρ−2α
2 = 0. Then by using equation (6)

with respect to first deformation of (5), we get

X i
j =

√

(α − β)e
2β
α

α
δi
j −

α2

(α3b2 − 2α2βb2 + 2β3 − α2β2)

×





√

(α − β)e
2β
α

α
±

√

e
2β
α (α2β−αβ2−α3b2 + 2α2βb2− 2β3 + α2β2)

α2β





×
(

bi − β

α2
yi

)(

bj −
β

α2
yj

)

, (13)

and also using equation (6) with respect to second deformation of (5), we get

Y i
j = δi

j − α4β

e
2β
α {(α4β−α3β2)b2−(α−2β)(α2b2−β)2}

×
[

1 ±
√

1 + α4β−α3β2−(α−2β)(α2b2−β)2

α4

]

bibj .
(14)

By using X i
k and Y k

j , we obtain the non-holonomic Finsler frame as follows,

V i
j = X i

kY k
j =

√

(α − β)e
2β
α

α
δi
j − [1 ± D]Ebibjδ

i
k

√

(α − β)e
2β
α

α

− α2C[1 − E(1 ± D)bibj ]

(α3b2 − 2α2βb2 + 2β3 − α2β2)

(

bi− β

α2
yi

)(

bj−
β

α2
yj

)

, (15)

where

C =

√

(α − β)e
2β
α

α
±

√

e
2β
α (α2β − αβ2 − α3b2 + 2α2βb2 − 2β3 + α2β2)

α2β
,
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D = 1 ±
√

1 +
α4β − α3β2 − (α − 2β)(α2b2 − β)2

α4
,

E =
α4β

e
2β
α {(α4β − α3β2)b2 − (α − 2β)(α2b2 − β)2}

.

Theorem 3.1 Consider a Finsler space Fn = (M, F ) with L = (αe
α
β )2, for which the condition

(2) is true. Then V i
j = X i

kY k
j is a non-holonomic Finsler frame given in equation (15), where

X i
k and Y k

j are given by (13) and (14) respectively.

§4. Non-Holonomic Frame for Finsler Space with Randers Change of

Matsumoto Metric

We consider a Randers change of Matsumoto metric as given by

F =
α2

α + β
+ β, (16)

in a Finsler space. For the fundamental function L =
(

α2

α+β + β
)2

, the Finsler invariants (1)

are given by










































ρ = (α3−α2β−3αβ2+2β3)
(α−β)3 ,

ρ0 = 6α4+β4−6α3β+6α2β2−4αβ3

(α−β)4 ,

ρ−1 = (2α3−8α2β+3αβ2)
(α−β)4 ,

ρ−2 = 8α2β2−2α3β−3αβ3)
α2(α−β)4 ,

(17)

and














A2 = b2S(α,β)−T (α,β)
(α−β)8 ,

B2 = {b2(2α4−8α3β+3α2β2)+(8αβ3−2α2β2−3β4)}2

α2(α−β)8

+ b2U(α,β)
(α−β)3 ,

(18)

where

S(α, β) = 4α6 − 32α5β + 76α4β2 − 48α3β3 + 9α2β4,

T (α, β) = 4α4β2 −−32α3β3 + 76α2β4 − 48αβ5 + 9β6,

U(α, β) = (α3 − 2α2β − αβ2 + 2αβ − 4β2 − 2β3).

The Finsler invariants satisfies the relation ρ−1β + ρ−2α
2 = 0. Then by using equation (6)

with respect to first deformation of (5), we get

X i
j =

√

(α3−α2β−3αβ2+2β3)
(α−β)3 δi

j − (2α8−8α5β+3α4β)2

b2S(α,β)−T (α,β)

×
[√

(α3−α2β−3αβ2+2β3)
(α−β)3 ±

√

(α3−α2β−3αβ2+2β3)
(α−β)3 + α(b2S(α,β)−T (α,β))

β(α−β)4(8αβ−2α2−3β2)

]

×
(

bi − β
α2 yi

)(

bj − β
α2 yj

)

,

(19)
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and also using equation (6) with respect to second deformation of (5), we get

Y i
j = δi

j − α2(α−β)8

V ×
[

1 ±
√

1 + V β
α2W

]

bibj . (20)

Where

V = α2(α − β)5b2U(α, β) + {b2(2α4 − 8α3β + 3α2β2)

+ (8αβ3 − 2α2β2 − 3β4)}2,

W = (2α6 − 8α5β + 6α4β + 3α4β2 − 6α3β2 + 6α2β4 − 4αβ5 + β5).

By using X i
k and Y k

j , we obtain the non-holonomic Finsler frame as follows.

Theorem 4.1 Consider a Finsler space Fn = (M, F ) with L = ( α2

α+β + β)2 for which the

condition (2) is true. Then V i
j = X i

kY k
j is a non-holonomic Finsler frame, where X i

k and Y k
j

are given by (19) and (20) respectively.
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Abstract: In this paper, we have defined some new notions of R1-separation in fuzzy

bitopological spaces using quasi-coincidence sense. We have discuss the relations among our

and other such notions. We have observed that all these notions satisfy good extension

property. We have shown that these notions are preserved under the one-one, onto and FP-

continuous mapping. Moreover, we have obtained some other properties of this new concept.

Initial and final topologies are studied here.
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§1. Introduction

The concept of R1-property in classical topology first defined by Yang [23]. In fuzzy topology,

the concept of fuzzy R1 spaces was first introduced by Hutton and Relly [12] in 1980. Since then

much attention has been paid to define such notion by many fuzzy topologist e.g., by Ali [4],

Hossain and Ali [11], Caldas [9], Roy and Mukherjee [21], Keskin and Nori [16], Srivastava and

Ali [3] and Petricevic [20]. In 2012, Ali And Azom [3] introduced some other definitions of fuzzy

R1-axioms in fuzzy topological spaces. In 1990, Kandil [13] introduced the concept of fuzzy

bitopological spaces and in 1991, Kandil [13] first defined R1-property in fuzzy bitopological

spaces. After then Abu Safiya [1, 2], Kandil [14] and Nouh [19] defined several type of R1-

properties.

In this paper, we introduce four notions of R1–property in fuzzy bitopological spaces by

using quasi-coincident sense. We show that all these notions satisfy good extension property.

Also hereditary is satisfied by these concepts. We have observed that all these concepts are

preserved under one-one, onto and continuous mappings. Finally, we have showed that initial

and final fuzzy bitopological spaces satisfy R1-property.

1Received February 7, 2019, Accepted August 24, 2019.
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§2. Preliminaries

In this section, we recall some known definitions and results useful in the sequel. For details,

we refer to [1]–[10].

We give some elementary concepts and results which will be used in the sequel. Throughout

this paper, X will be a nonempty set, I = [0, 1], I0 = (0, 1], I1 = [0, 1) and FP (resp P ) stands

for fuzzy pairwise (resp pairwise). The class of all fuzzy sets on a universe X will be denoted

by IX and fuzzy sets on X will be denoted by u, v, w, etc. Crisp subset of X will be denoted by

capital letters U, V, W etc. In this paper (X, t) and (X, s, t) will be denoted fuzzy topological

space and fuzzy bitopological space respectively. xrqu denotes xr is quasi-coincident with u

and xr q̄u denotes that xr is not quasi-coincident with u throughout this paper.

We shall follow [5] for the definitions of fuzzy singleton, quasi-coincident, fuzzy topology,

image of fuzzy set, the inverse images of a fuzzy set, fuzzy continuous mapping good extension

property.

Definition 2.1([13]) A fuzzy singleton xr is said to be quasi-coincident with a fuzzy set µ,

denoted by xrqµ iff r + µ(x) > 1. If xr is not quasi-coincident with µ, we write xr q̄µ.

Definition 2.2([22]) Let f be a real valued function on a topological space. If {x : f(x) > α}
is open for every real α ∈ I1, then f is called lower semi continuous function.

C. L.Chang [10] have defined fuzzy topology and fuzzy continuous mapping.

Definition 2.3([10]) A function f from a fuzzy topological space (X, t) into a fuzzy topological

space (Y, s) is called fuzzy continuous if and only if for every u ∈ s, f−1(u) ∈ t.

Definition 2.4([11]) A fuzzy topological space (X, t) is called

(a) FR1(i) iff for each pair of fuzzy singletons xr, ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ t with γ(x) 6= γ(y), then ∃µ, λ ∈ t such that xrqµ, ysqλ and µq̄λ;

(b) FR1(ii) iff for each pair of fuzzy singletons xr, ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ t with γ(x) 6= γ(y), then ∃µ, λ ∈ t such that xr ∈ µ, ys ∈ λ and µ∩λ = 0;

(c) FR1(iii) iff for each pair of fuzzy singletons xr, ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ t with γ(x) 6= γ(y), then ∃µ, λ ∈ t such that xr ∈ µ, ys ∈ λ and µ ⊆ λc;

(d) FR1(iv) iff for each pair of fuzzy singletons xr, ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ t with γ(x) 6= γ(y), then ∃µ, λ ∈ t such that xrqµ, ysqλ and µ ∩ λ = 0.

Definition 2.5([15]) Let X be any non empty set and S and T be any two general topologies

on X then the triple (X, S, T ) is called a bitopological space.

Definition 2.6([13]) A fuzzy bitopological space (fbts, in short) is a triple (X, s, t) where s and

t are arbitrary fuzzy topologies on X.

In previous works we have introduced the following definitions and discussed many related

concepts among them.
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Definition 2.7([13]) A fuzzy bitopological space (X, t1, t2) is called FPR0 if and only if

xtq̄ti.cl(yr) implies ysq̄tj .cl(xt) (i, j ∈ {1, 2}, i 6= j).

Definition 2.8([2]) A fbts (X, t1, t2) is said to be PFR0 if and only if for any distinct fuzzy

points p and q in X, whenever there exists µ ∈ ti such that p ∈ µ and q ∩ µ = 0, then there

exists γ ∈ tj such that p ∩ γ = 0 and q ∈ γ (i, j = 1, 2, i 6= j).

Kelly defines bitopological space in his classical paper [15] as a bitopological space (X, S, T )

is called pairwise-R0 (PR0, in short) if for all x, y ∈ X, x 6= y, whenever ∃U ∈ S with x ∈
U, y 6∈ U , then ∃V ∈ T such that y ∈ V, x 6∈ V .

In previous works [6], [7], we introduced the following definitions and discussed many

related concepts among them.

Definition 2.9([6]) A fbts (X, s, t) is called FPT0-space iff for every pair of fuzzy singletons

xp, yr in X with x 6= y, there exist fuzzy set µ ∈ s ∪ t such that (xpqµ, yr ∩ µ = 0) or

(yrqµ, xp ∩ µ = 0).

Definition 2.10([7]) A fbts (X, s, t) is called FPT2 iff for every pair of fuzzy singletons xr, ys

in X with x 6= y, there exist fuzzy sets µ ∈ s, λ ∈ t such that xrqµ, ysqλ and µ ∩ λ = 0.

§3. Main Results with Proofs

Definition 3.1 A fbts (X, s, t) is called

(a) FPR1(i) iff for each pair of fuzzy singletons xr, ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ s ∪ t with γ(x) 6= γ(y), then ∃µ ∈ s, λ ∈ t such that xrqµ, ysqλ and µq̄λ;

(b) FPR1(ii) iff for each pair of fuzzy singletons xr , ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ s ∪ t with γ(x) 6= γ(y), then ∃µ ∈ s, λ ∈ t such that xr ∈ µ, ys ∈ λ and

µ ∩ λ = 0;

(c) FPR1(iii) iff for each pair of fuzzy singletons xr , ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ s ∪ t with γ(x) 6= γ(y), then ∃µ ∈ s, λ ∈ t such that xr ∈ µ, ys ∈ λ and

µ ⊆ λc;

(d) FPR1(iv) iff for each pair of fuzzy singletons xr, ys in X with x 6= y, whenever there

exists a fuzzy set γ ∈ s ∪ t with γ(x) 6= γ(y), then ∃µ ∈ s, λ ∈ t such that xrqµ, ysqλ and

µ ∩ λ = 0.

In general it is true that union of fuzzy topologies is not a topology. But if union of two

fuzzy topologies is again a topology then we have the following theorem.

Theorem 3.1 Let (X, s, t) be a fuzzy bitopological space and (X, s ∪ t) be a fuzzy topological

space, then

(X, s, t) is FPR1(j) ⇒ (X, s ∪ t) is FR1(j),

where j = i, ii, iii, iv.
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Proof First suppose that (X, s, t) is FPR1(i). We have to prove that (X, s∪ t) is FR1(i).

Let xr, ys be two distinct fuzzy singletons in X and γ ∈ s∪ t with γ(x) 6= γ(y). Since (X, s, t)

is FPR1(i), then there exist µ ∈ s, λ ∈ t such that

xrqµ, ysqλ and µq̄λ.

But it follows that λ ∈ s ∪ t with γ(x) 6= γ(y) and µ ∈ s ∪ t, λ ∈ s ∪ t such that

xrqµ, ysqλ and µq̄λ.

Hence the topological space (X, s ∪ t) is FR1(i). 2
For non-implications, we have the the following counter example that will serve the purpose.

Example 3.1 Let X = {x, y} and s be the discrete fuzzy topology on X . Again t be the

indiscrete fuzzy topology on X . Then (X, s∪ t) is FR1(i), FR1(ii), FR1(iii) and FR1(iv). On

the other hand, (X, s, t) is none of the FPR1(i), FPR1(ii), FPR1(iii) and FPR1(iv).

Remark 3.1 Let (X, s) and (X, t) be two fuzzy topological space and (X, s, t) be its corre-

sponding bitopological space. Then “(X, s, t) is FPR1(j)” does not imply (X, s) and (X, t) are

FR1(j) in general, where j = i, ii, iii, iv.

Example 3.2 Let X = {x, y} and s be the fuzzy topology on X generated by {x1, x0.6} ∪
{constants}. Again t be the fuzzy topology on X generated by {y1} ∪ {constants}. Then

(X, s, t) is FPR1(i), FPR1(ii), FPR1(iii), and FPR1(iv). On the other hand, (X, s) and

(X, t) are none of the FR1(i), FR1(ii), FR1(iii) and FR1(iv).

Remark 3.2 Let (X, s) and (X, t) be two fuzzy topological space and (X, s, t) be its corre-

sponding bitopological space. Then “(X, s) and (X, t) are both FR1(j)” does not imply (X, s, t)

is FPR1(j) in general, where j = i, ii, iii, iv.

Example 3.3 Let X = {x, y} and s be the fuzzy topology on X generated by {x1, y1} ∪
{constants}. Again t be the fuzzy topology on X generated by {constants}. Then it is clear

that (X, s) and (X, t) are both FR1(i), FR1(ii), FR1(iii) and FR1(iv). But on the other

hand, the fuzzy bitopological space (X, s, t) is none of FPR1(i), FPR1(ii), FPR1(iii), and

FPR1(iv).

Theorem 3.2 Let (X, s, t) be an fbts. Then the following are equivalent:

(i) (X, s, t) is FPT2;

(ii) (X, s, t) is FPT0 and FPR1.

Proof (ii) ⇒ (i) : Let xr, ys be two fuzzy singletons in X with x 6= y. Since (X, s, t) is

FPT0, there exists a fuzzy set µ ∈ s ∪ t such that

xrq and µ ∩ ys = 0.

This implies that µ(x) 6= µ(y). Again since µ(x) 6= µ(y) and (X, s, t) is FPR1, there exist
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v ∈ s, w ∈ t such that

xrqv, ysqw and v ∩ w = 0.

Hence (X, s, t) is FPT2.

(i) ⇒ (ii) : FPT2 ⇒ FPR1 is obvious. We have to show that FPT2 ⇒ FPT0. Let

xr, ys ∈ S(X) with x 6= y. Since (X, s, t) is FPT2, there exist a fuzzy sets u ∈ s, v ∈ t such

that

xrqu, ysqv and u ∩ v = 0.

To show that (X, s, t) is FPT0, it is enough to show that xr ∩ v = 0. Suppose that

xr ∩ v 6= 0.

This implies that v(x) > 0. Since u ∩ v = 0, we have

u(x) = 0, that is, xr q̄u

which is a contradiction. Hence xr ∩ v = 0. 2
In the following theorem now we discuss about the good extension property of FPR1

concepts given earlier. All the properties FPR1(i), FPR1(ii), FPR1(iii) and FPR1(v) are

good extension of PR1.

Theorem 3.3 Let (X, S, T ) be a bitopological space. Then (X, S, T ) is PR1 ⇔ (X, ω(S), ω(T ))

is FPR1(j), for j = i, ii, iii, iv.

Proof Let (X, S, T ) be PR1 space. Suppose xr, ys ∈ S(X), with x 6= y and γ ∈ ω(S)∪ω(T )

with γ(x) 6= γ(y). Then we have

γ(x) < γ(y) or γ(x) > γ(y).

Suppose γ(x) < γ(y). Then γ(x) < r < γ(y) for some r ∈ I0. So, it is clear that

x 6∈ γ−1(r, 1], y ∈ γ−1(r, 1] and γ−1(r, 1] ∈ S ∪ T .

Since (X, S, T ) is PR1 space, then there exist U ∈ S, V ∈ T such that

x ∈ U, y ∈ V and U ∩ V = φ.

So, by definition of lower semi-continuous, we get 1U ∈ ω(S) and 1V ∈ ω(S). Now, we

have

1U (x) = 1, 1V (y) = 1 and 1U∩V = 0.

We know that 1U∩V = 0 implies 1U ∩ 1V = 0. Therefore xrq1U , ysq1V and 1U ∩ 1V = 0. Hence

(X, ω(S), ω(T )) is FPR1(iv).

Conversely, suppose that (X, ω(S), ω(T )) is FPR1. Let x, y ∈ X, x 6= y and M ∈ S ∪ T
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with

x ∈ M, y 6∈ M or x 6∈ M, y ∈ M .

Suppose x ∈ M, y 6∈ M . But from definition of lower semi-continuous function, we have

1M ∈ ω(S) ∪ ω(T ) and 1M (x) = 1, 1M (y) = 0.

So, 1M (x) 6= 1M (y). Since (X, ω(S), ω(T )) is FPR1(iv), then there exist µ ∈ ω(S), λ ∈
ω(T ) such that

x1qµ, y1qλ and µ ∩ λ = 0.

Now x1qµ, y1qλ implies that

µ(x) > 0, λ(y) > 0.

So, x ∈ µ−1(0, 1], y ∈ λ−1(0, 1].

To show that µ−1(0, 1]∩ λ−1(0, 1] = φ, suppose that µ−1(0, 1]∩ λ−1(0, 1] 6= φ. Then there

exits z ∈ µ−1(0, 1] ∩ λ−1(0, 1] such that

µ(z) > 0, λ(z) > 0.

Consequently (µ∩ λ)(z) 6= 0 which contradicts the fact that µ∩ λ = 0. Hence (X, S, T ) is

PR1. Other proofs are similar. 2
We discuss the hereditary and productive properties of FPR1(j), for j = i, ii, iii, iv, v in

the following two theorems respectively.

Theorem 3.4 Let (X, s, t) be a fuzzy bitopological space, A ⊆ X and SA = {u/A : u ∈
s}, tA = {v/A : v ∈ t}. Then,

(a) (X, s, t) is FPR1(i) =⇒ (A, sA, tA) is FPR1(i);

(b) (X, s, t) is FPR1(ii) =⇒ (A, sA, tA) is FPR1(ii);

(c) (X, s, t) is FPR1(iii) =⇒ (A, sA, tA) is FPR1(iii);

(d) (X, s, t) is FPR1(iv) =⇒ (A, sA, tA) is FPR1(iv).

Proof (a) First suppose that (X, s, t) is FPR1(i). We have to prove that (A, sA, tA) is

FPR1(i). Let xr, ys be two distinct fuzzy singletons in A and γ ∈ sA ∪ tA with γ(x) 6= γ(y).

Then γ can be written as γ = σ/A, where σ ∈ s ∪ t with σ(x) 6= σ(y). Since (X, s, t) is

FPR1(i), then there exist fuzzy sets µ ∈ s, λ ∈ t such that

xrqµ, ysqλ and µq̄λ.

Now µ/A ∈ tA, λ/A ∈ tA for every µ ∈ s, λ ∈ t respectively. So

xrq(µ/A), ysq(λ/A) and (µ/A)q̄(λ/A).

Hence the fuzzy subspace bitopological space (A, sA, tA) is FPR1(i). Proofs of others are
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similar. 2
In the following two theorems, we observe the preservations of FPR1(j), j = i, ii, iii, iv

properties under continuous, one-one and open mappings.

Definition 3.2([18]) A function f from a fuzzy bitopological space (X, s, t) into a fuzzy bitopo-

logical space (Y, s1, t1) is called FP -continuous if and only if f : (X, s) → (Y, s1) and f :

(X, t) → (Y, t1) are both fuzzy continuous.

Theorem 3.5 Let (X, s, t) and (Y, s1, t1) be two fuzzy bitopological spaces and f : X → Y be

bijective, FP -continuous and FP -open map, then

(X, s, t) is FPR1(j) =⇒ (Y, s1, t1) is FPR1(j),

where j = i, ii, iii, iv.

Proof Suppose (X, s, t) is FPR1(iv). We shall prove that (Y, s1, t1) is FPR1(iv). Let

ar, bp ∈ S(Y ) with a 6= b and γ ∈ s1∪ t1 with γ(x) 6= γ(y). Since f is bijective, then there exist

cr, dp ∈ S(X) such that

f(c) = a, f(d) = b and c 6= d.

Again f−1(γ) ∈ s ∪ t as f is FP -continuous. We have

f−1(γ)(c) = γ(f(c)) = γ(a),

f−1(γ)(d) = γ(f(d)) = γ(b).

So f−1(γ)(c) 6= f−1(γ)(d) as γ(x) 6= γ(y).

Since (X, s, t) is FPR1(iv), then there exist µ ∈ s, λ ∈ t such that

crqµ, dpqλ and µ ∩ λ = 0.

Then crqµ, dpqλ implies that

µ(c) + r > 1 and λ(d) + p > 1.

Now we have

f(µ)(a) = f(µ)(f(c)) = supµ(c) = µ(c)

and

f(λ)(b) = f(λ)(f(d)) = supλ(d) = λ(d)

because f is bijective. So we have

f(µ)(a) + r = µ(c) + r > 1 and f(λ)(b) + p > 1.

Therefore

arqf(µ) and bpqf(λ).
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Again we have

f(µ ∩ λ)(y) = {sup(µ ∩ λ)(x) : f(x) = y} = (µ ∩ λ)(x) = 0

as µ∩λ = 0. Also f(µ∩λ) = 0 ⇒ f(µ)∩f(λ) = 0. Since f is FP -open, then f(µ) ∈ s1, f(λ) ∈
t1. Therefore, there exist f(µ) ∈ s1, f(λ) ∈ t1 such that

arqf(µ), bpqf(λ) and f(µ) ∩ f(λ) = 0.

Hence (Y, s1, t1) is FPR1(iv). 2
Theorem 3.6 Let (X, s, t) and (Y, s1, t1) be two fuzzy bitopological spaces and f : X → Y be

FP -continuous, FP -open and injective map, then

(Y, s1, t1) is FPR1(j) =⇒ (X, s, t) is FPR1(j)

where j = i, ii, iii, iv.

Proof Suppose that (Y, s1, t1) is FPR1(iv). Let xr , yp ∈ S(X), x 6= y and γ ∈ s ∪ t with

γ(x) 6= γ(y). Since f is injective, then f(x) 6= f(y). Also f(γ) ∈ s1 ∪ t1 as f is FP -open.

We know that

f(γ)(f(x)) = supγ(x) = γ(x)

and

f(γ)(f(y)) = sup γ(y) = γ(y).

Then we have

f(γ)(f(x)) 6= f(γ)(f(y)).

Since (Y, s1, t1) is FPR1(iv), then ∃µ ∈ s1, λ ∈ t1 such that

µ(f(x)) + r > 1, λ(f(y)) + p > 1 and λ ∩ µ = 0,

which implies that

f−1(µ)(x) + r > 1, f−1(λ)(y) + p > 1

and f−1(µ ∩ λ) = 0 implies that

f−1(µ) ∩ f−1(λ) = 0.

Since f is FP -continuous, then f−1(µ) ∈ s, f−1(λ) ∈ t. So, there exist f−1(µ) ∈
s, f−1(λ) ∈ t such that

xrqf
−1(µ), ypqf

−1(λ) and f−1(µ) ∩ f−1(λ) = 0.

Therefore (X, s, t) is FPR1(iv). Other proofs are similar. 2
In previous a work [5], we have introduced the following definitions and discussed many

related concepts among them.
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Definition 3.3([5]) The initial fuzzy bitopology on a set X for the family of fbts {(Xi, si, ti)}i∈J

and the family of functions {fi : X −→ (Xi, si ti)}i∈J is smallest fuzzy topology on X making

each fi fuzzy continuous.

Definition 3.4([5]) The final fuzzy topology on a set X for the family of fts {(Xi, si, ti)}i∈J

and the family of functions {fi : (Xi, si, ti) −→ X}i∈J is finest fuzzy topology on X making

each fi fuzzy continuous.

Theorem 3.7 If {(Xi, si, ti)}i∈J is family of FPR1(iv) fbts and {fi : X → (Xi, si, ti)}i∈J , a

family of functions, then the initial fuzzy bitopology on X for the family {fi}i∈J is FPR1(iv).

Proof Let s and t be the initial fuzzy topologies on X . Let x, y ∈ X with x 6= y and let a

fuzzy set w ∈ s ∪ t with w(x) 6= w(y). So, there exists r ∈ (0, 1) such that

w(x) < r < w(y).

Let xr and yr be two fuzzy points of X . For any α ∈ (0, r), consider the fuzzy point yα.

Then yα ∈ w and so it is possible to find a basic fuzzy s-open set, say

f−1
i1

(uα
i1) ∩ f−1

i2
(uα

i2) ∩ . . . ∩ f−1
in

(uα
in

), uα
ik

(1 ≤ k ≤ n)

being sik
–open fuzzy set such that

yα ∈ inf f−1
ik

(uα
ik

) ⊂ w (1)

So for all α ∈ (0, r),

α < inf f−1
ik

(uα
ik

)(y) ≤ w(y)

or

α < inf uα
ik

(fik
(y)) (for all α ∈ (0, r)).

Thus,

r = sup infuα
ik

(fik
(y)).

Now as ∀α ∈ (0, r),

uα
ik

(fik
(y)) ≤ sup uα

ik
(fik

(y)),

we have

inf uα
ik

(fik
(y)) ≤ inf sup uα

ik
(fik

(y)).

Hence

r = sup inf uα
ik

(fik
(y)) ≤ inf supuα

ik
(fik

(y)).

This implies that

supuα
ik

(fik
(y)) > r
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for all k, 1 ≤ k ≤ n. In particular,

sup uα
i1(fi1(y)) > r.

Now let u1 = sup uα
i1 . Then u1 ∈ si1 ∪ ti1 and u1(fi1(y)) > r. Also as w(x) < r, from (1),

we have

uα
i1(fi1(x)) < r ∀α ∈ (0, r).

Thus u1(fi1(x)) = r. Hence u1(fi1(x)) 6= u1(fi1(y)).

Since (Xi1 , si1 , ti1) is FPR1(iv), then for every two distinct fuzzy points (fi1(x))r , (fi1(y))r

of Xi1 , there exist fuzzy sets v1 ∈ si1 , u1 ∈ ti1 such that

(fi1(x))rqv1, (fi1(y))rqu1 and u1 ∩ v1 = 0.

Let vr = f−1
i1

(v1) and ur = f−1
i1

(u1). We have to show that xrqvr. For this, since

(fi1(x))rqv1 we have

v1(fi1(x)) + r > 1, that is f−1
i1

(v1)(x) + r > 1,

i.e., vr(x) + r > 1. Hence, it is true for xrqvr. Similarly, it is also true for yrqur.

Now, we have to show that ur ∩ vr = 0. Suppose ur ∩ vr 6= 0, then there exists z ∈ X

with ur(fi1(z)) > 0 and vr(fi1(z)) > 0. Notice that vr(z) = f−1
i1

(v1)(z) = v1(fi1(z)) > 0 and

similarly, u1(fi1(z)) > 0 contradict that u1 ∩ v1 = 0. Hence (X, s, t) is must FPR1. 2
Theorem 3.8 If {(Xi, si, ti)}i∈J is family of FPR1(iv) fbts and {fi : (Xi, si, ti) → X}i∈J ,

a family of FP -open and bijective functions, then the final fuzzy bitopology on X for the family

{fi}i∈J is FPR1(iv).

Proof Let s and t be the final fuzzy topologies on X . Let x, y ∈ X with x 6= y and let a

fuzzy set w ∈ s ∪ t with w(x) 6= w(y). So, there exists r ∈ (0, 1) such that

w(x) < r < w(y).

Let xr and yr be two distinct fuzzy points of X . For any α ∈ (0, r), consider the fuzzy

point yα. Then yα ∈ w and so it is possible to find a basic fuzzy s–open set, say

fi1(u
α
i1)
⋂

fi2(u
α
i2)
⋂

· · ·
⋂

fin
(uα

in
), uα

ik
, (1 ≤ k ≤ n)

being sik
–open fuzzy set such that

yα ∈ inf fik
(uα

ik
) ⊂ u.

But ∀α ∈ (0, r),

α < inf fik
(uα

ik
)(y) ≤ u(y)
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or

r = sup inf fik
(uα

ik
)(y).

But as ∀α ∈ (0, r),

fik
(uα

ik
)(y) ≤ sup fik

(uα
ik

)(y).

We have ∀α ∈ (0, r),

inf fik
(uα

ik
)(y) ≤ inf sup fik

(uα
ik

)(y).

Hence

r = sup inf fik
(uα

ik
)(y) ≤ inf sup fik

(uα
ik

)(y).

This implies that

sup fik
(uα

ik
)(y) > r, k(1 ≤ k ≤ n)

or

sup(uα
ik

)(yik
) > r,

where fik
(yik

) = y, since fik
is bijective. In particular

sup(uα
i1)(yi1) > r.

Now let u1 = supuα
i1

. Then u1 ∈ si1 ∪ ti1 and u1(yi1) > r. Also as w(x) < r, from (1), we

get

fi1(u
α
i1)(x) < r ∀α ∈ (0, r).

Thus

sup fi1(u
α
i1)(x) = r, ∀α ∈ (0, r).

or

sup(uα
i1)(xi1 ) = r

where fi1(xi1 ) = x, since fi1 is bijective. Hence u1(xi1) = r. Therefore

u1(xi1 ) 6= u1(yi1).

Since (Xi1 , si1 , ti1) is FPR1(iv), then for every two distinct fuzzy points (xi1 )r, (yi1)r of

Xi1 , there exist fuzzy sets v1 ∈ si1 , u1 ∈ ti1 such that

(xi1 )rqv1, (yi1)rqu1 and u1 ∩ v1 = 0.

Let vr = fi1(v1) and ur = fi1(u1). Now we have to show that (xi1)rqvr. For this, since

(xi1 )rqv1 that is, v1(xi1 ) + r > 1, we have

vr(xi1 ) = fi1(v1)(xi1 ) = v1(xi1 ) > 1 − r.

So, vr(xi1 ) + r > 1. Hence xi1qvr. Similarly, yrqur.

Now, to show that ur ∩vr = 0, suppose ur ∩vr 6= 0, then there exists z ∈ X with ur(z) > 0
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and vr(z) > 0. Notice that vr(z) = fi1(v1)(z) = v1(zi1) > 0, where fi1(zi1) = z, as fi1 is

bijective. Similarly, we can prove that u1(zi1) > 0 contradict that u1 ∩ v1 = 0. Hence (X, s, t)

is must FPR1(iv). 2
§4. Conclusion

The main result of this paper is introducing some new concepts of fuzzy pairwise R1 bitopo-

logical spaces. We discuss some features of these concepts and present their good extension,

hereditary. Initial and final topologies introduced in FPR1 spaces are interesting result.
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§1. Introduction

The fuzzy set was first explored in [36] and this concept extended to fuzzy topological spaces

in [4]. Much research has been done to extend the theory of fuzzy topological spaces in various

directions; in particular, fuzzy normality [11, 23], fuzzy uniformity [12], fuzzy regularity [1],

fuzzy topological representation [5], separations on fuzzy topological spaces [2, 9, 20, 22], fuzzy

topological groups [6], fuzzy bitopological spaces [2, 3, 10, 14, 26], product of fuzzy topological

spaces [13], strong-separation and strong countability on fuzzy topological spaces [31], supra

fuzzy topological spaces [7, 8, 18] and infra fuzzy topological spaces [28, 33]. One of the

important topics in fuzzy mathematics is fuzzy bitopological space with separation axioms,

which continuously attracted significant international attention.

The research for fuzzy bitopological spaces started in early nineties [14]. The fuzzy bitopo-

logical spaces with separation axioms has become attractive as these spaces possess many

desirable properties and can be found throughout various areas in fuzzy topologies. Recent

progress has been made constructing separation axioms on fuzzy bitopological spaces in [14,

1Received February 8, 2019, Accepted August 25, 2019.
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27]. One most studied in separation axioms on fuzzy bitopological spaces is T1 separation [27].

The purpose of this paper is to further contribute to the development of fuzzy bitopological

spaces, especially on fuzzy T1 bitopological spaces in quasi-coincidence sense. In this paper,

we define fuzzy T1 bitopological space in quasi-coincidence sense [19, 21, 27]. We show that

the definitions of the T1 separation satisfy the good extension property. We also present the

hereditary, order preserving, productive, and projective properties of these new concepts. In

addition, we discuss the initial and final fuzzy bitopologies of the T1 separation.

§2. Basic Notions and Preliminary Results

In this section, we review some concepts, which will be needed in the sequel. In this paper, X

and Y are always presented non-empty sets.

Definition 2.1([36]) A function u from X into the unit interval I is called a fuzzy set in X.

For every x ∈ X, u(x) ∈ I is called the grade of membership of x in u. Some authors say that

u is a fuzzy subset of X instead of saying that u is a fuzzy set in X. The class of all fuzzy sets

from X into the closed unit interval I is denoted by IX .

Definition 2.2([24]) A fuzzy set u in X is called a fuzzy singleton if and only if u(x) = r, 0 <

r ≤ 1, for a certain x ∈ X and u(y) = 0 for all points y of X except x. The fuzzy singleton

is denoted by xr and x is its support. The class of all fuzzy singletons in X will be denoted by

S(X). If u ∈ IX and xr ∈ S(X), then we say that xr ∈ u if and only if r ≤ u(x)

Definition 2.3([35]) A fuzzy set u in X is called a fuzzy point if and only if u(x) = r, 0 < r < 1,

for a certain x ∈ X and u(y) = 0 for all points y of X except x. The fuzzy point is denoted by

xr and x is its support.

Definition 2.4([14]) A fuzzy singleton xr is said to be quasi-coincidence with u, denoted by

xrqu if and only if u(x) + r > 1. If xr is not quasi-coincidence with u, we write xr q̄u and

defined as u(x) + r ≤ 1.

Definition 2.5([4]) Let f be a mapping from a set X into a set Y and v be a fuzzy subset of Y .

Then the inverse of v written as f−1(v) is a fuzzy subset of X defined by f−1(v)(x) = v(f(x)),

for x ∈ X .

Definition 2.6([25]) The function f : (X, t) → (Y, s) is called fuzzy continuous if and only

if for every v ∈ s, f−1(v) ∈ t, the function f is called fuzzy homeomorphic if and only if f is

bijective and both f and f−1 are fuzzy continuous.

Definition 2.7([17]) The function f : (X, t) → (Y, s) is called fuzzy open if and only if for

every open fuzzy set u in (X, t), f(u) is open fuzzy set in (Y, s).

Definition 2.8([29]) Let f be a real valued function on a topological space. If {x : f(x) > α}
is open for every real α, then f is called lower semi continuous function.

Definition 2.9([4]) A fuzzy topology t on X is a collection of members of IX which is closed
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under arbitrary suprema and finite infima and which contains constant fuzzy sets 1 and 0. The

pair (X, t) is called a fuzzy topological space (in short fts) and members of t are called t− open

fuzzy sets. A fuzzy set µ is called a t− closed (or simply closed ) fuzzy set if 1 − µ ∈ t.

Definition 2.10([30]) A bitopological space (X, S, T ) is called pairwise−T1(PT1 in short) if for

all x, y ∈ X, x 6= y, there exist U ∈ S, V ∈ T such that x ∈ U, y 6∈ U and x 6∈ V, y ∈ V .

A fuzzy bitopological property P is called hereditary if each subspace of a fuzzy bitopological

space with property P , also has property P .

Definition 2.11([34]) Let {(Xi, si, ti) : i ∈ Λ} is a family of fuzzy bitopological spaces. Then the

space (
∏

Xi,
∏

si,
∏

ti) is called the product fuzzy bitopological space of the family {(Xi, si, ti) :

i ∈ Λ}, where
∏

si and
∏

ti denote the usual product fuzzy topologies of the families {∏ si : i ∈
Λ} and {∏ ti : i ∈ Λ} of the fuzzy topologies respectively on X.

A fuzzy bitopological property P is called productive if the product of fuzzy bitopological

spaces of a family of fuzzy bitopological space, each having property P , has property P .

A fuzzy bitopological property P is called projective if for a family of fuzzy bitopological

space {(Xi, si, ti) : i ∈ Λ}, the product fuzzy bitopological space (
∏

Xi,
∏

si,
∏

ti) has property

P implies that each coordinate space has property P .

Definition 2.12([15]) Let (X, T ) be an ordinary topological space. The set of all lower semi

continuous functions from (X, T ) into the closed unit interval I equipped with the usual topology

constitutive a fuzzy topology associated with (X, T ) and is denoted by (X, ω(T )).

Definition 2.13([16]) The initial fuzzy topology on a set X for the family of fuzzy topological

spaces {(Xi, ti)i∈Λ} and the family of functions {fi : X → (Xi, ti)}i∈Λ is the smallest fuzzy

topology on X making each fi fuzzy continuous. It is easily seen that it is generated by the

family {f−1
i (ui) : ui ∈ ti}i∈Λ.

Definition 2.14([16]) The final fuzzy topology on a set X for the family of fuzzy topological

spaces {(Xi, ti)i∈Λ} and the family of functions {fi : (Xi, ti) → X}i∈Λ is the finest fuzzy

topology on X making each fi fuzzy continuous.

Definition 2.15([26]) A function f from a fuzzy bitopological space (X, s, t) into a fuzzy

bitopological space (Y, s1, t1) is called fuzzy FP−continuous if and only if f : (X, s) → (Y, s1)

and f : (X, t) → (Y, t1) are both fuzzy continuous.

Theorem 2.1([3]) A bijective mapping from an fts (X, t) to an fts (Y, s) preserves the value

of a fuzzy singleton (fuzzy point).

Note: Preimage of any fuzzy singleton (fuzzy point) under bijective mapping preserves its value.

§3. Fuzzy T1 Bitopological Space

In this section, we present some new notions on fuzzy T1 bitopological spaces and their relevant

results. We also discuss existing some well-known properties using these new concepts and

establish relationships between these new notions and the relevant existing notions.
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Definition 3.1 A fuzzy bitopological space (X, s, t) is called

(a) FPT1(i) if and only if for any pair xm, yn ∈ S(X) with x 6= y, there exist u, v ∈ s ∪ t

such that xmqu, ynq̄u and ynqv, xmq̄v;

(b) FPT1(ii) if and only if for any pair xm, yn ∈ S(X) with x 6= y, there exist u, v ∈ s ∪ t

such that xmqu, yn ∩ u = 0 and ynqv, xm ∩ v = 0;

(c) FPT1(iii) if and only if for any pair of fuzzy points xm, yn in X with x 6= y, there exist

u, v ∈ s ∪ t such that xm ∈ u, ynq̄u and yn ∈ v, xmq̄v;

(d) FPT1(iv) if and only if for any pair of distinct fuzzy points p, q in X, there exists a

fuzzy set u, v ∈ s ∪ t such that p ∈ u, q ∩ u = 0 or q ∈ u, p ∩ u = 0;

(e) FPT1(v) if and only if for all x, y ∈ X with x 6= y, there exist u, v ∈ s ∪ t such that

u(x) = 1, u(y) = 0 and v(y) = 1, v(x) = 0.

Here it is mentioned that FPT1(iii) and FPT1(iv) are according to Sufiya et al.[32],

FPT1(i) is according to A A Nouh [27], and FPT1(v) is according to M. Srivastava and R.

Srivastava [30].

The examples of definitions of FPT1(i) and FPT1(ii) are as follows:

Example 3.1 Let X = {x, y}, u, v ∈ IX with u(x) = 1, u(y) = 0 and v(y) = 1, v(x) = 0 and t

be the fuzzy topology on X generated by {0, u, v, 1} and s be the fuzzy topology on X generated

by {constants}. Also, let xm, yn ∈ S(X) with x 6= y, then u(x) + m > 1 and u(y) + s ≤ 1 for

m, n ∈ (0, 1]. Thus xmqu, ynq̄u. Similarly, ynqv, xmq̄v. Hence (X, s, t) is FPT1(i) as u, v ∈ s∪ t

. Also, as u(y) = 0, yn ∩ u = 0 and similarly xm ∩ v = 0. Therefore, (X, s, t) is FPT1(ii).

Theorem 3.1 Let (X, s, t) be a fuzzy bitopological space and (X, s ∪ t) be a fuzzy topological

space. If (X, s, t) is FPT1 then (X, s ∪ t) is fuzzy T1 topological space.

Proof Let (X, s, t) be FPT1. Since s ⊆ s ∪ t and t ⊆ s ∪ t, it follows immediately that

(X, s ∪ t) is FT1. 2
Theorem 3.2 If the fuzzy topological space (X, s) and (X, t) are both fuzzy T1(j) topological

spaces, then their corresponding fuzzy bitopological space (X, s, t) is FPT1(j), for j = i, ii. But

the converse is not true in general.

Proof Let (X, s) and (X, t) are both FT1(j). Then their corresponding fuzzy bitopological

space (X, s, t) is FPT1(j), for j = i, iii as s ⊆ s∪ t and t ⊆ s∪ t. To prove (X, s, t) is FPT1(j)

does not imply (X, s) and (X, t) are both FT1(j), for j = i, ii, the following is its a counter

example. 2
Example 3.2 Let X = {x, y}, u, v ∈ IX and t be the fuzzy topology on X generated by

{u, v} ∪ {constants}, with u(x) = 1, u(y) = 0 and v(y) = 1, v(x) = 0. Also, let s be the

fuzzy topology on X generated by {constants}. Then, for any 0 < m ≤ 1 and 0 < n ≤
1, u(x) + m > 1 and u(y) + n ≤ 1, which imply that xmqu, ynq̄u. Similarly, ynqv, xmq̄v. Also,

u(y) = 0 ⇒ yn ∩ u = 0 and similarly xm ∩ v = 0. As u, v ⊆ s∪ t, (X, s, t) is FPT1(j) but (X, s)

is not FT1(j), for j = i, ii.
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Theorem 3.3 If a fuzzy bitopological space (X, s, t) is FPT1(j) then (X, s, t) is FPT0(j), for

j = i, ii, iii, iv, v.

Proof The proof is obvious. 2
Theorem 3.4 For a fuzzy bitopological space (X, s, t) the implications in Figure 1 are true.

Figure 1

Proof (c) ⇒ (b): Let (X, s, t) be FPT1(iii) and xm, yn be fuzzy singletons in X with x 6= y.

Also let r > 1−m for 0 < m < 1. Since (X, s, t) is FPT1(iii), there exist fuzzy sets u, v ∈ s∪ t

such that xr ∈ u, y1q̄u and y1 ∈ v, xr q̄v, where xr and y1 are distinct fuzzy points in X . Now,

xr ∈ u ⇒ u(x) ≥ r > 1 − m ⇒ u(x) + m > 1 ⇒ u(x) + m > 1 for 0 < m ≤ 1 also. ⇒ xmqu

when xm ∈ S(X) and y1q̄u ⇒ u(y) + 1 ≤ 1 ⇒ u(y) ≤ 1 − 1 = 0 ⇒ u(y) = 0 ⇒ yn ∩ u = 0 for

0 < n ≤ 1.

Similarly, it is easy to prove that ynqv and xm ∩ v = 0. It follows that for any fuzzy

singletons xm, yn in X with x 6= y there exist u, v ∈ s ∪ t such that xmqu, yn ∩ u = 0 and

ynqv, xm ∩ v = 0. Thus (X, s, t) is FPT1(ii).

(b) ⇒ (d): Let xm, yn be distinct fuzzy points in X and 0 < r ≤ 1, 0 < s ≤ 1 with

r ≤ 1−m, s ≤ 1−n. Since (X, s, t) is FPT1(ii), there exist u, v ∈ s∪t such that xrqu, ys∩u = 0

and ysqv, xr ∩ v = 0.

Now, xrqu ⇒ u(x) + r > 1 ⇒ u(x) > 1 − r ≥ m ⇒ u(x) ≥ m ⇒ xm ∈ u and ys ∩ u = 0 ⇒
u(y) = 0 ⇒ yn ∩ u = 0. Similarly, we can prove that yn ∈ v and xm ∩ v = 0.

It follows that for any distinct fuzzy points xm, yn in X with x 6= y there exist u, v ∈ s ∪ t

such that xm ∈ u, yn ∩ u = 0 and yn ∈ v, xm ∩ v = 0. Thus (X, s, t) is FPT1(iv).

(b) ⇒ (a): Let (X, s, t) be FPT1(ii) and xm, yn be fuzzy singletons in X with x 6= y.

Since (X, s, t) is FPT1(ii), there exist fuzzy sets u, v ∈ s ∪ t such that xmqu, yn ∩ u = 0 and

ynqv, xm ∩ v = 0. To prove (X, s, t) is FPT1(i), it is only needed to prove that ynq̄u and xmq̄v.

Now, yn ∩ u = 0 ⇒ u(y) = 0 ⇒ u(y) + n ≤ 1 ⇒ ynq̄u and similarly xmq̄v. Thus (X, s, t) is

FPT1(i). To show (a) 6⇒ (b), we give a counter example in Example 3.3.

Example 3.3 Let X = {x, y}, u, v ∈ IX be given by u(x) = 1, u(y) = 0.1, v(y) = 1, v(x) =

0.1. Let us consider the fuzzy topology s∪ t on X generated by {0, u, v, 1}. For 0 < m ≤ 1, 0 <

n < 0.9, u(x) + m > 1 ⇒ xmqu and u(y) + n ≤ 1 ⇒ ynq̄u. Similarly, ynqv and xmq̄v. Thus

(X, s, t) is FPT1(i). But u(y) 6= 0 ⇒ yn ∩ u 6= 0. Also, v(x) 6= 0 ⇒ xm ∩ v 6= 0. Thus (X, s, t)
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is not FPT1(ii).

(e) ⇒ (a): Let (X, s, t) be FPT1(v) and xm, yn be fuzzy singletons in X with x 6= y.

Since (X, s, t) is FPT1(v), there exist fuzzy sets u, v ∈ s ∪ t such that u(x) = 1, u(y) = 0 and

v(y) = 1, v(x) = 0. Now, u(x) = 1 ⇒ u(x) + m > 1 ⇒ xmqu and u(y) = 0 ⇒ u(y) + n ≤ 1 ⇒
ynq̄u. Similarly, it is easy to prove that ynqv and xmq̄v. Thus (X, s, t) is FPT1(i). To show

(a) 6⇒ (e), we give a counter example in Example 3.4

Example 3.4 Let X = {x, y}, u, v ∈ IX be given by u(x) = 1 − γ, u(y) = 0, v(y) = 1 −
δ, v(x) = 0, where γ = m/2, δ = n/2 for m, n ∈ (0, 1]. Let the fuzzy topology s ∪ t on X

generated by {0, u, v, 1} ∪ {constants}.
Now, u(x) = 1 − γ ⇒ u(x) = 1 − m/2 ⇒ u(x) + m/2 = 1 ⇒ u(x) + m > 1 ⇒ xmqu

and u(y) = 0 ⇒ u(y) + n ≤ 1 ⇒ ynq̄u. In the similar way, ynqv and xmq̄v. Thus (X, s, t) is

FPT1(i). But u(x) 6= 1 and v(y) 6= 1. Thus (X, s, t) is not FPT1(v).

(a) ⇒ (c): As (b) ⇒ (d) we can say that (a) ⇒ (c).

(e) ⇒ (b): Let (X, s, t) be FPT1(v) and xm, yn be fuzzy singletons in X with x 6= y.

Since (X, s, t) is FPT1(v), there exist fuzzy sets u, v ∈ s ∪ t such that u(x) = 1, u(y) = 0 and

v(y) = 1, v(x) = 0. Now, u(x) = 1 ⇒ u(x) + m > 1 ⇒ xmqu and u(y) = 0 ⇒ yn ∩ u = 0.

Similarly, we can show that ynqv and xm∩v = 0. Thus (X, s, t) is FPT1(ii). A counter example

in Example 3.5 shows that (b) 6⇒ (e).

Example 3.5 Let X = {x, y}, u, v ∈ IX be given by u(x) = 1 − γ, u(y) = 0, v(y) = 1 −
δ, v(x) = 0, where γ = m/2, δ = n/2 for m, n ∈ (0, 1]. Let the fuzzy topology s ∪ t on X

generated by {0, u, v, 1} ∪ {constants}.
Now, u(x) = 1 − γ ⇒ u(x) = 1 − m/2 ⇒ u(x) + m/2 = 1 ⇒ u(x) + m > 1 ⇒ xmqu and

u(y) = 0 ⇒ yn ∩ u = 0. In the similar way, ynqv and xm ∩ v = 0. Thus (X, s, t) is FPT1(ii).

But u(x) 6= 1 and v(y) 6= 1. Thus (X, s, t) is not FPT1(v). Thus proof is completed. 2
Theorem 3.5 Let (X, S, T ) be a bitopological space. Then (X, S, T ) is PT1 if and only if

(X, ω(S), ω(T )) is FPT1(j), where j = i, ii, iii, iv, v.

Proof Let (X, S, T ) be a PT1 topological space. We shall prove that (X, ω(S), ω(T ))

is FPT1(ii). Let x, y in X with x 6= y. Since (X, S, T ) be a PT1 topological space hence

there exists U, V ∈ S ∪ T such that x ∈ U, y 6∈ U and y ∈ V, x 6∈ V . From the definition of

lower semi continuous function, 1U , 1V ∈ (ω(S) ∪ ω(T )), i.e., 1U ∈ ω(S) or 1U ∈ ω(T ). Then

1U (x) = 1 ⇒ 1U (x) + m > 1 ⇒ xmq1U and 1U (y) = 0 ⇒ yn ∩ 1U = 0.

Similarly, we can prove that ynq1V and xm ∩ 1V = 0. Hence (X, ω(S), ω(T )) is FPT1(ii).

Conversely, let (X, ω(S), ω(T )) is FPT1(ii). It is required to prove that (X, S, T ) be a PT1

topological space. Let x, y in X with x 6= y. Since (X, ω(S), ω(T )) is FPT1(ii), we have for

any fuzzy singletons xm, yn in X , there exist u, v ∈ ω(S) ∪ ω(T ) such that xmqu, yn ∩ u = 0

and ynqv, xm ∩ v = 0.

Now, xmqu ⇒ u(x) + m > 1 ⇒ u(x) > 1 − m = α ⇒ x ∈ u−1(α, 1] And yn ∩ u = 0 ⇒
u(y) = 0 ⇒ u(y) + n ≤ 1 ⇒ u(y) ≤ 1 − n = α ⇒ u(y) ≤ α ⇒ y 6∈ u−1(α, 1]. Similarly, we can

prove that y ∈ v−1(α, 1] and x 6∈ v−1(α, 1]. Also, u−1(α, 1], v−1(α, 1] ∈ S ∪ T . Hence (X, S, T )
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be a PT1 topological space. Proof for j = i, iii, iv, v is similar to above. 2
§4. Hereditary, Productive and Projective Properties

In this section, we describe the hereditary, productive and projective properties on our given

concepts. The first theorem is on hereditary property and the second one is on productive and

projective properties.

Theorem 4.1 If (X, s, t) be a fuzzy bitopological space and A ⊆ X, sA = {u/A : u ∈ s}, tA =

{v/A : v ∈ t} and (X, s, t) is FPT1(j) then (A, sA, tA) is FPT1(j), where j = i, ii, iii, iv, v.

Proof We first prove this theorem for j = ii and remaining are similar. Let (X, s, t) is

FPT1(ii) and xm, yn are fuzzy singletons in A with x 6= y. Since A ⊆ X, xm, yn are also fuzzy

singletons in X . Also since (X, s, t) is FPT1(ii), there exist u, v ∈ s∪t such that xmqu, yn∩u = 0

and ynqv, xm ∩ v = 0. For A ⊆ X , we have u/A, v/A ∈ sA ∪ tA.

Now, xmqu ⇒ u(x) + m > 1, x ∈ X ⇒ u/A(x) + m > 1, x ∈ A ⊆ X ⇒ xmqu/A and

yn ∩ u = 0 ⇒ u(y) = 0, y ∈ X ⇒ u/A(y) = 0, y ∈ A ⊆ X ⇒ yn ∩ u/A = 0. Similarly, we can

show that ynqv/A, xm ∩ v/A = 0. Therefore, (A, sA, tA) is FPT1(ii). 2
Theorem 4.2 If {(Xi, si, ti) : i ∈ Λ} is a family of fuzzy bitopological spaces then the product

fuzzy bitopological space (
∏

Xi,
∏

si,
∏

ti) = (X, s, t) is FPT1(j) if and only if each coordinate

space (Xi, si, ti) is FPT1(j), where j = i, ii, iii, iv, v.

Proof Let for all i ∈ Λ, (Xi, si, ti) is FPT1(ii) space. We have to prove that (X, s, t)

is FPT1(ii). Let xm, yn be fuzzy singletons in X with x 6= y. Then (xi)m, (yi)n are fuzzy

singletons with xi 6= yi for some i ∈ Λ. Since(Xi, si, ti) is FPT1(ii), there exist ui, vi ∈ si ∪ ti

such that (xi)mqui, (yi)n ∩ ui = 0 and (yi)nqvi, (xi)m ∩ vi = 0. But we have πi(x) = xi and

πi(y) = yi.

Now, (xi)mqui ⇒ ui(xi)+m > 1 ⇒ ui(πi(x))+m > 1 ⇒ (ui◦πi)(x)+m > 1 ⇒ xmq(ui◦πi)

and (yi)n ∩ ui = 0 ⇒ ui(yi) = 0 ⇒ ui(πi(y)) = 0 ⇒ (ui ◦ πi)(y) = 0 ⇒ yn ∩ (ui ◦ πi) = 0.

Similarly, we can show that ynq(vi ◦ πi), xm ∩ (vi ◦ πi) = 0 . Hence (X, s, t) is FPT1(ii).

Conversely, let the product fuzzy bitopological space (X, s, t) is FPT1(ii). It is required

to prove that for all i ∈ Λ, (Xi, si, ti) is FPT1(ii) space. Let ai be a fixed element in Xi. Let

Ai = {x ∈ X = Πi∈ΛXi : xj = aj for some i 6= j}. Then Ai is a subset of X , and hence

(Ai, sAi
, tAi

) is a subspace of (X, s, t). Since (X, s, t) is FPT1(ii), so (Ai, sAi
, tAi

) is FPT1(ii).

Again, Ai is homeomorphic image of Xi. Therefore, for all i ∈ Λ, (Xi, si, ti) is FPT1(ii).

Similarly, one can prove the others. 2
§5. Mappings in Fuzzy T1 Bitopological Space

We discuss in this section about order preserving property of the notions under one-one, onto,

fuzzy open and fuzzy continuous mappings.

Theorem 5.1 Suppose (X, s, t) and (Y, s1, t1) are two fuzzy bitopological spaces and f : X → Y
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is bijective and fuzzy open map. If (X, s, t) is FPT1(j) then (Y, s1, t1) is FPT1(j), where

j = i, ii, iii, iv, v.

Proof Let (X, s, t) is FPT1(ii) and x′
m, y′

n be fuzzy singletons in Y with x′ 6= y′. Since

f is onto then there exist x, y ∈ X with f(x) = x′, f(y) = y′ and xm, yn are fuzzy points in

X with x 6= y as f is one-one. Again, (X, s, t) is FPT1(ii), there exist u, v ∈ s ∪ t such that

xmqu, yn ∩ u = 0 and ynqv, xm ∩ v = 0.

Now, xmqu ⇒ u(x) + m > 1 and yn ∩ u = 0 ⇒ u(y) = 0. Again, f(u)(x′) = {sup u(x) :

f(x) = x′} ⇒ f(u)(x′) = u(x) for some x and f(u)(y′) = {supu(y) : f(y) = y′} ⇒ f(u)(y′) =

u(y) for some y. Also, since f is a fuzzy open hence f(u) ∈ s1 ∪ t1 as u ∈ s ∪ t.

Again, u(x) + m > 1 ⇒ (f(u))(x′) + m > 1 ⇒ x′
mqf(u) and u(y) = 0 ⇒ f(u)(y′) = 0 ⇒

y′
n ∩ f(u) = 0. Similarly, it is easy to show that y′

nqf(v), x′
m ∩ f(v) = 0. Thus, (Y, s1, t1) is

FPT1(ii). Similarly, one can prove the others. 2
Theorem 5.2 Suppose (X, s, t) and (Y, s1, t1) are two fuzzy bitopological spaces and f : X → Y

is one-one and fuzzy FP−continuous map. If (Y, s1, t1) is FPT1(j), then (X, s, t) is FPT1(j),

where j = i, ii, iii, iv, v.

Proof Let (Y, s1, t1) is FPT1(ii) and xm, yn be fuzzy singletons in X with x 6= y. Then

(f(x))m, (f(y))n are fuzzy singletons in Y with f(x) 6= f(y) as f is one-one. Also, since

(Y, s1, t1) is FPT1(ii) , there exist u, v ∈ s1 ∪ t1 such that (f(x))mqu, (f(y))n ∩ u = 0 and

(f(y))nqv, (f(x))m ∩ v = 0.

Now, (f(x))mqu ⇒ u(f(x)) + m > 1 ⇒ f−1(u(x)) + m > 1 ⇒ (f−1(u))(x) + m > 1 ⇒
xmq(f−1(u)) and (f(y))n ∩ u = 0 ⇒ u(f(y)) = 0 ⇒ f−1(u(y)) = 0 ⇒ (f−1(u))(y) = 0 ⇒
yn ∩ (f−1(u)) = 0. Since f is fuzzy continuous and u ∈ s1 ∪ t1 hence f−1(u) ∈ s ∪ t. In the

same way, it is easy to prove that yn ∩ q(f−1(v)) and xm ∩ (f−1(v)) = 0. Therefore, (X, s, t) is

FPT1(ii). The proof of other properties is similar to above. 2
§6. Initial and Final Fuzzy T1 Bitopological Space

We define and discuss the initial and final fuzzy bitopologies in this section.

Definition 6.1 The initial fuzzy bitopology on a set X for the family of fuzzy bitopological

spaces {(Xi, si, ti)}i∈Λ and the family of functions {fi : X → (Xi, si ∪ ti)}i∈Λ is the smallest

fuzzy bitopology on X making each fi fuzzy continuous. It is easily seen that it is generated by

the family {f−1
i (ui) : ui ∈ si ∪ ti}i∈Λ.

Definition 6.2 The final fuzzy bitopology on a set X for the family of fuzzy bitopological

spaces {(Xi, si, ti)}i∈Λ and the family of functions {fi : (Xi, si ∪ ti) → X}i∈Λ is the finest fuzzy

bitopology on X making each fi fuzzy continuous.

Theorem 6.1 If {(Xi, si, ti)}i∈Λ is a family of FPT1(j) fts and {fi : X → (Xi, si ∪ ti)}i∈Λ ,

a family of one-one and fuzzy continuous functions, then the initial fuzzy bitopology on X for

the family {fi}i∈Λ is FPT1(j), for j = i, ii, iii, iv, v.
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Proof We shall prove the above theorem for j = ii and the remaining is similar. Let t, s

be the initial fuzzy topologies on X for the family {fi}i∈Λ . Let xr , ys be fuzzy singletons in

X with x 6= y. Then fi(x), fi(y) ∈ Xi and fi(x) 6= fi(y) as fi is one-one. Scince (Xi, si, ti) is

FPT1(ii), then for any two distinct fuzzy singletons (fi(x))r , (fi(y))s in Xi, there exist fuzzy

sets ui, vi ∈ si ∪ ti such that (fi(x))rqui, (fi(y))s ∩ ui = 0 and (fi(y))sqvi, (fi(x))r ∩ vi = 0.

Now, (fi(x))rqui ⇒ ui(fi(x)) + r > 1 ⇒ f−1
i (ui)(x) + r > 1. This is true for every i ∈ Λ.

So, inf f−1
i (ui)(x) + r > 1 and (fi(y))s ∩ ui = 0 ⇒ ui(fi(y)) = 0 ⇒ f−1

i (ui)(y) = 0. This is

true for every i ∈ Λ. So, inf f−1
i (ui)(y) = 0. Let u = inf f−1

i (ui). Then u ∈ si ∪ ti as fi is fuzzy

continuous. So u(x) + r > 1 and u(y) = 0. Hence xrqu and ys ∩ u = 0. Similarly, we can prove

that ysqv and xr ∩ v = 0. Therefore, (X, s, t) is FPT1(ii). 2
Theorem 6.2 If {(Xi, si, ti)}i∈Λ is a family of FPT1(j) fts and {fi : (Xi, si ∪ ti) → X}i∈Λ,

a family of fuzzy open and bijective function, then the final fuzzy topology on X for the family

{fi}i∈Λ is FPT1(j), for j = i, ii, iii, iv, v.

Proof We shall prove the above theorem for j = ii and the remaining is similar. Let s, t be

the final fuzzy topologies on X for the family {fi}i∈Λ . Let xr, ys be fuzzy singletons in X with

x 6= y. Then f−1
i (x), f−1

i (y) ∈ Xi and f−1
i (x) 6= f−1

i (y) as fi is bijective. Since (Xi, si, ti) is

FPT1(ii), then for any two distinct fuzzy singletons (f−1
i (x))r , (f

−1
i (y))s in Xi, there exist fuzzy

sets ui, vi ∈ si∪ti such that (f−1
i (x))rqui, (f

−1
i (y))s∩ui = 0 and (f−1

i (y))sqvi, (f
−1
i (x))r ∩vi =

0.

Now, (f−1
i (x))rqui ⇒ ui(f

−1
i (x))+ r > 1 ⇒ fi(ui)(x)+ r > 1. This is true for every i ∈ Λ.

So, inf fi(ui)(x) + r > 1 and (f−1
i (y))s ∩ ui = 0 ⇒ ui(f

−1
i (y)) = 0 ⇒ fi(ui)(y) = 0. This is

true for every i ∈ Λ. So, inf fi(ui)(y) = 0. Let u = inf fi(ui). Then u ∈ si ∪ ti as fi is fuzzy

open. So, u(x) + r > 1 and u(y) = 0. Hence xrqu and ys ∩ u = 0. Similarly, we can prove that

ysqv and xr ∩ v = 0. Therefore, (X, s, t) is FPT1(ii). 2
§7. Conclusion

One of the main results of this paper is introducing some new definitions of fuzzy T1 bitopologi-

cal spaces in sense of quasi-coincidence. We present their good extension, hereditary, productive

and projective properties. We compare the results with other existing notions and their coun-

terparts’ examples [27, 30, 32]. These concepts would be interesting to more expansion on fuzzy

bitopological spaces [30] and extending to general fuzzy topological space [4].
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§1. Introduction

The idea of a ternary algebraic system was first invented in 1924 by Prüfer in [5]. In 1971,

Lister [8]investigated the notion of ternary ring and studied some properties of a ternary ring.

The concept of semiring was first introduced in [6] by Vandiver in 1934. Later, the notion of a

ternary semiring which generalizes the notion of ternary ring and semiring was introduced by

Dutta and Kar [7] in 2003. Pawar and Deore in [2]-[4] generalizes concepts of radical classes

for a class of semirings. The present paper extends the notions of radical theory of rings and

semirings to a ternary semiring. The concept of radical class with few examples and results

are introduced in Section 3. Section 4 introduces the notions of semisimple class, upper radical

and their properties and relationship. In Section 5, the notion of Hoehnke radical for class of

ternary semirings is introduced.

§2. Preliminary Definitions

Definition 2.1([7]) A non-empty set S together with a binary operation, called addition and

a ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring if S is an

1Received April 3, 2019, Accepted August 28, 2019.
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additive commutative semigroup satisfying the following conditions:

(i)(Associative Law) (abc)de = a(bcd)e = ab(cde);

(ii)(Right Distributive Law) (a + b)cd = acd + bcd;

(iii)(Lateral Distributive Law) a(b + c)d = abd + acd;

(iv)(Left Distributive Law) ab(c + d) = abc + abd

for all a, b, c, d, e ∈ T .

Example 2.2([7]) Let Z−
0 be the set of all negative integers with zero. Then with the usual

binary addition and ternary multiplication, Z−
0 forms a ternary semiring.

Definition 2.3([7]) An additive subsemigroup I of a ternary semiring S is called ideal of S

if SSI ⊆ I, SIS ⊆ I and ISS ⊆ I. An ideal I of a ternary semiring S is called k-ideal

(subtractive) if for a ∈ I, a + b ∈ I, b ∈ S imply b ∈ I. We denote I ⊳ S, a ternary semiring

ideal in S.

Definition 2.4([7]) A ternary semiring S is said to be regular if for each element a in S there

exists an element x in S such that a = axa. If the element x is unique and satisfies x = xax,

then S is called an inverse ternary semiring. x is called the inverse of a.

Definition 2.5([7]) Let S be a ternary semiring and M be an ideal of S. Then M is called

maximal (largest) ideal of S if M 6= S and there does not exist any other ideal I of S such that

M ⊂ I ⊂ S.

§3. Radical Class

In this section, the radical class for ternary semiring is defined on the lines of Kurosh [1]. Also

discussed some properties and theorems on radical classes for ternary semirings on the line of

[2] and [4].

Definition 3.1 A class R of ternary semirings is called radical class if

(a) R is homomorphically closed;

(b) Every ternary semiring S ∈ U, where U is the universal class of ternary semirings,

contains a largest R-k-ideal, R(S);

(c) If S ∈ U, then S/R(S) is R-semisimple. i.e. R(S/R(S)) = 0.

Proposition 3.2 Assuming conditions (a) and (b) on a class R of ternary semirings, condition

(c) is equivalent to

(c′) If I is a k-ideal of the ternary semiring S and if both I, S/I ∈ R, then S ∈ R.

Proof Let us consider that (c) holds and that both I, S/I ∈ R. Then I ⊆ R(S) by condition

(b) and φ : S/R(S) 7−→ (S/I)/(R(S)/I) is isomorphic, which implies that S/R(S) ∈ R. But

0 = R(S/R(S)) = S/R(S). Therefore, S = R(S) is in R and hence (c′) hold.
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Conversely, assume that condition (c′) holds and that R(S/R(S)) 6= 0. Now, R(S/R(S)) =

K/R(S) for some k-ideal K of S. Since both R(S) and K/R(S) are in R, by (c′) K is in R.

So, K ⊆ R(S) and K/R(S) = 0, a contradiction. Thus (c) holds. 2
The class R with the condition (c′) is said to be closed under extensions.

Proposition 3.3 Assuming conditions (a) and (c′) on a class R of ternary semirings, condition

(b) is equivalent to

(b′) If I1 ⊂ I2 ⊂ · · · ⊂ Iλ ⊂ · · · is an ascending chain of k-ideals of a ternary semiring S

and if each Iλ ∈ R, then
⋃

Iλ ∈ R.

Proof Consider that (b) holds and let K =
⋃

Iλ. Thus K = R(K) is in R and hence (b′)

holds.

Conversely, suppose that (b′) holds. Then by applying the Zorn’s lemma, we obtain a

maximal (largest) R-k-ideal K of S. If J is any R-k-ideal of S, then φ : (K+J)/J 7−→ K/(K∩J)

is isomorphic. Thus both J and (K +J)/J are in R and by (c′), K +J is in R. Thus R(S) = K

is in R and hence (b) holds. 2
The class R with the condition (b′) is said to has the inductive property.

Theorem 3.4 A class R of ternary semirings is called radical class if

(a) R is homomorphically closed;

(b′) R has the inductive property;

(c′) R is closed under extensions.

Theorem 3.5 For any class R of ternary semirings, the following conditions are equivalent:

(I) R is radical class;

(II) (R1) If S ∈ R, then for every S 7−→ T 6= 0 there is a k-ideal I in T such that

0 6= I ∈ R;

(R2) If S ∈ U and for every S 7−→ T 6= 0 there is a k-ideal I in T such that 0 6= I ∈ R,

then S ∈ R;

(III) R satisfies condition (R1), has the inductive property and is closed under extensions.

Proof (I) =⇒ (III): It is immediate from Theorem 3.4.

(III) =⇒ (II): Let S be a ternary semiring such that for every S 7−→ T 6= 0 there is a

k-ideal I in T such that 0 6= I ∈ R and that S 6∈ R. By inductive property and applying Zorn’s

lemma, we obtain a maximal k-ideal J ∈ S with respect to being in R. Since S 6∈ R, S/J 6= 0

holds. Then there exists an k-ideal I/J of S/J such that 0 6= I/J ∈ R which implies I ∈ R.

But this contradicts the maximality of J and thus we have (R2) and hence (II).

(II) =⇒ (I): Its immediate from (R2) that R is homomorphically closed. Let I1 ⊂ I2 ⊂
· · · ⊂ Iλ ⊂ · · · is an ascending chain of k-ideals of a ternary semiring S such that each Iλ ∈ R.

Let (
⋃

Iλ)/J be any factor ternary semiring of
⋃

Iλ. Then there exists an index λ such that

Iλ 6⊆ J and thus 0 6= (Iλ + J)/J is in (
⋃

Iλ)/J . Also (Iλ + J)/J is isomorphic to Iλ/(Iλ ∩ J)

which is in R. Thus, by (R2) we have
⋃

Iλ ∈ R and that R has the inductive property. Now,
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consider J and S/J both in R. Let S/K be any non-zero factor ternary semiring of S. In this

case when J ⊆ K, 0 6= (S/K) is isomorphic to (S/J)/(K/J) and this is in R. In this case when

J 6⊆ K, 0 6= (J + K)/K is in S/K and (J + K)/K is isomorphic to J/(J ∩K) and this is in R.

Thus, in both cases S/K has a non-zero k-ideal in R and by (R2), S itself is in R. Therefore

R is closed under extensions and hence (I). 2
Example 3.6 (1) Nil Radical. The class

N = {S | ∀ a ∈ S ∃ n > 1, n depending on a, such that an = 0}

(i.e. the class of nil ternary semirings) is a radical class called the Nil-radical class.

(2) Von-Neumann Radical. A ternary semiring S is said to be Von-Neumann regular if

for every a ∈ S, a = aba, ∀b ∈ S or a ∈ aSa. The class

V = {S | S is Von-Neumann regular} = {a ∈ S, a = aba, ∀ b ∈ S}

is a radical class.

§4. Semisimple Class and Upper Radical Class

In this section, the semisimple, hereditary and regular class for ternary semirings are defined

on the lines of Kurosh [1]. Also discussed some properties and theorems on semisimple class

for ternary semiring.

Definition 4.1 A class R of ternary semirings is called hereditary if I is ideal of a ternary

semiring S and S ∈ R, then I ∈ R.

Definition 4.2 A class R of ternary semirings is called regular if S ∈ R and I is non-zero

ideal of a ternary semiring S, then there is a non-zero homomorphic image of I in R.

Remark 4.3 In particular, every hereditary class is clearly regular.

Definition 4.4 A class S of ternary semirings is called semisimple class if

(S1) If S ∈ S, then every non-zero ideal of S has a non-zero homomorphic image in S
(S2) If every non-zero ideal of S has a non-zero homomorphic image in S, then S ∈ S.

Proposition 4.5 If R is a radical class of ternary semirings, then it admits a semisimple class

SR = {S ∈ U : R(S) = 0}.

Proof Let S ∈ SR and I be any non-zero ideal of S such that I has no non-zero homomor-

phic image in SR. As R is radical class, R(I/R(I)) = 0 and this implies I/R(I) ∈ SR. Thus

I/R(I) = 0 and I = R(I) ∈ R. Then 0 6= I ⊆ R(S), which is contradicting to R(S) = 0 and

(S1) holds for SR. Now, if S 6∈ SR then R(S) 6= 0. Since R is homomorphically closed, no

non-zero homomorphic image of R(S) is in SR. Thus, a contrapositive form of (S2) holds for

SR. 2
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The operator S is called the semisimple operator.

Theorem 4.6 If R is a regular class of ternary semirings then the class

UR = {S : S has no nonzero homomorphic image in R}

is a radical class, R∩ UR = 0 and UR is the largest radical having zero intersection with R.

Proof Let S has a non-zero homomorphic image T such that T has no non-zero ideal in

UR, then S 6∈ UR. If such a T exists, then T 6∈ UR and T must have a non-zero homomorphic

image V in R and which is also a non-zero homomorphic image of S in R. Therefore S 6∈ UR
and a contrapositive form of (R1) holds for UR.

Now, assume that S 6∈ UR, then S has a non-zero homomorphic image T in R. Since

T is regular, every non-zero ideal of T has a non-zero homomorphic image in R. Thus, a

contrapositive form of (R2) holds for UR. Hence, by Theorem 3.5, UR is a radical class. 2
The operator U is called the upper radical operator and UR is called the upper radical of

the class R.

Theorem 4.7 For any semisimple class S and radical class R we have SUS = S and USR = R.

Proof Let S ∈ S Then by using (S1) and definition of upper radical we have S ∈ SUS .

Also, by using (S2) and definition of upper radical we have SUS ⊆ S. Hence SUS = S.

Similarly, using (R1) and (R2) we have USR = R. 2
Theorem 4.8 Every semisimple class S is closed under extensions.

Proof Let I is a k-ideal of the ternary semiring S such that both I, S/I ∈ S. Then

(US(S)+ I)/I is isomorphic to US(S)/(US(S)∩I) and this is in US . Also (US(S)+ I)/I ⊳S/I ∈
S = SUS . Thus (US(S) + I)/I must be 0 and so US(S) ⊆ I.

Now US(S) ⊳ S, also US(S) ⊳ I. Since US(S) ∈ US , we have US(S) = US(I) = 0. Therefore

S ∈ SUS = S and hence the semisimple class S is closed under extensions. 2
Theorem 4.9 The classes R and S are corresponding radical and semisimple classes if and

only if

(i) S ∈ R and S −→ T 6= 0 imply T 6∈ S, that is, R ⊆ US ;

(ii) S ∈ S and a non-zero k-ideal T of S imply T 6∈ R, that is, S ⊆ SR;

(iii) Every ternary semiring S ∈ U has an k-ideal I such that I ∈ R and S/I ∈ S.

Proof If R and S are corresponding radical and semisimple classes, then the if part is

obvious (to get (iii) just take T = R(S)). Conversely, suppose that the classes R and S
satisfying these thrre conditions.

Now, let a ternary semiring S ∈ US . Then by (iii), S has an k-ideal T ∈ R such that

S/T ∈ S and this implies that S/T = 0. Thus S = T ∈ R holds and proving US ⊆ R.

And by using (i) we have R = US . Similarly, we have S = SR. Since, S = SR = SUS , also

S ⊆ SUS holds and this is the regularity of the class S. Hence R = US is a radical class and
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S = SUS = SR the corresponding semisimple class. 2
Proposition 4.10 A semisimple class S is hereditary if and only if the corresponding radical

class R = US satisfies

(S3) R(I) ⊆ R(S), for every k-ideal I of S.

Proof Let (S3) holds, then for any S ∈ S and any k-ideal I of S we have R(I) ⊆ R(S) = 0.

Thus I ∈ S and hence S is hereditary.

Conversely, assume that a semisimple class S is hereditary. Then for any k-ideal I of

S we have (R(I) + R(S))/R(S) ⊳ (I + R(S))/R(S) ⊳ S/R(S) ∈ S. Since S is hereditary,

(I+R(S))/R(S) ∈ S and (R(I)+R(S))/R(S) ∈ S. But this implies that R(I)/(R(I)∩R(S)) ∼=
(R(I) + R(S))/R(S) ∈ R ∩ S = 0. Hence R(I) ⊆ R(S). 2
§5. Hoehnke Radical

With an axiomatic point of view an assignment R : S −→ R(S) designating a certain k-ideal

R(S) to every ternary semiring S is called a Hoehnke radical if:

(i) f(R(S)) ⊆ R(f(S)), for every homomorphism f : S −→ R(S);

(ii) If S ∈ U, then S/R(S) is R-semisimple. i.e. R(S/R(S)) = 0.

A Hoehnke radical R may satisfy also the following conditions:

(iii) R is complete: if I is a k-ideal of S and R(I) = I then I ⊆ R(S);

(iv) R is idempotent: if R(R(S)) = R(S), for every ternary semiring S.

Proposition 5.1 If R is a radical class then the assignment R : S −→ R(S) is a complete,

idempotent Hoehnke radical. Conversely, if R is a complete, idempotent Hoehnke radical, then

there is a radical class ℘ such that R(S) = ℘(S) for every ternary semiring S. Moreover,

℘ = {S/R(S) = S}.

Proof (i) and (ii) is obvious. Since R(S) is a largest R-k-ideal of S. So, for any k-ideal I

of S, R(I) = I implies that I ⊆ R(S). Also, for every ternary semiring S,

R(R(S)) = R(S).

This proves (iii) and (iv).

Conversely, suppose that R is a complete, idempotent Hoehnke radical, and let define the

class ℘ by ℘ = {S/R(S) = S}. If S ∈ ℘ and f : S −→ T is a surjective homomorphism, then

by (i),

T = f(S) = f(R(S)) ⊆ R(f(S)) = R(T ).

So T ∈ ℘. Thus (a) holds for ℘.

If I is any k-ideal of S and R(I) = I then I ⊆ ℘(S) and by (iii), I ⊆ R(℘(S)), therefore

℘(S) = R(℘(S)) which implies that ℘(S) is a largest ℘-k-ideal of S. Thus (b) holds for ℘.
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Now, ℘(S) = R(℘(S)) and (iii) implies that ℘(S) ⊆ R(S). But by (iv), R(S) ⊆ ℘(S).

Thus R(S) = ℘(S) for every ternary semiring S. Therefore

℘(S/℘(S)) = R(S/R(S)) = 0

and (c) holds for ℘. 2
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Abstract: A topological index can be considered as transformation of chemical structure

into real number which can be used for correlation with Physical properties in Quantitative

Structure Activity Relationship (QSAR) and Quantitative Structure Property Relationship

(QSPR) studies. Adriatic indices are part of topological indices they were scrutinized on the

testing sets provided by the International Academy of Mathematical Chemistry (IAMC) and

it has been shown that they have good predictive properties in many cases. In this article,

we compute some Adriatic indices of certain classes of derived-regular graph.

Key Words: Topological indices, line graph, subdivision graph, edge-semi total graph,

vertex-semi total graph, Smarandachely vertex-semitotal graph, Smarandachely edge-

semitotal graph, total graph, jump graph and para-line graph.
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§1. Introduction

A molecular graph is a graph in which the vertices correspond to the atoms and the edges to the

bonds of a molecule. A single number that can be computed from the molecular graph, and used

to characterize some property of the underlying molecule is said to be a topological index or

molecular structure descriptor. Numerous such descriptors have been considered in theoretical

chemistry, and have found application in various areas of chemistry, physics, mathematics,

informatics, biology. Recently [17], D. Vukicevic revealed the set of 148 discrete Adriatic indices.

They ever analyzed on the testing sets provided by the International Academy of Mathematical

Chemistry and it had been shown that they have good predictive properties in many cases.

The graphs considered here are finite, undirected, without loops and multiple edges. Let

G = (V, E) be a connected graph with |V (G)| = n vertices and |E(G)| = m edges. The degree

du of a vertex u is the number of vertices adjacent to u. The edge connecting the vertices u
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and v will be denoted by uv. For other definitions and notations, the reader may refer to [3].

Definitions 1.1 Let αm(G) be the misbalance type index where m ∈ {− 1
2 , 1

2 ,−1, 1}, then it is

defined as

αm(G) =
∑

uv∈E(G)

|dm
u − dm

v | . (1)

Now,

• The m = − 1
2 corresponds to misbalnce irdeg index is defined as

α− 1
2
(G) =

∑

uv∈E(G)

∣

∣

∣

∣

1√
du

− 1√
dv

∣

∣

∣

∣

. (2)

• The m = 1
2 corresponds to misbalnce rodeg index is defined by

α 1
2
(G) =

∑

uv∈E(G)

∣

∣

∣

√

du −
√

dv

∣

∣

∣ . (3)

• The m = −1 corresponds to misbalnce indeg index is defined to be

α−1(G) =
∑

uv∈E(G)

|du − dv| . (4)

• The m = 1 corresponds to misbalnce deg index defined by

α1(G) =
∑

uv∈E(G)

|du − dv| . (5)

The misbalance haddeg index-MHD is defined by

MHD =
∑

uv∈E(G)

∣

∣

∣

∣

1

2du
− 1

2du

∣

∣

∣

∣

. (6)

These are the significant predictor of enthalpy of vaporisation and of standard enthalpy of

vaporisation for octane isomers for more information the reader can see [17]. In forthcoming

sections, we established misbalance degree based adriatic indices of regular and complete bipar-

tite graph using some operators such as line, subdivision, semi-total(vertex and edge) graph,

total, jump and para-line graphs.

§2. Line Graph

In this section, we established misbalance type degree based adriatic indices of line graph of

regular and complete bipartite graph.

The line graph L(G) of a graph G is that graph whose vertices can be put in one-to-

one correspondence with the edges of G in such a way that two vertices of L(G) are adjacent
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whenever the corresponding edges of G are adjacent. For more details, the reader refers to [1].

Corollary 2.1 Let G be a r- regular graph with n ≥ 2 vertices. Then, αm(L(G)) = 0, ∀m ∈
{− 1

2 , 1
2 ,−1, 1} iff the equality holds for MHD(L(G)).

Corollary 2.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then,

αm(L(Kr,s)) = 0, ∀m ∈ {− 1
2 , 1

2 ,−1, 1} iff the equality holds for MHD(L(Kr,s)).

§3. Subdivision Graph

In this section, we established misbalance type degree based adriatic indices of subdivision

graph of regular and complete bipartite graph.

The subdivision graph S(G) is the graph obtained from G by replacing each of its edges

by a path of length two, or equivalently, by inserting an additional vertex into each edge of G

with vertex set V (G) ∪ E(G). For more details, refer to [10].

Theorem 3.1 Let G be a r- regular graph with n ≥ 2 vertices. Then

αm(S(G)) =



























nr
∣

∣

∣

√
r−

√
2√

2r

∣

∣

∣ when m = − 1
2 ;

nr
∣

∣

√
2 −√

r
∣

∣ when m = 1
2 ;

n
∣

∣

r−2
2

∣

∣ when m = −1;

nr|2 − r| when m = 1,

MHD(S(G)) = nr
∣

∣2−2 − 2−r
∣

∣ .

Proof Let G be a r- regular graph with n ≥ 2 vertices. By algebraic method, the cardinality

for vertex and edge set is n + nr
2 and nr respectively. The edge set as follows E1 = {uv ∈

E(S(G)) : dS(G)(u) = 2, dS(G)(v) = r}; Then by deploying these cardinalities for the definition

of misbalance type degree indices the required results are obtained. 2
Theorem 3.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then

αm(S(Kr,s)) =



























rs
[∣

∣

∣

√
r−

√
2√

2r

∣

∣

∣+
∣

∣

∣

√
s−

√
2√

2s

∣

∣

∣

]

when m = − 1
2 ;

rs
[∣

∣

√
2 −√

r
∣

∣+
∣

∣

√
2 −√

s
∣

∣

]

when m = 1
2 ;

rs
[∣

∣

r−2
2r

∣

∣+
∣

∣

s−2
2s

∣

∣

]

when m = −1;

rs[|2 − r| + |2 − s|] when m = 1;

MHD(S(Kr,s)) = rs
∣

∣2−2 − 2−r
∣

∣+
∣

∣2−2 − 2−s
∣

∣ .

Proof Let Kr,s be complete bipartite graph with (r + s) vertices. By algebraic method,

the cardinality for vertex and edge set is r + s + rs and 2rs respectively.

The two partitions of the edge set E(S(Kr,s)) as follows:

E1 = {uv ∈ E(S(Kr,s)) : dS(Kr,s)(u) = 2, dS(Kr,s)(v) = r},
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E2 = {uv ∈ E(S(Kr,s)) : dS(Kr,s)(u) = 2, dS(Kr,s)(v) = s}.
The cardinality for edge set E1 and E2 is rs. Then by deploying these cardinalities for the

definition of misbalance type degree indices the required results are obtained. 2
§4. Vertex-Semitotal Graph

In this section, we established misbalance type degree based adriatic indices of vertex-semitotal

graph of regular and complete bipartite graph.

The vertex-semitotal graph T1(G) with vertex set V (G)∪E(G) and edge set E(S(G))∪E(G)

is the graph obtained from G by adding a new vertex corresponding to each edge of G and by

joining each new vertex to the end vertices of the edge corresponding to it. Generally, a

Smarandachely vertex-semitotal graph T S1
E1

(G) on edge set E1 ⊂ E(G) is such a graph with

vertex set V (G)∪E1(G) and edge set E1(S(G))∪E(G). Clearly, T S1
E1

(G) = T1(G) if E1 = E(G).

Theorem 4.1 Let G be a r- regular graph with n ≥ 2 vertices. Then

αm(T1(G)) =



























nr
∣

∣

∣

√
r−1√
2r

∣

∣

∣
when m = − 1

2 ;

nr
∣

∣

√
2 [1 −√

r]
∣

∣ when m = 1
2 ;

n
∣

∣

r−1
r

∣

∣ when m = −1;

nr|2[1 − r]| when m = 1,

MHD(T1(G)) = nr|2−2 − 2−2r|.

Proof Let G be a r- regular graph with n ≥ 2 vertices. By algebraic method, the cardinality

for vertex and edge set is nr
2 + n and 3nr

2 respectively.

The two partitions of the edge set E(T1(G)) as follows:

E1 = {uv ∈ E(T1(G)) : dT1(G)(u) = 2, dT1(G)(v) = 2r},
E2 = {uv ∈ E(T1(G)) : dT1(G)(u) = dT1(G)(v) = 2r}.
The cardinalities of edge sets E1, E2 are nr, nr

2 , respectively. Then, by deploying these

cardinalities for the definition of misbalance type indices the required results are obtained. 2
Theorem 4.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then

αm(T1(Kr,s)) =



























rs
[∣

∣

∣

1−√
r√

2r

∣

∣

∣+
∣

∣

∣

1−√
s√

2s

∣

∣

∣

]

when m = − 1
2 ;

rs
[∣

∣

√
2 [
√

r − 1]
∣

∣+
∣

∣

√
2 [
√

s − 1]
∣

∣

]

when m = 1
2 ;

rs
[∣

∣

1−r
2r

∣

∣+
∣

∣

1−s
2s

∣

∣

]

when m = −1

rs [|2[r − 1]| + |2[s − 1]|] when m = 1,

MHD(T1(Kr,s)) = rs
[∣

∣2−2r − 2−2
∣

∣+
∣

∣2−2s − 2−2
∣

∣

]

.

Proof If Kr,s is a complete bipartite graph with (r + s) - vertices and rs - edges, the
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cardinality for vertex and edge set is r + s + rs and 3rs respectively.

The three partitions of the edge set E(T1(Kr,s)) as follows:

E1 = {uv ∈ E(T1(Kr,s)) : dT1(Kr,s)(u) = 2r, dT1(Kr,s)(v) = 2},
E2 = {uv ∈ E(T1(Kr,s)) : dT1(Kr,s)(u) = 2s, dT1(Kr,s)(v) = 2},
E3 = {uv ∈ E(T1(Kr,s)) : dT1(Kr,s)(u) = 2r, dT1(Kr,s)(v) = 2s}.

The cardinalities of edge sets E1, E2 and E3 are rs. Then by deploying these cardinalities

for the definition of misbalance type indices obtained the required results. 2
By above result with r = s, the complete regular bipartite graph Kr,r with r > 2.

§5. Edge-Semitotal Graph

In this section, misbalance type degree based adriatic indices of edge-semitotal graph of regular

and complete bipartite graph are studied.

An edge-semitotal graph T2(G) with vertex set V (G) ∪ E(G) and edge set E(S(G)) ∪
E(L(G)) is the graph obtained from G by inserting a new vertex into each edge of G and by

joining with edges those pairs of these new vertices which lie on adjacent edges of G. Generally,

a Smarandachely edge-semitotal graph T S2
E1

(G) on edge set E1 ⊂ E(G) is such a graph with

vertex set V (G) ∪ E1(G) and edge set E1(S(G)) ∪ E (E1 ∩ L(G)). Clearly, T S2
E1

(G) = T2(G) if

E1 = E(G).

Theorem 5.1 Let G be a r- regular graph with n ≥ 2 vertices. Then

αm(T2(G)) =



























nr
∣

∣

∣

√
2−1√
2r

∣

∣

∣ when m = −1
2 ;

nr
∣

∣

√
r
[

1 −
√

2
]∣

∣ when m = 1
2 ;

n
2 when m = −1;

r2 when m = 1,

MHD(T2(G)) = r
∣

∣2−r − 2−2r
∣

∣ .

Proof Let G be a r- regular graph with n ≥ 2 vertices. By algebraic method, the cardinality

for vertex and edge set is nr
2 + n and nr

2 (r + 1) respectively.

The two partitions of the edge set E(T2(H)) as follows:

E1 = {uv ∈ E(T2(G)) : dT2(G)(u) = r, dT2(G)(v) = 2r},
E2 = {uv ∈ E(T2(G)) : dT2(G)(u) = dT2(G)(v) = 2r}.

Then, the cardinalities of edge sets E1 and E2 are rn and
rn

2
(r − 1) respectively. By

deploying these cardinalities for the definition of misbalance type indices, obtained the required

results. 2
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Theorem 5.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then

αm(T2(Kr,s)) =































rs
[∣

∣

∣

√
r+s−√

r√
r(

√
r+s)

∣

∣

∣
+
∣

∣

∣

√
r+s−√

s√
s(
√

r+s)

∣

∣

∣

]

when m = −1
2 ;

rs
[∣

∣

√
r −√

r + s
∣

∣+
∣

∣

√
s −√

r + s
∣

∣

]

when m = 1
2 ;

rs
[∣

∣

∣

s
r(r+s)

∣

∣

∣+
∣

∣

∣

r
s(r+s)

∣

∣

∣

]

when m = −1;

rs[s + r] when m = 1,

MHD(T2(Kr,s)) = rs
[∣

∣

∣2−r − 2−(r+s)
∣

∣

∣+
∣

∣

∣2−s − 2−(r+s)
∣

∣

∣

]

.

Proof Let Kr,s be complete bipartite graph with (r + s) vertices. By algebraic method,

the cardinality for vertex and edge set is r + s + rs and sr[1 + 1
2 (r + s)] respectively.

The three partitions of the edge set E(T2(Kr,s)) as follows:

E1 = {uv ∈ E(T2(Kr,s)) : dT2(Kr,s)(u) = r, dT2(Kr,s)(v) = r + s},
E2 = {uv ∈ E(T2(Kr,s)) : dT2(Kr,s)(u) = s, dT2(Kr,s)(v) = r + s},
E3 = {uv ∈ E(T2(Kr,s)) : dT2(Kr,s)(u) = dT2(Kr,s)(v) = r + s}.

The cardinalities of edge sets E1 and E2 are rs and the cardinality for edge set E3 is
1

2
rs [r + s − 2]. Then by utilizing these cardinalities for the definition of misbalance type

indices, obtained the required results. 2
By above result with r = s, the complete regular bipartite graph Kr,r with r > 1.

§6. Total Graph

In this section, the misbalance type degree based adriatic indices of total graph of regular and

complete bipartite graph are reckoned.

The total graph of a graph G is denoted by T (G) with vertex set V (G) ∪ E(G) and any

two vertices of T (G) are adjacent if and only if they are either incident or adjacent in G. For

more details, refer to [1].

Corollary 6.1 Let G be a r- regular graph with n ≥ 2 vertices. Then αm(T (G)) = 0, ∀m ∈
{− 1

2 , 1
2 ,−1, 1} iff the equality holds for MHD(T (G)).

Theorem 6.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then

αm(T (Kr,s) =



































rs

[

∣

∣

∣

√
2r−

√
2s

2
√

rs

∣

∣

∣+

∣

∣

∣

∣

√
r+s−

√
2s√

2s(r+s)

∣

∣

∣

∣

+

∣

∣

∣

∣

√
r+s−

√
2r√

2r(r+s)

∣

∣

∣

∣

]

when m = − 1
2 ;

rs
[∣

∣

√
2 [
√

s −√
r]
∣

∣+
∣

∣

√
2s −√

r + s
∣

∣+
∣

∣

√
2r −√

r + s
∣

∣

]

when m = 1
2 ;

rs
[

∣

∣

r−2
sr

∣

∣+
∣

∣

∣

r−s
2s(r+s)

∣

∣

∣+
∣

∣

∣

s−r
2r(r+s)

∣

∣

∣

]

when m = −1;

rs[|2(s − r)| + |s − r| + |r − s|] when m = 1,
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MHD(T (Kr,s) = rs
[

∣

∣2−2 − 2−2r
∣

∣+
∣

∣

∣2−2s − 2−(r+s)
∣

∣

∣+
∣

∣

∣2−2r − 2−(r+s)
∣

∣

∣

]

.

Proof Let Kr,s be complete bipartite graph with (r + s) vertices. By algebraic method,

the cardinality for vertex and edge set is r + s + rs and 1
2rs(r + s− 2) + 3rs respectively. The

four partitions of the edge set E(T (Kr,s)) as follows:

E1 = {uv ∈ E(T (Kr,s)) : dT (Kr,s)(u) = 2s, dG(v) = 2r},
E2 = {uv ∈ E(T (Kr,s)) : dT (Kr,s)(u) = 2s, dT (Kr,s)(v) = r + s},
E3 = {uv ∈ E(T (Kr,s)) : dT (Kr,s)(u) = 2r, dT (Kr,s)(v) = r + s},
E4 = {uv ∈ E(T (Kr,s)) : dT (Kr,s)(u) = dT (Kr,s)(v) = r + s}.
Then, the cardinalities of edge sets E1, E2 and E3 are rs and the cardinality of edge set

E4 is 1
2rs (r + s − 2). Then by deploying these cardinalities for the definition of misbalance

type indices, obtained the required results. 2
By above result with r = s, the complete regular bipartite graph Kr,r with r > 2.

§7. Jump Graph

In this section, the misbalance type degree based adriatic indices of jump graph of regular and

complete bipartite graph are studied.

The jump graph J(G) of a graph G defined on E(G) and in which two vertices are adjacent

if and only if they are not adjacent in G.

Corollary 7.1 Let G be a r- regular graph with n ≥ 2 vertices. Then αm(J(G)) = 0, ∀m ∈
{− 1

2 , 1
2 ,−1, 1} iff the equality holds for MHD(J(G)).

Corollary 7.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then αm(J(Kr,s)) =

0, ∀m ∈ {− 1
2 , 1

2 ,−1, 1} iff the equality holds for MHD(J(Kr,s)).

§8. Para-Line Graph

In this section, the misbalance type degree based adriatic indices of para-line graph of regular

and complete bipartite graph are reckoned.

Given a graph G, insert two vertices to each edge xy of G. Those two vertices will be

denoted by (x, y), (y, x) where (x, y) (resp.(y, x)) is the one incident to x(resp.y). The vertex

set and the edge set as follows:

V (P (G)) = (x, y) ∈ V (G) × V (G); xy ∈ E(G),

E(P (G)) = (((x, w), (x, z)); (x, w), (x, z) ∈ V (P (G)), w 6= z) ∪ ((x, y), (y, x); xy ∈ E(G)).

The resultant graph is called a para-line graph and denoted by P (G).

Corollary 8.1 Let G be a r- regular graph with n ≥ 2 vertices. Then αm(P (G)) = 0, ∀m ∈
{− 1

2 , 1
2 ,−1, 1} iff the equality holds for MHD(P (G)).
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Theorem 8.2 Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s vertices. Then,

αm(P (Kr,s)) =



























rs
∣

∣

∣

√−√
r√

rs

∣

∣

∣
when m = − 1

2 ;

|√r −√
s| when m = 1

2 ;

|s − r| when m = −1

rs|r − s| when m = 1,

MHD(P (Kr,s)) = rs
∣

∣2−r − 2−s
∣

∣

Proof Let Kr,s be complete bipartite graph with (r + s) vertices. By algebraic method,

the cardinality for vertex and edge set is 2rs and rs(r+s)
2 respectively. The three partitions of

the edge set E(P (Kr,s)) as follows:

E1 = {uv ∈ E(P (Kr,s)) : dP (Kr,s)(u) = r, dG(v) = s},
E2 = {uv ∈ E(P (Kr,s)) : dP (Kr,s)(u) = s, dP (Kr,s)(v) = r},
E3 = {uv ∈ E(P (Kr,s)) : dP (Kr,s)(u) = dP (Kr,s)(v) = s}.
Then the cardinalities of edge sets E1, E2 and E3 are rs, rs( r−1

2 ) and rs( s−1
2 ), respectively.

By deploying these cardinalities for the definition of misbalance type indices, the required results

are obtained. 2
§9. Conclusion

In this paper we established misbalance degree based adriatic indices of regular and complete

bipartite graph using some operators such as line, subdivision, semi total (vertex and edge)

graph, total, jump and para-line graphs. In future we will pay attention to some new classes

of operations on graphs and study their adriatic indices which will be practically helpful to

identify underlying topologies.
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§1. Introduction

The concept of counting polynomial was first introduced in chemistry by Polya [5] in 1936.

However the subject received attention from chemists for several decades even though the

spectra of the characteristic polynomial of graphs were studied extensively by numerical means

in order to obtain the molecular orbitals of unsaturated hydrocarbons.

The Hosoya polynomial of a graph was introduced in the Hosoya’s seminal paper [4] in 1988

and received a lot of attention afterwards. The polynomial was later independently introduced

and considered by Sagan, Yeh and Zhang [7] under the name Wiener polynomial of a graph.

Both names are still used for the polynomial but the term Hosoya polynomial is nowadays used

by majority of researchers. The main advantage of the Hosoya polynomial is that it contains a

wealth of information about distance based graph invarients. For instance, knowing the Hosoya

polynomial of graph, it is straightforward to determine the Wiener index of a graph as the first

derivative of the polynomial at variable x = 1. Cash [1] noticed that the hyper-Wiener index

can be obtained from the Hosoya polynomial in a similar simple manner. Also, Estrada et al.

[2] studied several chemical applications of the Hosoya polynomial.

Let G be a connected graph on n vertices with vertex set V (G) and edge set E(G). If

d(G, k) is the number of unordered pairs of its vertices that are at distance k, then the Hosoya

polynomial is defined as

H(G, x) =
∑

k≥0

d(G, k)xk. (1)
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is thankful to Ministry of Tribal Affairs, Govt. of India, New Delhi for awarding National Fellowship for Higher
Education No. 2017 18-NFST-KAR-01182.

2Received March 6, 2019, Accepted August 29, 2019.



Reciprocal Transmission Hosoya Polynomial of Graphs 71

The reciprocal transmission (status) of a vertex u of a graph G is defined as [6]

rs(u) =
∑

v∈V (G),u6=v

1

d(u, v)
.

The first reciprocal transmission (status) connectivity index of a graph G is defined as [?]

RS1(G) =
∑

uv∈E(G)

[rs(u) + rs(v)] .

The reciprocal transmission Hosoya polynomial of a graph G is defined as

Hrs(G, x) =
∑

uv∈E(G)

xrs(u)+rs(v). (2)

where rs(u) is the reciprocal transmission of a vertex u.

Figure 1

For a graph given in Figure 1, rs(v1) = 2.58, rs(v2) = 3.83, rs(v3) = 3.5, rs(v4) = 3.83,

rs(v5) = 2.58 and rs(v6) = 3.5. Therefore

Hrs(G, x) = 2x6.41 + 4x7.33.

§2. Reciprocal Transmission Hosoya Polynomial of Some Class of Graphs

Proposition 2.1 Let G be a connected graph with n vertices and m edges. Let diam(G) ≤ 2

and d(u) be the degree of a vertex u in G. Then

Hrs(G, x) = xn−1
∑

uv∈E(G)

x
1
2
(d(u)+d(v)). (3)

Proof If diam(G) ≤ 2, then d(u) number of vertices are at distance 1 from the vertex u

and the remaining n−1−d(u) vertices are at distance 2. Hence rs(u) = d(u)+ 1
2 (n − 1 − d(u)) .
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Therefore,

rs(u) + rs(v) = (n − 1) +
1

2
(d(u) + d(v)).

Hence, from Eq.(2) we get

Hrs(G, x) =
∑

uv∈E(G)

xrs(u)+rs(v)

=
∑

uv∈E(G)

x((n−1)+ 1
2
(d(u)+d(v))) = x(n−1)

∑

uv∈E(G)

x
1
2
(d(u)+d(v)). 2

Proposition 2.2 Let G be a connected graph on n vertices and m edges. Then the first

reciprocal transmission connectivity index RS1(G) = d
dxHrs(G, x)|x=1.

Corollary 2.3 Let G be a connected r-regular graph on n vertices and m edges. Let diam(G) ≤
2. Then

Hrs(G, x) = mxr+n−1. (4)

Proof Since degree of each vertex is r, then by Proposition 2.1 we have,

Hrs(G, x) = xn−1
∑

uv∈E(G)

xr = mxr+n−1. 2
Corollary 2.4 For a complete bipartite graph Kp,q on n = p + q vertices,

Hrs(Kp,q, x) = pqx
3
2
(p+q)−1. (5)

Proof The graph Kp,q has n = p + q vertices and m = pq edges. Also diam(Kp,q) ≤ 2.

The vertex set V (Kp,q) can be partitioned into two sets V1 and V2 such that for every edge uv

of Kp,q, the vertex u ∈ V1 and v ∈ V2, where |V1| = p and |V2| = q. Therefore d(u) = q and

d(v) = p. Therefore, by Proposition 2.1 we have

Hrs(Kp,q, x) = xn−1
∑

uv∈E(Kp,q)

x
1
2
(d(u)+d(v))

= xp+q−1
∑

uv∈E(Kp,q)

x
1
2
(p+q) = pqx

3
2
(p+q)−1. 2

Proposition 2.5 For a cycle Cn on n ≥ 3 vertices,

Hrs(Cn, x) =



















nx
4

(

1
n

+
∑

n−2
2

i=1
1
i

)

, if n is even

nx4
∑

n−1
2

i=1
1
i , if n is odd.

(6)
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Proof If n is even number, then for every vertex u of Cn,

rs(u) =
2

n
+ 2

n−2

2
∑

i=1

1

i
.

Therefore, from Eq.(2) we have

Hrs(Cn, x) =
∑

uv∈E(Cn)

xrs(u)+rs(v)

=
∑

uv∈E(Cn)

x
4

(

1
n

+
∑

n−2
2

i=1
1
i

)

= nx
4

(

1
n

+
∑

n−2
2

i=1
1
i

)

.

If n is odd number, then for every vertex u of Cn,

rs(u) = 2

n−1

2
∑

i=1

1

i
.

Therefore from Eq.(2) we have

Hrs(Cn, x) =
∑

uv∈E(Cn)

xrs(u)+rs(v)

=
∑

uv∈E(Cn)

x4
∑

n−1
2

i=1
1
i = nx4

∑

n−1
2

i=1
1
i . 2

Proposition 2.6 For a wheel Wn+1, n ≥ 3,

Hrs(Wn+1, x) = n
[

x
3
2
(n+1) + xn+3

]

. (7)

Proof A wheel graph Wn+1 has n + 1 vertices and 2n edges. Also diam(Wn+1) ≤ 2.

The edge set E(Wn+1) can be partitioned into two sets E1, E2, such that E1 = {uv | d(u) =

n and d(v) = 3} and E2 = {uv | d(u) = 3 and d(v) = 3}. It is easy to check that |E1| = n

and |E2| = n and diam(Wn+1) ≤ 2. Therefore from Proposition 2.1 we get

Hrs(Wn+1, x) = xn+1−1
∑

uv∈E(Wn+1)

x
1
2
(d(u)+d(v))

= xn





∑

uv∈E1(Wn+1)

x
1
2
(d(u)+d(v)) +

∑

uv∈E2(Wn+1)

x
1
2
(d(u)+d(v))





= xn
[

nx
1
2
(n+3) + nx

1
2
(3+3)

]

= xnn
[

x
1
2
(n+3) + x3

]

= n
[

x
3
2
(n+1) + xn+3

]

. 2
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Proposition 2.7 For a friendship graph Fn, n ≥ 2,

Hrs(Fn, x) = n
[

2x3n+1 + x2(n+1)
]

. (8)

Proof The edge set E(Fn) can be partitioned into two sets E1 and E2, such that E1 =

{uv | d(u) = 2n and d(v) = 2} and E2 = {uv | d(u) = 2 and d(v) = 2}. It is easy to check

that |E1| = 2n and |E2| = n and diam(Fn) = 2. Therefore by Proposition 2.1, we have

Hrs(Fn, x) = x2n+1−1
∑

uv∈E(Fn)

x
1
2
(d(u)+d(v))

= x2n





∑

uv∈E1(Fn)

x
1
2
(d(u)+d(v)) +

∑

uv∈E2(Fn)

x
1
2
(d(u)+d(v))





= x2n





∑

uv∈E1(Fn)

x
1
2
(2n+2) +

∑

uv∈E2(Fn)

x
1
2
(2+2)





= x2n
[

2nxn+1 + nx2
]

= n
[

2x3n+1 + x2(n+1)
]

. 2
§3. Reciprocal Transmission Hosoya Polynomial of Cluster Graphs

Graphs with large number of edges are referred as cluster graphs [3].

Definition 3.1([3]) Let ei, i = 1, 2, · · · , k, 1 ≤ k ≤ n − 2, be the distinct edges of a complete

graph Kn, n ≥ 3, all being incident to a single vertex. The graph Kan(k) is obtained by deleting

ei, i = 1, 2, · · · , k from Kn. In addition Kan(0) ∼= Kn.

Definition 3.2([3]) Let fi, i = 1, 2, · · · , k, 1 ≤ k ≤ ⌊n
2 ⌋ be independent edges of the complete

graph Kn, n ≥ 3. The graph Kbn(k) is obtained by deleting fi, i = 1, 2, · · · , k from Kn. In

addition Kbn(0) ∼= Kn.

Definition 3.3([3]) Let Vk be a k-element subset of the vertex set of the complete graph Kn,

2 ≤ k ≤ n−1, n ≥ 3. The graph Kcn(k) is obtained by deleting from Kn all the edges connecting

pairs of vertices from Vk. In addition Kcn(0) ∼= Kcn(1) ∼= Kn.

Definition 3.4([3]) Let 3 ≤ k ≤ n, n ≥ 3. The graph Kdn(k) is obtained by deleting from the

complete graph Kn, the edges belonging to a k-membered cycle.

Proposition 3.5 For n ≥ 3 and 1 ≤ k ≤ n − 2,

Hrs(Kan(k), x) = xn−1

[

(n − k − 1)x
1
2
(2n−k−2) +

k(k − 1)

2
xn−2

+(n − k − 1)kx
1
2
(2n−3) +

(n − k − 1)(n − k − 2)

2
xn−1

]

.
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Proof The graph Kan(k) has n vertices,
(

n(n−1)
2 − k

)

edges. The edge set E(Kan(k)) can

be partitioned into four sets E1, E2, E3 and E4, where E1 = {uv | d(u) = n−1−k and d(v) =

n−1}, E2 = {uv | d(u) = n−2 and d(v) = n−2}, E3 = {uv | d(u) = n−2 and d(v) = n−1}
and E4 = {uv | d(u) = n − 1 and d(v) = n − 1}. It is easy to check that |E1| = n − k − 1,

|E2| = k(k−1)
2 , |E3| = (n − k − 1)k and |E4| = (n−k−1)(n−k−2)

2 . Also diam(Kan(k)) ≤ 2.

Therefore, from Proposition 2.1 we have

Hrs(Kan(k), x) = xn−1
∑

uv∈E(Kan(k))

x
1
2
(d(u)+d(v))

= xn−1





∑

uv∈E1(Kan(k))

x
1
2
(d(u)+d(v)) +

∑

uv∈E2(Kan(k))

x
1
2
(d(u)+d(v))

+
∑

uv∈E3(Kan(k))

x
1
2
(d(u)+d(v)) +

∑

uv∈E4(Kan(k))

x
1
2
(d(u)+d(v))





= xn−1





∑

uv∈E1(Kan(k))

x
1
2
(2n−k−2) +

∑

uv∈E2(Kan(k))

xn−2

+
∑

uv∈E3(Kan(k))

x
1
2
(2n−3) +

∑

uv∈E4(Kan(k))

xn−1





= xn−1

[

(n − k − 1)x
1
2
(2n−k−2) +

k(k − 1)

2
xn−2

+(n − k − 1)kx
1
2
(2n−3) +

(n − k − 1)(n − k − 2)

2
xn−1

]

. 2
Proposition 3.6 For n ≥ 3 and 1 ≤ k ≤ ⌊n

2 ⌋,

Hrs(Kbn(k), x) = xn−1

[

2k(n − 2k)x
1
2
(2n−3) +

(n − 2k)(n − 2k − 1)

2
xn−1

+

(

2k(2k − 1)

2
− k

)

xn−2

]

.

Proof The graph Kbn(k) has n vertices and
(

n(n−1)
2 − k

)

edges and diam(Kbn(k)) =

2. The edge set E(Kbn(k)) can be partitioned into three sets E1, E2 and E3, where E1 =

{uv | d(u) = n − 2 and d(v) = n − 1}, E2 = {uv | d(u) = n − 1 and d(v) = n − 1} and

E3 = {uv | d(u) = n − 2 and d(v) = n − 2}. It is easy to check that |E1| = 2k(n − 2k),

|E2| = (n − 2k)(n − 2k − 1)/2 and |E3| = (2k(2k − 1)/2) − k.
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Therefore, from Proposition 2.1 we have

Hrs(Kbn(k), x) = x
n−1

∑

uv∈E(Kbn(k))

x
1
2
(d(u)+d(v))

= x
n−1





∑

uv∈E1(Kbn(k))

x
1
2
(d(u)+d(v)) +

∑

uv∈E2(Kbn(k))

x
1
2
(d(u)+d(v))

+
∑

uv∈E3(Kbn(k))

x
1
2
(d(u)+d(v))





= x
n−1





∑

uv∈E1(Kbn(k))

x
1
2
(2n−3) +

∑

uv∈E2(Kbn(k))

x
n−1

+
∑

uv∈E3(Kbn(k))

x
(n−2)





= x
n−1

[

2k(n − 2k)x
1
2
(2n−3) +

(n − 2k)(n − 2k − 1)

2
x

n−1

+

(

2k(2k − 1)

2
− k

)

x
n−2

]

. 2
Proposition 3.7 For n ≥ 3 and 2 ≤ k ≤ n − 1,

Hrs(Kcn(k), x) = xn−1

[

(n − k)kx
1
2
(2n−k−1) +

(n − k)(n − k − 1)

2
xn−1

]

.

Proof The graph Kcn(k) has n vertices and 1
2 (n−k)(n+k−1) edges. Also diam(Kcn(k)) =

2. The edge set E(Kcn(k)) ca be partitioned into two sets E1 and E2, where E1 = {uv | d(u) =

n− k and d(v) = n− 1} and E2 = {uv | d(u) = n− 1 and d(v) = n− 1}. It is easy to check

that |E1| = (n− k)k and |E2| = (n− k)(n− k − 1)/2. Therefore, from Proposition 2.1 we have

Hrs(Kcn(k), x) = x
n−1

∑

uv∈E(Kcn(k))

x
1
2
(d(u)+d(v))

= x
n−1





∑

uv∈E1(Kcn(k))

x
1
2
(d(u)+d(v)) +

∑

uv∈E2(Kcn(k))

x
1
2
(d(u)+d(v))





= x
n−1





∑

uv∈E1(Kcn(k))

x
2
2
(n−k−+n−1) +

∑

uv∈E2(Kcn(k))

x
1
2
(2(n−1))





= x
n−1

[

(n − k)kx
1
2
(2n−k−1) +

(n − k)(n − k − 1)

2
x

n−1

]

. 2
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Proposition 3.8 For 3 ≤ k ≤ n and n ≥ 5,

Hrs(Kdn(k), x) = xn−1
[

((k(k − 1)/2) − k)xn−3 + (n − k)kxn−2

+ ((n − k)(n − k − 1)/2)xn−1
]

.

Proof The graph Kdn(k) has n vertices and n(n − 1)/2− k edges. Also diam(Kdn(k)) =

2. The edge set E(Kdn(k)) can be partitioned into three sets E1, E2 and E3, where E1 =

{uv | d(u) = n − 3 and d(v) = n − 3}, E2 = {uv | d(u) = n − 3 and d(v) = n − 1} and

E3 = {uv | d(u) = n − 1 and d(v) = n − 1}. It is easy to check that |E1| = (k(k − 1)/2) −
k, |E2| = (n − k)k and |E3| = (n− k)(n− k − 1)/2. Therefore, from Proposition 2.1 we have,

Hrs(Kdn(k), x) = xn−1
∑

uv∈E(Kdn(k))

x
1
2
(d(u)+d(v))

= xn−1





∑

uv∈E1(Kdn(k))

x
1
2
(d(u)+d(v)) +

∑

uv∈E2(Kdn(k))

x
1
2
(d(u)+d(v))

+
∑

uv∈E3(Kdn(k))

x
1
2
(d(u)+d(v))





= xn−1





∑

uv∈E1(Kdn(k))

x
1
2
(2(n−3)) +

∑

uv∈E2(Kdn(k))

x
1
2
(2n−4)

+
∑

uv∈E3(Kdn(k))

x
1
2
(2(n−1))





= xn−1
[

((k(k − 1)/2)− k)xn−3 + (n − k)kxn−2

+ ((n − k)(n − k − 1)/2)xn−1
]

. 2
§4. Reciprocal Transmission Hosoya Polynomial of Some Reciprocal

Transmission Distance Balanced Graphs

A bijection ∝ on V (G) is called automorphism of G if it preserves E(G). In other words, ∝ is

an automorphism if for each u, v ∈ V (G), e = uv ∈ E(G) if and only if

∝ (e) =∝ (u) ∝ (v) ∈ E(G).

Let Aut(G) = {∝ | ∝: V (G) → V (G) is a bijection, which preserves the adjacency}.
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It is known that Aut(G) forms a group under the composition of mappings. A graph G is

called vertex-transitive if for every two vertices u and v of G, there exists an automorphism ∝
of G such that ∝ (u) =∝ (v).

Theorem 4.1([6]) Let G be a connected graph on n vertices with the automorphism group

Aut(G) and the vertex set V (G). Let V1, V2, · · · , Vt be all orbits of the action Aut(G) on V (G).

Suppose that for each 1 ≤ i ≤ t, ki are the reciprocal transmission of vertices in the orbit Vi,

respectively. Then

H(G) =
1

2

t
∑

i=1

|Vi|ki.

Specially if G is vertex-transitive (i.e., t = 1), then

H(G) =
1

2
nk,

where k is the reciprocal transmission of each vertex of G.

Analogous to Theorem 4.1 and as a consequence of Proposition 2.1, we have the following.

Lemma 4.2 Let G be a connected k-reciprocal transmission regular graph with m edges and

diam(G) ≤ 2. Then

Hrs(G, x) = mxn+k−1.

Proof For any k-reciprocal transmission distance balanced graph, rs(u) = k for every

vertex u ∈ V (G). Therefore, from Eq.(2) we have,

Hrs(G, x) = xn−1
∑

uv∈E(G)

x
1
2
(rs(u)+rs(v))

= xn−1
∑

uv∈E(G)

x
1
2
(2k) = xn−1mxk = mxk+n−1. 2

Theorem 4.3 Let G be a connected graph on n vertices with automorphism group Aut(G) and

the vertex set V (G). Let V1, V2, · · · , Vt be all orbits of the action Aut(G) on V (G). Suppose that

for each 1 ≤ i ≤ t, di and ki are the vertex degree and the reciprocal transmission of vertices in

the orbit Vi, respectively. Then

Hrs(G, x) =
nd

2
xn+k−1,

where d and k are the degree and the reciprocal transmission of each vertex of G respectively.

Proof Applying Theorem 4.1 and Lemma 4.2, we get the result. 2
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Abstract: Let G(V, E) be a simple graph of order n with vertex set V and edge set E. Let

(u, v) denotes an unordered vertex pair of distinct vertices of G. The i-common neighbor

set of G is defined as N(G, i) := {(u, v) : u, v ∈ V, u 6= v and |N(u) ∩ N(v)| = i}, for

0 ≤ i ≤ n − 2. The polynomial

N [G; x] =

(n−2)
∑

i=0

|N(G, i)|xi

is defined as the common neighbor polynomial of G. In this paper we introduce the gener-

alized i-common neighbor set and the generalized common neighbor polynomial of a graph.

Key Words: Generalized i-common neighbor set, generalized common neighbor polyno-

mial.

AMS(2010): 05C31, 05C39.

§1. Introduction

A group of individuals who belong to various social, economical and occupational status, may

show consensus in some areas. The similarity strength of such groups can be measured by the

number of areas in which they are mutually interested. Visualizing the situation graphically, the

individuals and different areas of interest may represented by nodes of the bipartite sets A and B

of a bipartite graph and a node in A is connected to a node in B if the corresponding individual

have the particular area of interest. Then the similarity strength of a group of r individuals is

given by the number of common neighbors shared by the corresponding nodes. These concepts

motivated the authors to define generalized i-common neighbor sets and common neighbor

polynomial of graphs.

Let G(V, E) be a simple graph of order n with vertex set V and edge set E. Let (u, v)

denotes an unordered vertex pair of distinct vertices of G. The i-common neighbor set of G is

defined by the present authors as N(G, i) := {(u, v) : u, v ∈ V, u 6= v and |N(u) ∩ N(v)| = i},
for 0 ≤ i ≤ n − 2. The polynomial N [G; x] =

∑(n−2)
i=0 |N(G, i)|xi is defined as the common

1Received October 15, 2018, Accepted August 30, 2019.
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neighbor polynomial of G [2].

A family ∆ of finite subsets of a set V is a simplicial complex [6] if it satisfy the condition

that whenever σ ∈ ∆ and τ ⊂ σ then, τ ∈ ∆. If σ ∈ ∆ is of cardinality k + 1, then σ is called

a k-simplex and every τ ⊂ σ is a face of the simplex. The dimension of a simplex is one less

than its cardinality. If a simplex is not a proper subset of any other simplexes in the complex,

then it is a facet of the complex.

In this paper we introduce the generalized i-common neighbor set and the generalized

common neighbor polynomial of graphs. Also we derive the generalized common neighbor

polynomial of some well known graph classes. Moreover, we define the simplicial complex of

a graph G and introduce the cluster of a vertex v ∈ G as a simplicial complex of G. These

concepts are used to deduce some interesting properties of generalized i-common neighbor sets.

§2. Main Results

In this section we first introduce the definition of generalized i-common-neighbor set and then

define the generalized common neighbor polynomial of a graph. Moreover, we discuss some

properties of generalized i− common neighbor sets and also derive the generalized common

neighbor polynomial of some well known graph classes. Also we express generalized common

neighbor sets using the theory of simplicial complexes in order to deduce some interesting

properties of the sets.

2.1 Generalized Common Neighbor Sets and Common Neighbor

Polynomial of Graphs

Definition 2.1 Let G(V, E) be a graph of order n. Let Lr denotes the set of all unordered

r-tuples of distinct elements of V . For 0 ≤ i ≤ n− r, the generalized i-common neighbor set of

G is defined as follows:

Nr(G, i) = {(u1, u2, · · · , ur) ∈ Lr : | ∩r
k=1 N(uk)| = i}.

Definition 2.2 Let G be a graph of order n. For 0 < r ≤ n the generalized common neighbor

polynomial, Nr[G; x], of G is defined as

Nr[G; x] =

(n−r)
∑

i=0

|Nr(G, i)|xi.

Throughout this paper, r denotes an integer such that 1 ≤ r ≤ n. We observe the following

simple properties of Nr[G; x] :

(i) N2[G; x] = N [G; x], the common neighbor polynomial of the graph G;

(ii) Nr[G; x] is a polynomial of degree at most (n − r);

(iii) Isomorphic graphs have same generalized common neighbor polynomials;
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(iv) Nr(G, i) = φ for n − r + 1 ≤ i ≤ n;

(v) Nr[G; 1] =
∑n−r

i=1 |Nr(G, i)| =
(

n
r

)

;

(vi) Nr[G; 0] gives the number of elemnts in Lr having no common neighbors.

Theorem 2.3 For any graph G, we have |Nr(G, 0)| ≤ |Ns(G, 0)| if r ≤ s ≤ n.

Proof It is enough to show that corresponding to each r-tuple of vertices in Nr(G, 0),

there are one or more s-tuples of vertices in Ns(G, 0). Let (u1, u2, · · · , ur) ∈ Nr(G, 0). Let

ur+1, ur+2, · · · , us be any s − r vertices in V − {u1, u2, · · · , ur}. Then the s-tuple of vertices

(u1, u2, · · · , ur, ur+1, · · · , us) have no common neighbors in G since the first r vertices have no

common neighbors in G. Then (u1, u2, · · · , ur, ur+1, · · · , us) ∈ Ns(G, 0). This completes the

proof. 2
Theorem 2.4 For any graph G, if (u1, u2, · · · , ur) ∈ Nr(G, i), then (u1, u2, · · · , ur, ur+1, · · · , us)

/∈ Ns(G, j), where r < s and 0 < i < j.

Proof Let (u1, u2, · · · , ur) ∈ Nr(G, i). Let ur+1, ur+2, · · · , us be any s − r vertices in

V − {u1, u2, · · · , ur} such that (u1, u2, · · · , ur, ur+1, · · · , us) ∈ Ns(G, j) where r < s and 0 <

i < j. Then the vertices u1, u2, · · · , ur, · · · , us have j common neighbors in G where j > i. In

particular, the vertices u1, u2, · · · , ur have at least j common neighbors in G, a contradiction

since j > i and (u1, u2, · · · , ur) ∈ Nr(G, i). 2
Theorem 2.5 For a complete graph Kn (n ≥ r) ,we have

Nr[Kn; x] =

(

n

r

)

xn−r.

Proof The proof follows from the fact that any r-tuple of vertices of Kn have (n − r)

common neighbors and there are
(

n
r

)

such r-tuples of vertices. 2
Theorem 2.6 For a path graph Pn, we have Nr[Pn; x] =

(

n
r

)

, r ≥ 3.

Proof The result follows from the fact that no r-tuple of vertices in Pn where r ≥ 3 have

common neighbors in Pn. 2
Theorem 2.7 For a cycle graph Cn, we have Nr[Cn; x] =

(

n
r

)

, r ≥ 3.

Proof The result follows from the fact that no r-tuple of vertices in Cn where r ≥ 3 have

common neighbors in Cn. 2
Theorem 2.8 For a complete bipartite graph Km,n, we have

Nr[Km,n; x] =

(

m

r

)

xn +

(

n

r

)

xm +

r−1
∑

j=1

(

m

j

)(

n

r − j

)

.
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Proof Let M, N be the bipartite sets of vertices of Km,n where |M | = m and |N | =

n. We consider the following 3 cases according to the selection of vertices in the r−tuple

(u1, u2, · · · , ur).

Case 1. uk ∈ M for 1 ≤ k ≤ r.

In this case, each of the r−tuple of vertices (u1, u2, · · · , ur) have n common neighbors

contributing the term
(

m
r

)

xn in the generalized common neighbor polynomial.

Case 2. uk ∈ N for 1 ≤ k ≤ r.

In this case, each of the r−tuple of vertices (u1, u2, · · · , ur) have m common neighbors

contributing the term
(

n
r

)

xm in the generalized common neighbor polynomial.

Case 3. After a sufficient rearrangement of terms, let uk ∈ M for 1 ≤ k ≤ j and uk ∈ N for

j + 1 ≤ k ≤ r.

For each j where 1 ≤ j ≤ r − 1, the r−tuple of vertices (u1, u2, · · · , ur) has no common

neighbor in Km,n and there are
(

m
j

)(

n
r−j

)

such r− tuples.

This completes the proof. 2
Corollary 2.9 For a star graph K1,n, we have Nr[K1,n; x] =

(

n
r

)

x +
(

n
r−1

)

for r ≥ 2.

A bistar graph Bn,nis the union of two star graphs K1,n with centres u and v together with

a new edge uv.

Theorem 2.10 For a bistar graph B(n, n) we have

Nr[Bn,n; x] = 2

(

n + 1

r

)

x + 2

(

n

r − 1

)

+

r−1
∑

m=1

(

n

m

)(

n

r − m

)

+ δr2,

where δrj =







1 if r = j,

0 if r 6= j.

Proof Let S = {s1, s2, · · · , sn} and T = {t1, t2, · · · , tn} be the pendent vertices of the star

graphs with center vertices u and v respectively, which together with the edge uv constitute the

bistar graph Bn,n. Let (u1, u2, · · · , ur) be any r-tuple of vertices of Bn,n. We consider different

cases according to the selection of vertices in the r-tuple where r > 2.

Case 1. ui ∈ S or ui ∈ T for all i ∈ {1, 2, · · · , r}.

All the r-tuple of vertices under this case have exactly one common neighbor u or v ac-

cording as ui ∈ S or ui ∈ T . Hence this case contribute the term 2
(

n
r

)

x to the generalized

common neighbor polynomial of Bn,n.

Case 2. For i ∈ {1, 2, · · · , r}, ui = v for exactly one i and all other ui ∈ S.

The r-tuple of vertices under this case have exactly one common neighbor u and there are
(

n
r−1

)

such r-tuples thereby contributing the term
(

n
r−1

)

x to Nr[Bn,n; x].



84 Shikhi M. and Anil Kumar V.

Case 3. For i ∈ {1, 2, · · · , r}, ui = u for exactly one i and all other ui ∈ T .

By a similar argument as in Case 2, the r-tuples in this case also contributes the term
(

n
r−1

)

x to Nr[Bn,n; x].

Case 4. For i ∈ {1, 2, · · · , r}, ui = u or ui = v for exactly one i where all other ui ∈ S or ∈ T

respectively.

All the r-tuple of vertices under this case have no common neighbors and there are 2
(

n
r−1

)

such r-tuples.

Case 5. After an appropriate rearrangement of terms of the r-tuple, let u1, u2, · · · , um ∈ S

and um+1, um+2, · · · , ur ∈ T where 1 ≤ m ≤ r − 1.

All the r-tuple of vertices under this case have no common neighbors and this case con-

tribute the term
∑r−1

m=1

(

n
m

)(

n
r−m

)

to Nr[Bn,n; x].

It follows that

Nr[Bn,n; x] = 2

(

n

r

)

x + 2

(

n

r − 1

)

x + 2

(

n

r − 1

)

+

r−1
∑

m=1

(

n

m

)(

n

r − m

)

= 2

(

n + 1

r

)

x + 2

(

n

r − 1

)

+

r−1
∑

m=1

(

n

m

)(

n

r − m

)

This completes the proof with a sufficient remark that when r = 2, there is a pair of vertices

(u, v) having no common neighbors. 2
Theorem 2.11 Every graph G contains |Nr(G, i)| number of complete bipartite subgraphs Ki,r

where 1 ≤ i ≤ n − r.

Proof Note that corresponding to each r−tuples of vertices (u1, u2, · · · , ur) ∈ Nr(G, i), the

vertices u1, u2, · · · , ur together with their i common neighbors constitute a complete bipartite

subgraph Ki,r. Hence the result follows. 2
Theorem 2.12 The generalized common neighbor polynomial of a graph G is non constant if

and only if there exists a star K1,r in G where 1 ≤ r ≤ n.

Proof Let Nr[G; x] be a non constant polynomial of degree m ≥ 1. Then there exists an

r-tuple of vertices (u1, u2, · · · , ur) in G which has at least one common neighbor, say w in G.

Then w together with the vertices u1, u2, · · · , ur produces a star K1,r in G.

Conversely let there exists a star K1,r in G where 1 ≤ r ≤ n. Let u1, u2, · · · , ur be the

pendent vertices of K1,r. Then the center of the star graph K1,r is a common neighbor of the

r-tuple (u1, u2, . . . , ur). The result follows from the fact that Nr(G, i) 6= φ for some i ≥ 1. 2
Corollary 2.13 If a graph G doesn’t contain any star graph K1,r as a subgraph where 1 ≤ r ≤ n,

then the generalized common neighbor polynomial Nr[G; x] =
(

n
r

)

.

Theorem 2.14 The generalized common neighbor polynomial Nr[G; x] of a graph G is of degree
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k ≥ 1 if and only if k is the largest integer such that G has a complete bipartite subgraph Kr,k.

Proof Assume that Nr[G; x] of a graph G is of degree k ≥ 1. Then, |Nr(G, k)| 6= φ. Take

(u1, u2, · · · , ur) ∈ Nr(G, k). Then the vertices u1, u2, · · · , ur together with their k common

neighbors constitute a complete bipartite subgraph Kr,k of G. Moreover, if G contains Kr,j as

a subgraph,where j ≥ k + 1, then G contains an r-tuple of vertices having j common neighbors

where j ≥ k+1 which is a contradiction since Nr[G; x] is of degree k. This proves the necessary

part of the theorem.

Conversely, we assume that k is the largest integer such that G has a complete bipartite

subgraph Kr,k. If possible, let Nr[G; x] is of degree j ≥ k + 1. Then G contains an r-tuple of

vertices having at least k + 1 common neighbors. These r vertices together with their k + 1

common neighbors constitute a complete bipartite subgraph Kr,k+1 of G which is a contradiction

to the assumption. 2
Definition 2.15 Two graphs G and H are said to be CNPr equivalent if Nr[G; x] = Nr[H ; x].

The set of all graphs which are CNPr equivalent to G is denoted by [G]Nr
.

Theorem 2.16 For any graph G, G ∈ [G]Nr
if and only if there are |Nr(G, i)| number of

r−tuple of vertices in G which dominate n − i vertices of G.

Proof First, suppose that G ∈ [G]Nr
. Then |Nr(G, i)| =

∣

∣Nr(G, i)
∣

∣ for 0 ≤ i ≤ n − r. Let

(u1, u2, · · · , ur) ∈ Nr(G, i). Since the vertices u1, u2, · · · , ur have only i common neighbors in G,

all the remaining n−i vertices in G are adjacent to at least one of the vertices in {u1, u2, · · · , ur}.
Then {u1, u2, · · · , ur} dominate exactly n − i vertices of G. Since |Nr(G, i)| = |Nr(G, i)|, it

follows that G has |Nr(G, i)| number of r−tuple of vertices which dominate n− i vertices of G.

Conversely assume that there are |Nr(G, i)| number of r−tuple of vertices in G which

dominate n − i vertices of G. From the proof of first part of the theorem, the r−tuples of

vertices in G which dominate exactly n− i vertices of G are those which belongs to Nr(G, i). It

follows that |Nr(G, i)| = |Nr(G, i)| and hence Nr[G; x] = Nr[G; x]. This completes the proof.2
Corollary 2.17 Let G be a graph of order n. If G ∈ [G]Nr

, then |Nr(G, 0)| gives the number

of dominating sets in G of order r.

Lemma 2.18 Let G be a connected graph with n > 3 vertices. If all the pairs of edges of G

have a common end vertex, then G is a star graph.

Proof Since n > 3 and G is connected, the number of edges m should be greater than or

equal to 3. We will prove the result by using method of induction on the number of edges m of

G. Clearly the result is true for m = 3. Let the result be true for all graphs G with less than

m edges. And let G be a graph with m edges such that all the pairs of edges have a common

end vertex. By deleting any edge e from G, we have a graph with m − 1 edges. Clearly all the

pairs of edges of G− e are incident to a common vertex. Hence by induction assumption, G− e

is a star. Let v be the center vertex of the star so that the edges of G − e be represented by

ei = vvi where i = 1, 2, · · · , m − 1. Since the edges e and e1 of G are incident to a common

vertex, either e = vw or e = v1w. In the first case G is a star and the proof is complete. And
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in the second case, there are two possibilities according as w belongs to {v1, v2, · · · , vm−1} or

not. If w belongs to the set, let w = vi where i ∈ {1, 2, · · · , m − 1}. Then the edges v1w and

and vvi+1 have no common end vertex. which ruled out the possibility. If w doesn’t belong

to the set, then the edges v1w and vv3 have no common end vertex. Hence by the induction

assumption, the second case is ruled out. Hence the result follows. 2qq q q q qqqqq v v1

v2
vi

vi+1

vm−1

w qq q qqqqq q v1

v2vi

vi+1

vm−1
q qq qqq qq q qv1

v2vi

vi+1 v

vm−1

w

Figure 1 Figure showing different cases of Lemma 2.18

The line graph L(G) of a graph G is the graph with vertex set the set of all edges of G

and two vertices of L(G) are adjacent if the corresponding edges of G are incident to a common

vertex.

Theorem 2.19 Let G be a connected graph of order n > 3. The number k of cliques of size

r > 1 in the line graph of G is given by k =

n−r
∑

i=1

i|Nr(G, i)|.

Proof Let S be the collection of all r-tuples of vertices (u1, u2, · · · , ur) of G which have at

least one common neighbor in G. Also let the r-tuple (u1, u2, · · · , ur) repeat as many times in

S as its number of common neighbors. Then, |S| =
∑n−2

i=1 i|Nr(G, i)|. Let P be the collection

of all cliques of size r in the line graph L(G) of G. Let the vertices of L(G) be denoted by uv

where u, v are adjacent vertices of G. Define φ : S → P as follows.

Let u = (u1, u2, · · · , ur) ∈ S which repeats i-times in S. Let these i members be represented

by uk = (u1, u2, · · · , ur)
(k) where k = 1, 2, · · · , i. Then each (u1, u2, · · · , ur)

(k) can be assigned

to exactly one common neighbor wk of (u1, u2, · · · , ur) in G. It follows that all the pairs of

vertices ulwk and umwk where l, m ∈ {1, 2, · · · , r} and l 6= m are adjacent vertices of L(G)

which forms a clique Cuk of size r in L(G).

Now define φ : S → P as φ((u1, u2, · · · , ur)
(k) = Cuk. Clearly φ is one-one. We claim that

φ : S → P is onto. Let C be a clique of size r in the line graph L(G) of G. Since any pair of

vertices of C are adjacent in L(G), all the pairs of edges in G which constitute the vertex set

of C, have a common end vertex in G. Hence by Lemma 2.18, those edges form a star in G

whose pendent vertices forms an r-tuple (u1, u2, · · · , ur) ∈ S such that φ(u1, u2, · · · , ur) = C.

Thus φ is onto.

It follows that φ is a bijection from S to P and |S| = |P |. This completes the proof. 2
Corollary 2.20 Let G be a graph of order n. Then the number of edges of the line graph L(G)

of G equals
n−2
∑

i=1

i|N(G, i)|.
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Proof The result follows from the fact that the 2-cliques of any graph are the edges of the

graph. 2
Theorem 2.21(Schwartz 1969 and Ghirlanda 1963) A graph is isomorphic to its line graph if

and only if it is regular of degree two.

Corollary 2.22 If a graph G is regular of degree two, then the number of edges of G equals
n−2
∑

i=1

i|N(G, i)|.

2.2 Simplicial Complexes of Graphs and Common Neighbor Sets

In this section, we first define the simplicial complex of a graph G and introduce the cluster of

a vertex v ∈ G as a simplicial complex of G. Then we incorporate the concept of generalized

i-common neighbor set of a graph with the cluster of vertices in it, to deduce some interesting

properties of generalized i-common neighbor sets.

Definition 2.23 Let G(V, E) be a graph and let ∆ be a collection of subsets of V . The elements

of ∆ are called simplexes. Let τ be an element in ∆. Then the subsets of τ are called its faces.

We say that ∆ is a simplicial complex of G if for every τ in ∆, all its faces are in ∆.

Let G be a simple finite graph with vertex set V = {v1, v2, · · · , vn}. For each vertex vi,

the cluster of vi is defined as

clr(vi) =: {W ⊂ V : vi ∈ ∩v∈W N(v)}.

Then each clr(vi) where i ∈ {1, 2, · · · , n} is a simplicial complex of G. We may consider clr(vi)

as a simplicial complex of G generated by the vertex vi. Note that each simplex W of clr(vi)

spans a subgraph of G which is a star graph with center vertex vi. So these simplexes are called

the stars of vi denoted by str(vi). The facets of clr(vi) are the maximal stars in clr(vi).

Lemma 2.24 Let v be a vertex of the graph G having degree d. Then the cluster of v contains
(

d
r

)

number of (r − 1)-simplexes.

Proof Let S be the set of all neighbors of the vertex v such that |S| = d. Any subset

S1 of S with cardinality r ≤ d will act as a r-tuple of vertices with v as a common neighbor.

There are exactly
(

d
r

)

distinct subsets of S with cardinality r and these subsets are exactly the

(r − 1)-simplexes of the cluster of v. Hence the result follows. 2
Theorem 2.25 Let G(V, E) be a simple graph and let v ∈ V . Let fi, i = 1, 2, · · · , m be the

facets of the simplicial complex clr(v). If the facet fi is of cardinality di, then clr(v) contains
m
∑

i=1

di
∑

r=1

(

di

r

)

distinct simplexes.

Proof According to the definition of a simplicial complex, all the subsets of its facets must

also be simplexes of the complex. If the facet fi of clr(v) is of cardinality di, there are
(

di

r

)



88 Shikhi M. and Anil Kumar V.

simplexes of dimension r in clr(v). Thus corresponding to each facet fi, there are

di
∑

r=1

(

di

r

)

distinct simplexes in clr(v). As there are m facets, the result follows. 2
Theorem 2.26 If G is a graph having degree sequence (d1, d2, · · · , dn), then we have the

following:
n−r
∑

i=1

i|Nr(G, i)| =

n
∑

i=1

(

di

r

)

.

Proof Let clr(vi), i = 1, 2, · · · , n be the simplicial complexes generated by the vertices

v1, v2, · · · , vn of the graph G. We will show that the expression on both sides of the equation

equates the total number of (r − 1)-simplexes of clr(vi) where i = 1, 2, · · · , n.

By Lemma 2.24, the number of (r − 1)-simplexes in clr(vi) is given by
(

di

r

)

where di is the

degree of the vertex vi which generates clr(vi). Hence if all the simplicial complexes clr(vi),

i ∈ {1, 2, · · · , n} are taken into account, there are altogether
∑n

i=1

(

di

r

)

number of (r − 1)-

simplexes.

Now, for a fixed i ∈ {1, 2, · · · , n}, the (r − 1)-simplexes of clr(vi) are exactly r-tuples of

vertices with vi as a common neighbor. Hence the total number of (r − 1)-simplexes of clr(vi),

i = 1, 2, · · · , n equals the number of r-tuples of vertices with at least one common neighbor

where the r-tuple with i common neighbors has to be counted i times. From the definition

of generalized i-common neighbor set of G, the number of such r-tuple of vertices is given by
∑n−r

i=1 i|Nr(G, i)|. This completes the proof. 2
Theorem 2.27 The generalized i-common neighbor set Nr(G, i) is the set of all (r−1)-simplexes

which belongs to the intersection of exactly i of the clusters of vertices of G.

Proof Let W be a (r − 1)-simplex which belongs to a simplicial complex clr(vj), for some

j ∈ {1, 2, · · · , n}. From the definition of clr(vj), it is clear that the members of W constitute

a r-tuple of vertices of G having vj as a common neighbor. Now fix an integer i such that

1 ≤ i ≤ n− 2. W belongs to exactly i of the clr(vj), if and only if the corresponding r-tuple of

vertices has exactly i common neighbors. It follows that W ∈ Nr(G, i). 2
Remark 2.28 We observe the following properties of the simplicial complexes clr(vi) generated

by the vertices vi of a simple graph G.

For i, j, k ∈ {1, 2, · · · , n},

(1) If a simplicial complex clr(vi) is generated by a vertex vi, then, {vi} /∈ clr(vi);

(2) clr(vi) contains all possible unions of the 0-simplexes containing in it;

(3) If {vi} ∈ clr(vj), then {vj} ∈ clr(vi).

The first statement follows from the fact that a vertex cannot be adjacent to itself as we

are considering only simple graphs. The second and third statements directly follows from the

definition of clr(vi).

The following theorem shows that these are the sufficient conditions for a collection of



Generalized Common Neighbor Polynomial of Graphs 89

simplicial complexes {clr(vi)}, i ∈ {1, 2, · · · , n} on a set of cardinality n to be generated by a

set of vertices V = {v1, v2, · · · , vn} of a simple graph G.

Theorem 2.29 Let V = {v1, v2, · · · , vn} be any set of n elements. If clr(vi), i ∈ {1, 2, · · · , n}
are simplicial complexes on the set V satisfying the conditions (1),(2) and (3) stated in above

remark, then there exists a simple graph G with vertex set V where clr(vi) is the simplicial

complex generated by the vertex vi of G.

Proof Given a set of elements V = {v1, v2, · · · , vn} and a collection of simplicial complexes

{clr(vi)}, i ∈ {1, 2, · · · , n} on the set V , construct a graph with vertex set V and edge set E

where an edge vivj ∈ E if and only if {vj} ∈ clr(vi).

By condition (1), {vi} /∈ clr(vi) which implies that G has no loops. Also by condition (3),

if {vi} ∈ clr(vj), then {vj} ∈ clr(vi) which implies that the adjacency of vertices of the graph

is well defined in the sense that whenever vi adjacent to vj , vj is adjacent to vi also.

Now we will prove that {clr(vi)} are the simplicial complexes generated by the vertices {vi}
of the graph G. Let V1 be a subset of V which belongs to clr(vi). Then V1 = {vj1 , vj2 , · · · , vjm

}
where each of the vertices in the set are adjacent to a vertex vi ∈ V in G. Then vivjk

∈ E and

{vjk
} ∈ clr(vi) for all k ∈ {1, 2, · · · , m}. Hence by condition(3), all the subsets of V1 are in

clr(vi). It follows that clr(vi) is a simplicial complex on V . And by definition of edge set of G,

it is generated by vi. This completes the proof. 2
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Abstract: The status of a vertex u in a connected graph G, denoted by σ(u) is defined as

the sum of the distance between u and all other vertices of a graph G. Let G be a connected

graph of order n ≥ 3 and size m. The first and second status coindices distance sum of graph

G, denoted by Sd
1 (G) and Sd

2 (G), are defined as

S
d
1 (G) =

∑

uv /∈E(G)

[σ(u) + σ(v)]d(u, v),

S
d
2 (G) =

∑

uv /∈E(G)

[σ(u)σ(v)]d(u, v)

respectively. In this paper the first and second status coindex distance sum of some graphs

are obtained. Status connectivity coindices of some standard graphs are computed. The

bounds of the first and second status coindex distance sum and status connectivity coindices

are established.

Key Words: Distance, status of a vertex, status coindex distance sum, status connectivity

coindices.

AMS(2010): 05C12, 05C76.

§1. Introduction

Let G be a connected graph with n vertices and m edges. Let V (G) and E(G) be its vertex and

edge sets, respectively. The edge joining the vertices u and v is denoted by uv. The complement

G of the graph G is the graph with vertex set V (G) in which two vertices are adjacent if and

only if they are not adjacent in G. The degree of a vertex u in a graph G is the number of

edges joining to u and is denoted by d(u) or du. The distance between the vertex u and v is

the length of the shortest path joining u and v and is denoted by dG(u, v) [6]. For well known

graph and terminology, we refer the books [6], [17].

The status of a vertex u ∈ V (G), denoted by σG(u) is defined as [8],

σG(u) =
∑

v∈V (G)

d(u, v).

1Received February 7, 2019, Accepted September 2, 2019.
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The Wiener index W (G) of a connected graph G is defined as [12],

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑

v∈V (G)

σG(u).

The first and second Zagreb indices of a graph G are defined as [13]

M1(G) =
∑

u∈V (G)

d2
u and M2(G) =

∑

uv∈E(G)

d(u)d(v).

Results on the Zagreb indices can be found in [5, 18, 15, 22, 24, 20, 21].

The first and second Zagreb coindices of a graph G are defined as [15]

M1(G) =
∑

uv/∈E(G)

d(u) + d(v) and M2 =
∑

uv/∈E(G)

d(u)d(v).

M1(G) can be written also as [25], [26]

M1(G) =
∑

uv∈E(G)

[du + dv].

More results on Zagreb coindices can be found in [1], [2].

Furtula and Gutman [3] introduced the forgotten topological index of a graph G, also called

as F -index, which is defined as

F (G) =
∑

u∈V (G)

(d(u))3.

The first status connectivity index, S1(G) and second status connectivity index, S2(G) of

a connected graph is defined as [9]

S1(G) =
∑

uv∈E(G)

[σG(u) + σG(v)],

S2(G) =
∑

uv∈E(G)

[σG(u)σG(v)].

The first and second status connectivity coindex of a graph G are defined by [10]

S1(G) =
∑

uv/∈E(G)

[σG(u) + σG(v)],

S2(G) =
∑

uv/∈E(G)

[σG(u)σG(v)].

Definition 1.1([19]) Let G be a connected graph of order n ≥ 3. The first and second status

coindex distance sum of G are defined as

Sd
1 (G) =

∑

uv/∈E(G)

(σ(u) + σ(v))d(u, v)
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and

Sd
2 (G) =

∑

uv/∈E(G)

σ(u)σ(v)d(u, v)

respectively.

§2. Status Coindex Distance Sum

In this section, we obtain status coindices distance sum of connected graphs in terms of Wiener

index and also status coindices distance sum of complements of graphs.

Proposition 2.1 Let G be a connected graph on n vertices with diam(G) = 2. Then,

Sd
1 (G) = 4(n − 1)W (G) − 2S1(G)

and

Sd
2 (G) = 4(W (G))2 −

∑

u∈V (G)

(σG(u))2 − 2S2(G).

Proof By definition, we know that

Sd
1 (G) =

∑

uv/∈E(G)

[σG(u) + σG(v)]d(u, v) =
∑

uv/∈E(G)

[σG(u) + σG(v)]2

=





∑

{u,v}⊆V (G)

[σG(u) + σG(v)] −
∑

uv∈E(G)

[σG(u) + σG(v)]



 2

= [(n − 1)
∑

u∈V (G)

σG(u) − S1(G)]2

= [2(n − 1)W (G) − S1(G)]2 = 4(n − 1)W (G) − 2S1(G)

Also,

Sd
2 (G) =

∑

uv/∈E(G)

[σG(u)σG(v)]d(u, v) =
∑

uv/∈E(G)

[σG(u)σG(v)]2

=





∑

{u,v}⊆V (G)

[σG(u)σG(v)] −
∑

uv∈E(G)

[σG(u)σG(v)]



 2

=







1

2











∑

u∈V (G)

σG(u)





2

−
∑

u∈V (G)

σG(u)2






− S2(G)






2

= [2(W (G))2 − 1

2

∑

u∈V (G)

(σG(u))2 − S2(G)]2.
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Sd
2 (G) = 4(W (G))2 −

∑

u∈V (G)

(σG(u))2 − 2S2(G). 2
Proposition 2.2 Let G be a graph of order n and size m. Let G, the complement of G, be

connected. Then

Sd
1 (G) ≥ 4m(n − 1) + 2M1(G) (2.1)

and

Sd
2 (G) ≥ 2m(n − 1)2 + 2(n − 1)M1(G) + 2M2(G) (2.2)

with equality holds if and only if diam(G)=2.

Proof For any vertex u in G there are n − 1 − dG(u) vertices which are at distance 1 and

the remaining dG(u) vertices are at distance at least 2. Therefore,

σG(u)≥ [n − 1 − dG(u)] + 2dG(u) = n − 1 + dG(u).

Therefore,

Sd
1 (G) =

∑

uv/∈E(G)

[σG(u) + σG(v)]dG(u, v)

≥
∑

uv/∈E(G)

[n − 1 + dG(u) + n − 1 + dG(v)]dG(u, v)

=
∑

uv/∈E(G)

[2n − 2 + dG(u) + dG(v)]dG(u, v)

= 2m(2n − 2) +
∑

uv/∈E(G)

[dG(u) + dG(v)]dG(u, v)

= 4m(n − 1) +
∑

uv∈E(G)

[dG(u) + dG(v)]2

= 4m(n − 1) + 2M1(G).

And

Sd
2 (G) =

∑

uv/∈E(G)

[σG(u)σG(v)]dG(u, v)

≥
∑

uv/∈E(G)

[n − 1 + dG(u)][n − 1 + dG(v)]dG(u, v)

=
∑

uv/∈E(G)

[

(n − 1)2 + (n − 1)[dG(u) + dG(v)] + [dG(u)dG(v)]
]

dG(u, v)

= 2m(n − 1)2 +
∑

uv∈E(G)

(n − 1)[dG(u) + dG(v)]dG(u, v)
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+
∑

uv∈E(G)

[dG(u)dG(v)]dG(u, v)

= 2m(n − 1)2 + 2(n − 1)M1(G) + 2M2(G). 2
Corollary 2.3 Let G be a graph with n vertices, m edges and diam ≥ 2 and let G, the

complement of G, be connected. Then,

Sd
1 (G) ≥ 2

[

4m(n − 1) − M1(G)
]

and

Sd
2 (G) ≥ 2[4m(n− 1)2 − 2(n − 1)M1(G) + M2(G)],

with equality holds if and only if diam(G) = 2.

Proof By definition, we have [16]

M1(G) = 2m(n − 1) − M1(G) (2.3)

and

M2(G) = m(n − 1)2 − (n − 1)M1(G) + M2(G). (2.4)

Substituting (2.3) in (2.1) and (2.4) in (2.2) we get the required result. 2
§3. Bounds for Status Coindex Distance Sum

Theorem 3.1 Let G be a connected graph with n vertices, m edges and diam(G) = D ≥ 2.

Then,

4(n − 1)W (G) − 2S1(G) ≤ Sd
1 (G) ≤ 2D(n − 1)W (G) − DS1(G)

and

4(W (G))2 −
∑

u∈V (G)

(σG(u))2 − 2S2(G)

≤ Sd
2 (G) ≤ 2D(W (G))2 − D

2

∑

u∈V (G)

[(σG(u))2 − DS2(G)]

with equality holds if and only if D = 2.

Proof Let us first prove the lower bound. When uv /∈ E(G), the minimum distance between
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u and v is 2. Therefore

Sd
1 (G) =

∑

uv/∈E(G)

[σG(u) + σG(v)]d(u, v)

≥
∑

uv/∈E(G)

[σG(u) + σG(v)]2

=





∑

{u,v}⊆V (G)

[σG(u) + σG(v)] −
∑

uv∈E(G)

[σG(u) + σG(v)]



 2

=



(n − 1)





∑

u∈V (G)

σG(u)



− S1(G)



 2

= [2(n − 1)W (G) − S1(G)]2.

i.e.,

Sd
1 (G) ≥ 4(n − 1)W (G) − 2S1(G).

And

Sd
2 (G) =

∑

uv/∈E(G)

[σG(u)σG(v)]d(u, v)

≥
∑

uv/∈E(G)

[σG(u)σG(v)]2

=





∑

{u,v}⊆V (G)

[σG(u)σG(v)] −
∑

uv∈E(G)

[σG(u)σG(v)]



 2

=







1

2











∑

u∈V (G)

σG(u)





2

−
∑

u∈V (G)

σG(u)2






− S2(G)






2

= [2(W (G))2 − 1

2

∑

u∈V (G)

(σG(u)2) − S2(G)]2.
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i.e.,

Sd
2 (G) ≥ 4(W (G))2 −

∑

u∈V (G)

(σG(u))2 − 2S2(G).

Now let us prove the upper bound. When uv /∈ E(G), the maximum distance between u

and v be D(diameter). Then

Sd
1 (G) =

∑

uv/∈E(G)

[σG(u) + σG(v)]d(u, v)

≤
∑

uv/∈E(G)

[σG(u) + σG(v)]D

=





∑

{u,v}⊆V (G)

[σG(u) + σG(v)] −
∑

uv∈E(G)

[σG(u) + σG(v)]



D

=



(n − 1)





∑

u∈V (G)

σG(u)



− S1(G)



D,

i.e.,

Sd
1 (G) ≤ 2D(n − 1)W (G) − DS1(G).

And similarly

Sd
2 (G) =

∑

uv/∈E(G)

[σG(u)σG(v)]d(u, v).

We get that

Sd
2 (G) ≤ 2D(W (G))2 − D

2

∑

u∈V (G)

[(σG(u))2 − DS2(G)].

Thus the result follows and in both upper and lower bounds of Sd
1 (G) and Sd

2 (G), the

equality holds for D = 2. 2
§4. First Status Coindex Distance Sum of Line Graphs

Theorem 4.1([14]) Let G be a graph with n-vertices and m-edges. Then,

M1(G) = M1(G) + n(n − 1)2 − 4m(n − 1).

Proposition 4.2([14]) Let L be the line graph of the graph G. Then

M1(L(G)) = F − 4M1 + 2M2 + 4m

where, M1, M2, F are the first Zagreb index, second Zagreb index, and forgotten topological

index of the parent graph G respectively.
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Theorem 4.3([19]) Let G be a connected graph with n vertices, m edges and diam(G) = D ≥ 2.

Then,

4(n − 1)(n(n − 1) − 2m) − DM1(G) ≤ Sd
1 (G) ≤ (n − 1)D2(n(n − 1) − 2m) − 2(D − 1)M1(G)

with equality holds for Diam(G) = 2. r r
r rF :

Figure 1

Theorem 4.4 Let L(G) be the line graph of the graph G with n-vertices, m-edges and diam(G) =

2. Then

Sd
1 (L(G)) = 4m[(m − 1)2 − 3(m − 1) + 2] − M1(G)[6(m − 1) + 8] + 4M2(G) + 2F.

Proof From the definition of line graphs [4], the number of vertices of L(G) is n1 = m and

the number of edges of L(G) is [7] m1 = 1
2

∑n
i=1 d2

i − m. Since from [11], if diam(G) ≤ 2 and

G does not contain F (Figure 1.) as an induced subgraph of G and also G is not a star Graph

Sn, then diam(L(G)) = 2. From [19],

Sd
1 (G) = 4(n − 1)[n(n − 1) − 3m] + 2M1(G)

Therefore, the status coindex distance sum of line graphs can be written as,

Sd
1 (L(G)) = 4(n1 − 1)[n1(n1 − 1) − 3m1] + 2M1(L(G))

= 4(m − 1)[m(m − 1) − 3(
1

2

n
∑

i=1

d2
i − m)] + 2M1(L(G))

From Proposition 4.2 and definition of Zagreb index [13]

M1(G) =

n
∑

i=1

d2
i .

Hence,

Sd
1 (L(G)) = 4m[(m − 1)2 − 3(m − 1) + 2] − M1(G)[6(m − 1) + 8] + 4M2(G) + 2F. 2

The following corollary directly follows from the Theorem 4.4.
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Corollary 4.5 Let G be a connected regular graph of degree r on n-vertices and m-edges and

let diam(G) = 2. Then,

Sd
1 (L(G)) = 2m[4r2 − 2r(3m − 7) + 2(m − 1)2 − 6(m − 1) + 4].

Proposition 4.6 The first status coindex distance sum of line graph of complete bipartite graph

Kp,q

Sd
1 (L(Kp,q)) = 4pq[(pq − 1)2 − 3(pq − 1) + 2]

−pq(p + q)[6(pq − 1) + 8] + 4(pq)2 + 2pq(p2 + q2).

Proof The graph Kp,q has n = p + q vertices and m = pq edges. Also diam(Kp,q) ≤ 2.

The vertex set V (Kp,q) can be partitioned into two sets V1 and V2 such that for every edge uv

of Kp,q, the vertex u ∈ V1 and v ∈ V2, where |V1| = p and |V2| = q. Therefore d(u) = q and

d(v) = p and hence,

M1(Kp,q) = pq(p + q), M2(Kp,q) = (pq)2, F = pq(p2 + q2).

Therefore by the Theorem 4.4 the result holds. 2
Theorem 4.7 Let G be a graph whose line graph L(G) has diam(L(G)) > 3, then

Sd
1 (L(G)) = 4(m − 1)[m(m − 1) − M1(G) + 2m] − D[(M1(G) − 2m)(n − 1) − M1(L(G)).

Proof Let G be any graph with n-vertices and m-edges whose line graph L(G) has

diam(L(G)) > 3. Let L(G) be the complement of line graph.

We know from Theorem 4.3 that

4(n − 1)(n(n − 1) − 2m) − DM1(G) ≤ Sd
1 (G)

i.e.,

4(n − 1)(n(n − 1) − 2m) − D [2m(n − 1) − M1(G)] ≤ Sd
1 (G)

with equality holds for graphs of diam = 2. Since there exist a fact that for any graph G, if

diam(G) > 3 then diam(G) ≤ 2 [27]. Since G is connected graph and diam(L(G)) > 3, then

L(G) is connected and has diameter D = 2, then by Theorem 4.3,

Sd
1 (L(G)) = 4(n1 − 1) [n1(n1 − 1) − 2m1] − D

[

2m1(n1 − 1) − M1(L(G)
]

Sd
1 (L(G)) = 4(m − 1)[m(m − 1) − M1(G) + 2m]

−D[(M1(G) − 2m)(n − 1) − M1(L(G)). 2
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§5. Status Connectivity Coindices of Some Standard Graphs

A simple calculation enables us getting status connectivity coindice on a few standard graphs

following.

Proposition 5.1 For a complete bipartite graph Ks.t

S1(Ks,t) = (2s + t − 2)s(s − 1) − (2t + s − 2)t(t − 1)

and

S2(Ks,t) =
s(s − 1)

2
(2s + t − 2)2 +

t(t − 1)

2
(2t + s − 2)2.

Proposition 5.2 For a cycle Cn on n ≥ 4 vertices

S1(Cn) =







n2

4 [n(n − 1) − 2m], if n is even;

n2−1
4 [n(n − 1) − 2m], if n is odd.

and

S2(Cn) =







n4

32 (n(n − 1) − 2m), if n is even;
(n2−1)2

32 [n(n − 1) − 2m], if n is odd.

Proposition 5.3 For a wheel Wn+1, n ≥ 4

S1(Wn+1) = 3n(n − 3) + 2n(n − 3)2

and

S2(Wn+1) =
9n(n − 3)

2
+ 6n(n − 3)2 + 2n(n − 3)3.

Proposition 5.4 For a helm Hn, n ≥ 3

S1(Hn) = 2[12n3 − 27n2 + 18n]

and

S2(Hn) = (21n3 − 24n2) +
(n2 − n)

2
(7n − 8)2

+
n2 − 3n

2
(5n − 7)2 + (7n3 − 15n2 + 8n)(5n − 7).

Proposition 5.5 For a friendship graph Fn, n ≥ 2

S1(Fn) = 8n(2n − 1)(n − 1) and S2(Fn) = (4n − 2)2(2n2 − 2n).
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§6. Bounds for Status Connectivity Coindices

Theorem 6.1 Let G be a connected graph with n vertices, m edges and diam(G) = D ≥ 2.

Then,

2(n − 1)(n(n − 1) − 2m) − M1(G) ≤ S1(G) ≤ D(n − 1)(n(n − 1) − 2m) − (D − 1)M1(G)

and

2(n − 1)2(n(n − 1) − 2m) − 2(n − 1)M1(G) + M2(G)

≤ S2(G) ≤ D2(n − 1)2
(

n(n − 1)

2
− m

)

− D(D − 1)(n − 1)M1(G) + (D − 1)2M2(G)

with equality holds if and only if D = 2.

Proof Let us first prove the lower bound. For any vertex u of G there are d(u) which are

at a distance 1 from the vertex u and the remaining (n − 1 − d(u)) vertices are at distance at

least 2. Therefore

σ(u) ≥ d(u) + 2(n − 1 − d(u)) = 2(n − 1) − d(u) = 2(n − 1) − d(u).

Therefore,

S1(G) =
∑

uv/∈E(G)

[σ(u) + σ(v)] ≥
∑

uv/∈E(G)

[4n− 4 − (d(u) + d(v))]

=
∑

uv/∈E(G)

4(n − 1) −
∑

uv/∈E(G)

d(u) + d(v)

= 4(n − 1)

(

n(n − 1)

2
− m

)

− M1(G)

= 2(n − 1)(n(n − 1) − 2m) − M1(G)

and

S2(G) =
∑

uv/∈E(G)

[σ(u)σ(v)]

≥
∑

uv/∈E(G)

(2n − 2 − d(u))(2n − 2 − d(u))

=
∑

uv/∈E(G)

[4(n − 1)2 − 2(n − 1)(d(u) + d(v)) + d(u)d(v)]

=
∑

uv/∈E(G)

4(n − 1)2 − (2n − 2)
∑

uv/∈E(G)

(d(u) + d(v)) +
∑

uv/∈E(G)

d(u)d(v)

= 4(n − 1)2
(

n(n − 1)

2
− m

)

− (2n − 2)M1(G) + M2(G)

= 2(n − 1)2(n(n − 1) − 2m) − 2(n − 1)M1(G) + M2(G).
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Now we prove the upper bound. For any vertex u of G there are d(u) which are at a

distance 1 from the vertex u and the remaining (n − 1 − d(u)) vertices are at distance at most

D. Hence,

σ(u) ≤ d(u) + D(n − 1 − d(u)) = D(n − 1) − (D − 1)d(u).

Therefore

S1(G) =
∑

uv/∈E(G)

[σ(u) + σ(v)]

≤
∑

uv/∈E(G)

[2D(n − 1) − (D − 1)(d(u) + d(v))]

= 2D(n − 1)

(

n(n − 1)

2
− m

)

− (D − 1)M1(G)

= D(n − 1)(n(n − 1) − 2m) − (D − 1)M1(G)

and

S2(G) =
∑

uv/∈E(G)

[σ(u)σ(v)]

≤
∑

uv/∈E(G)

[D(n − 1) − (D − 1)d(u)][D(n − 1) − (D − 1)d(v)]

=
∑

uv/∈E(G)

[D2(n − 1)2 − D(D − 1)(n − 1)(d(u) + d(v)) + (D − 1)2d(u)d(v)]

= D2(n − 1)2
(

n(n − 1)

2
− m

)

− D(D − 1)(n − 1)M1(G) + (D − 1)2M2(G).

In both upper and lower bounds of S1(G) and S2(G), the equality holds for D = 2. 2
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Abstract: Let G be a (p, q) graph. Let f : V (G) → {1, 2, · · · , k} be a map where k ∈ N and

k > 1. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-total prime cordial

labeling of G if |tf (i) − tf (j)| ≤ 1, i, j ∈ {1, 2, · · · , k} where tf (x) denotes the total number

of vertices and the edges labeled with x. A graph with a k-total prime cordial labeling is

called k-total prime cordial graph. In this paper we investigate the 4-total prime cordial

labeling of certain graphs like shadow graph, P 2
n , Tn ⊙ K2 and subdivision of Tn ⊙ K1.

Key Words: k-Total prime cordial labeling, Smarandachely k-total prime cordial labeling,

corona, P 2
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§1. Introduction

Graphs considered here are finite, simple and undirected. Ponraj et al. [4], have been introduced

the concept of k-total prime cordial labeling and investigate the k-total prime cordial labeling

of certain graphs. Also in [4, 5, 6, 7, 8, 9, 10, 12], the 4-total prime cordial labeling behavior of

path, cycle, star, bistar, some complete graphs, comb, double comb, triangular snake, double

triangular snake, ladder, friendship graph, flower graph, gear graph, Jelly fish, book, irregular

triangular snake, prism, helm, dumbbell graph, sunflower graph, corona of irregular triangular

snake, dragon, Möbius ladder, corona of some graphs and subdivision of some graphs. 3-total

prime cordial labeling behavior of some graphs have been investigated [11]. In this paper we

investigate the 4-total prime cordial labeling of certain graphs like shadow graph, P 2
n , Tn ⊙K2

and subdivision of Tn ⊙ K1.

§2. Preliminary Results

Definition 2.1 Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. A corona of G1 with G2

is the graph G1 ⊙ G2 obtained by taking one copy of G1 , p1 copies of G2 and joining the ith

1Received November 17, 2018, Accepted September 3, 2019.
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vertex of G1 by an edge to every vertex in the ith copy of G2 where 1 ≤ i ≤ p1.

Definition 2.2 A shadow graph D2 (G) of a connected graph G is constructed by taking two

copies of G, G′ and G′′ and joining each vertex u′ in G′ to the neighbors of the corresponding

vertex u′′ in G′′.

Definition 2.3 If e = uv is an edge of G then e is said to be subdivided when it is replaced by

the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the

subdivision graph of G and is denoted by S(G).

Definition 2.4 For a simple connected graph G the square of graph G is denoted by G2 and

defined as the graph with the same vertex set as of G and two vertices are adjacent in G2 if

they are at a distance 1 or 2 apart in G.

Theorem 2.5([4]) A cycle Cn is 4-total prime cordial iff n /∈ {4, 6, 8}.

Remark 2.6 A 2-total prime cordial graph is 2-total product cordial graph.

§3. k-Total Prime Cordial Labeling

Definition 3.1 Let G be a (p, q) graph. Let f : V (G) → {1, 2, · · · , k} be a function where k ∈ N

and k > 1. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-total prime cordial

labeling of G if |tf (i) − tf (j)| ≤ 1, i, j ∈ {1, 2, · · · , k} where tf (x) denotes the total number of

vertices and the edges labeled with x. Conversely, a non-k-total prime cordial labeling of G is

called a Smarandachely k-total prime cordial labeling f , i.e., |tf (i) − tf (j)| ≥ 2 for an integer

pair {i, j}, where i, j ∈ {1, 2, · · · , k}.
A graph with a k-total prime cordial labeling is called k-total prime cordial graph.

Theorem 3.2 If n ≡ 1 (mod 4), then P 2
n is 4-total prime cordial.

Proof Let u1u2 · · ·un be the path. Let ui is adjacent to ui+2, (1 ≤ i ≤ n − 2). Clearly
∣

∣V (P 2
n)
∣

∣+
∣

∣E(P 2
n)
∣

∣ = 3n − 3.

Let n = 4r + 1, r ∈ N. Assign the label 4 to the vertices u1, u2, · · · , ur+1 and assign

the label 2 to the vertices ur+2, ur+3, · · · , u2r+1. Next we assign the label 3 to the vertices

u2r+2, u2r+3, · · · , u3r+2. Finally we assign the label 1 to the vertices u3r+3, u3r+4, · · · , u4r. It

is easy to verify that tf (1) = tf (2) = tf (3) = tf (4) = 3r. 2
Theorem 3.3 The shadow graph of Pn, D2(Pn) is 4-total prime cordial iff n /∈ {2, 4}.

Proof Let u1u2 · · ·un and v1v2 · · · vn be the two copies of the path Pn. Let ui is adjacent to

vi+1 and vi is adjacent to ui+1, (1 ≤ i ≤ n− 1) . Clearly |V (D2(Pn))|+ |E(D2(Pn))| = 6n− 4.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r > 1 and r ∈ N. Assign the label 4 to the vertices u1, u2, · · · , ur and

assign the label 2 to the vertices ur+1, ur+2, · · · , u2r. Next we assign the label 3 to the vertices
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u2r+1, u2r+2, · · · , u3r then we assign the label 1 to the vertices u3r+1, u3r+2, · · · , u4r−2. Finally

we assign the labels 4, 2 to the vertices u4r−1 and u4r respectively. Now we move to the vertices

vi (1 ≤ i ≤ n). Assign the label 4 to the vertices v1, v2, · · · , vr and assign the label 2 to the

vertices vr+1, vr+2, · · · , v2r−1. Next we assign the label 3 to the vertices v2r, v2r+1, · · · , v3r.

Next we assign the label 1 to the vertices v3r+1, v3r+2, · · · , v4r−1. Finally we assign the label 4

to the vertex v4r. Here tf (1) = tf (2) = tf (3) = tf (4) = 6r − 1.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r > 1 and r ∈ N. As in Case 1, assign the label to the vertices ui, vi

(1 ≤ i ≤ 4r − 1). Finally we assign the labels 4, 3 respectively to the vertices u4r and v4r.

Clearly tf (1) = tf (4) = 6r + 1 and tf (2) = tf (3) = 6r.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r > 1 and r ∈ N. Assign the label to the vertices ui (1 ≤ i ≤ 4r − 3), vi

(1 ≤ i ≤ 4r − 4) by in Case 1. Finally we assign the labels 4, 3, 2, 4, 3, 2, 4 respectively to the

vertices u4r−2, u4r−1, u4r, v4r−3, v4r−2, v4r−1 and v4r. It is easy to verify that tf (1) = tf (2) =

tf (3) = tf (4) = 6r + 2.

Case 4. n ≡ 3 (mod 4).

Let n = 4r + 3, r > 1 and r ∈ N. In this case, assign the label to the vertices ui, vi

(1 ≤ i ≤ 4r − 1) by in Case 3. Finally we assign the labels 3, 4 to the vertices u4r and v4r

respectively. Here tf (1) = tf (4) = 6r + 4 and tf (2) = tf (3) = 6r + 3.

Case 5. n = 2.

Theorem 2.5 gives n = 2 is not a 4-total prime cordial.

Case 6. n = 4.

Suppose f is a 4-total prime cordial labeling of D2(P4). Then tf (1) = tf (2) = tf (3) =

tf (4) = 5. Under the labeling f, we have tf (4) = 5. For this, it is easy to verify that 4 must be

labeled to 3 consecutive vertices of D2(P4). That is, 4 must be labeled to all the three vertices

of an induced subpath P3 of D2(P4). Similarly for tf (3) = 5, 3 must be labeled to all the three

vertices of another induced subpath P ′
3 of D2(P4) which is disjoint from P3. Now, we have only

two vertices are remaining in D2(P4). If the two vertices are labeled by 2, then tf (2) > 5 or

tf (2) < 5, according as 2 is labels of adjacent vertices (or) 2 is labels of non-adjacent vertices,

a contradiction.

Case 7. n = 4, 5, 6, 7.

A 4-total prime cordial labeling follows from Table 1.

n 4 5 6 7

u1 4 2 4 4

u2 2 4 4 4
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u3 3 2 2 2

u4 4 3 3

u5 3 3 3

u6 2 1

u7 4

v1 4 4 4 4

v2 3 4 4 4

v3 4 3 2 2

v4 3 3 2

v5 3 3 3

v6 2 3

v7 3

Table 1

This completes the proof. 2
Theorem 3.4 The corona of Tn with K2, Tn ⊙ K2 is 4-total prime cordial for all n ≥ 2.

Proof Let u1u2 · · ·un be the path and vi is adjacent to ui, ui+1. Let xi, yi be the vertices

adjacent to vi and xi, yi be adjacent. Let zi, wi be the vertices adjacent to ui and zi, wi be

adjacent. Clearly |V (Tn ⊙ K2)| + |E(Tn ⊙ K2)| = 15n − 9.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r > 1 and r ∈ N. Assign the label 4 to the vertices u1, u2, · · · , ur and assign

the label 2 to the vertices ur+1, ur+2, · · · , u2r. Next we assign the label 3 to the vertices u2r+1,

u2r+2,· · · , u3r then we assign the label 1 to the vertices u3r+1, u3r+2, · · · , u4r−1. Finally, we

assign the label 2 to the vertices u4r. Next we consider the vertices vi (1 ≤ i ≤ n−1). Assign the

label 4 to the vertices v1, v2, · · · , vr and assign the label 2 to the vertices vr+1, vr+2, · · · , v2r−1.

Next we assign the label 3 to the vertices v2r, v2r+1, · · · , v3r−1. Then we assign the label

1 to the vertices v3r, v3r+1, · · · , v4r−2. Finally, we assign the label 2 to the vertices v4r−1.

Now we move to the vertices xi, yi (1 ≤ i ≤ n − 1). Assign the label 4 to the vertices

x1, x2, · · · , xr and y1, y2, · · · , yr and assign the label 2 to the vertices xr+1, xr+2, · · · , x2r−1

and yr+1, yr+2, · · · , y2r−1. Next we assign the label 3 to the vertices x2r , x2r+1, · · · , x3r−1 and

y2r, y2r+1, · · · , y3r−1. Finally we assign the label 1 to the vertices x3r, x3r+1, · · · , x4r−1 and

y3r, y3r+1, · · · , y4r−1. Next we consider the vertices zi, wi (1 ≤ i ≤ n). Assign the label 4 to the

vertices z1, z2, · · · , zr and w1, w2, · · · , wr and assign the label 2 to the vertices zr+1, zr+2, · · · , z2r

and wr+1, wr+2, · · · , w2r. Next we assign the label 3 to the vertices z2r+1, z2r+2, · · · , z3r and

w2r+1, w2r+2, · · · , w3r then we assign the label 1 to the vertices z3r+1, z3r+2, · · · , z4r−1 and

w3r+1, w3r+2, · · · , w4r−1. Finally we assign the labels 1, 2 respectively to the vertices z4r and
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w4r. Clearly tf (1) = 15r − 3 and tf (2) = tf (3) = tf (4) = 15r − 2.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r > 1 and r ∈ N. As in Case 1, assign the label to the vertices ui

(1 ≤ i ≤ n − 1), vi (1 ≤ i ≤ n − 2), xi (1 ≤ i ≤ n − 2), yi (1 ≤ i ≤ n − 2), zi (1 ≤ i ≤ n − 2)

and wi (1 ≤ i ≤ n − 1) . Finally we assign the labels 4, 4, 2, 1, 2, 3, 3 respectively to

the vertices u4r, v4r−1, x4r−1, y4r−1, z4r−1, z4r and w4r. Here tf (1) = tf (2) = 15r + 2 and

tf (3) = tf (4) = 15r + 1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r > 1 and r ∈ N. As in Case 2, assign the label to the vertices ui

(1 ≤ i ≤ n − 1), vi (1 ≤ i ≤ n − 2), xi (1 ≤ i ≤ n − 2), yi (1 ≤ i ≤ n − 2), zi (1 ≤ i ≤ n − 1)

and wi (1 ≤ i ≤ n − 1) . Finally we assign the labels 2, 4, 4, 3, 3, 3 to the vertices u4r,

v4r−1, x4r−1, y4r−1, z4r and w4r respectively. It is easy to verify that tf (1) = 15r + 6 and

tf (2) = tf (3) = tf (4) = 15r + 5.

Case 4. n ≡ 3 (mod 4).

Let n = 4r + 3, r > 1 and r ∈ N. As in Case 3, assign the label to the vertices ui

(1 ≤ i ≤ n − 4), vi (1 ≤ i ≤ n − 4), xi (1 ≤ i ≤ n − 4), yi (1 ≤ i ≤ n − 4), zi (1 ≤ i ≤ n − 4)

and wi (1 ≤ i ≤ n − 4). Now we assign the labels 2, 4, 3, 3, 2, 4, 3 respectively to the vertices

u4r−3, u4r−2, u4r−1, u4r, v4r−3, v4r−2, v4r−1. Next we assign the labels 2, 4, 1, 4, 4, 3 to the

vertices x4r−3, x4r−2, x4r−1, y4r−3, y4r−2 and y4r−1 respectively. Finally we assign the labels

2, 3, 1, 4, 2, 3, 4, 1 respectively to the vertices z4r−3, z4r−2, z4r−1, z4r, w4r−3, w4r−2, w4r−1

and w4r . Here tf (1) = tf (2) = tf (3) = tf (4) = 15r + 9.

Case 5. n = 2, 3, 4, 5, 6, 7.

A 4-total prime cordial labeling follows from Table 2.

n 2 3 4 5 6 7

u1 4 4 4 4 4 4

u2 3 2 2 2 4 4

u3 3 3 3 2 2

u4 1 2 3 2

u5 2 3 3

u6 3 3

u7 1

v1 4 4 4 4 4 4

v2 2 2 2 4 4

v3 3 3 2 2

v4 1 3 3
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v5 1 3

v6 1

x1 2 4 4 4 4 4

x2 3 2 2 4 4

x3 3 3 2 2

x4 1 3 3

x5 1 3

x6 1

y1 1 4 4 4 4 4

y2 3 1 1 2 2

y3 3 3 2 2

y4 1 3 3

y5 1 3

y6 1

z1 4 4 4 4 4 4

z2 3 1 2 2 2 4

z3 3 3 3 2 2

z4 1 4 3 3

z5 3 3 3

z6 1 3

z7 1

w1 2 2 4 4 4 4

w2 3 1 2 2 2 2

w3 3 3 3 1 2

w4 1 4 3 3

w5 3 1 4

w6 1 4

w7 1

Table 2

This completes the proof. 2
Theorem 3.5 The subdivision of Tn ⊙ K1, S(Tn ⊙ K1) is 4-total prime cordial for all n ≥ 2.

Proof Let Pn be the path u1u2 · · ·un. Let v1, v2, · · · , vn be the vertices such that vi is
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adjacent to both ui and ui+1 (1 ≤ i ≤ n − 1). Let wi be the pendent vertices adjacent to vi

(1 ≤ i ≤ n − 1). Let pi be the pendent vertices adjacent to ui (1 ≤ i ≤ n). Let si, xi, yi, zi, qi

be the vertices which subdivide the edge uiui+1, uivi, viui+1, viwi, uipi respectively. It is easy

to show that |V (S(Tn ⊙ K1))| + |E(S(Tn ⊙ K1))| = 19n− 14.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r > 1 and r ∈ N. Assign the label 4 to the vertices u1, u2, · · · , ur and

assign the label 2 to the vertices ur+1, ur+2, · · · , u2r. Next we assign the label 3 to the vertices

u2r+1, u2r+2,· · · , u3r then we assign the label 1 to the vertices u3r+1, u3r+2, · · · , u4r−1. Finally,

we assign the label 4 to the vertices u4r. Next we consider the vertices vi (1 ≤ i ≤ n −
1). Assign the label 4 to the vertices v1, v2, · · · , vr and assign the label 2 to the vertices

vr+1, vr+2, · · · , v2r−1. Next we assign the label 3 to the vertices v2r, v2r+1, · · · , v3r−1. Then

we assign the label 1 to the vertices v3r, v3r+1, · · · , v4r−2. Finally we assign the label 3 to

the vertices v4r−1. Now we move to the vertices si (1 ≤ i ≤ n − 1). Assign the label 4

to the vertices s1, s2, · · · , sr and assign the label 2 to the vertices sr+1, sr+2, · · · , s2r. Next

we assign the label 3 to the vertices s2r+1, s2r+2,. . . , s3r then we assign the label 1 to the

vertices s3r+1, s3r+2, · · · , s4r−1. Next we consider the vertices xi, yi (1 ≤ i ≤ n − 1). Assign

the label 4 to the vertices x1, x2, . . . , xr and y1, y2, · · · , yr−1 and assign the label 2 to the

vertices xr+1, xr+2, · · · , x2r and yr, yr+1, · · · , y2r−1. Next we assign the label 3 to the vertices

x2r+1, x2r+2, · · · , x3r−1 and y2r, y2r+1, · · · , y3r−1. Finally we assign the label 1 to the vertices

x3r, x3r+1, . . . , x4r−1 and y3r, y3r+1, . . . , y4r−1. Now we move to the vertices zi, wi (1 ≤ i ≤
n− 1). Assign the label 4 to the vertices z1, z2, · · · , zr and w1, w2, · · · , wr and assign the label

2 to the vertices zr+1, zr+2, · · · , z2r−1 and wr+1, wr+2, · · · , w2r−1. Next we assign the label 3

to the vertices z2r, z2r+1, · · · , z3r−1 and w2r, w2r+1, · · · , w3r−1 then we assign the label 1 to

the vertices z3r, z3r+1, . . . , z4r−1 and w3r, w3r+1,. . . ,w4r−1. Next we consider the vertices pi,

qi (1 ≤ i ≤ n). Assign the label 4 to the vertices p1, p2, . . . , pr and q1, q2, · · · , qr and assign

the label 2 to the vertices pr+1, pr+2, · · · , p2r and qr+1, qr+2, · · · , q2r. Next we assign the label

3 to the vertices p2r+1, p2r+2, · · · , p3r and q2r+1, q2r+2, · · · , q3r then we assign the label 1 to

the vertices p3r+1 ,p3r+2,· · · ,p4r and q3r+1, q3r+2,· · · ,q4r−1. Finally we assign the label 2 to the

vertex q4r. Clearly tf (1) = tf (2) = 19r − 4 and tf (3) = tf (4) = 19r − 3.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r > 1 and r ∈ N. As in Case 1, assign the label to the vertices ui

(1 ≤ i ≤ n − 1), vi (1 ≤ i ≤ n − 2), si (1 ≤ i ≤ n − 2), xi (1 ≤ i ≤ n − 2), yi (1 ≤ i ≤ n − 2),

zi (1 ≤ i ≤ n − 2), wi (1 ≤ i ≤ n − 2), pi (1 ≤ i ≤ n − 1), and qi (1 ≤ i ≤ n − 1). Finally

we assign the labels 1, 3, 4, 4, 1, 3, 3, 2, 2 respectively to the vertices u4r, v4r−1, s4r−1, x4r−1,

y4r−1, z4r−1, w4r−1, p4r and q4r. Here tf (1) = tf (2) = tf (4) = 19r + 1 and tf (3) = 19r + 2.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r > 1 and r ∈ N. Assign the label to the vertices ui (1 ≤ i ≤ n − 1), vi

(1 ≤ i ≤ n − 2), si (1 ≤ i ≤ n − 2), xi (1 ≤ i ≤ n − 2), yi (1 ≤ i ≤ n − 2), zi (1 ≤ i ≤ n − 2),

wi (1 ≤ i ≤ n − 2), pi (1 ≤ i ≤ n − 1), and qi (1 ≤ i ≤ n − 1) by in Case 2. Finally we assign

the labels 1, 4, 3, 4, 4, 2, 2, 3, 2 to the vertices u4r, v4r−1, s4r−1, x4r−1, y4r−1, z4r−1, w4r−1,



110 R.Ponraj, J.Maruthamani and R.Kala

p4r and q4r respectively. It is easy to verify that tf (1) = tf (2) = tf (3) = tf (4) = 19r + 6.

Case 4. n ≡ 3 (mod 4).

Let n = 4r + 3, r > 1 and r ∈ N. As in Case 3, assign the label to the vertices ui

(1 ≤ i ≤ n − 1), vi (1 ≤ i ≤ n − 2), si (1 ≤ i ≤ n − 2), xi (1 ≤ i ≤ n − 2), yi (1 ≤ i ≤ n − 2),

zi (1 ≤ i ≤ n − 2), wi (1 ≤ i ≤ n − 2), pi (1 ≤ i ≤ n − 1), and qi (1 ≤ i ≤ n − 1). Finally

we assign the labels 2, 4, 3, 3, 2, 4, 4, 2, 1 respectively to the vertices u4r, v4r−1, s4r−1, x4r−1,

y4r−1, z4r−1, w4r−1, p4r and q4r. Here tf (1) = tf (2) = tf (4) = 19r + 11 and tf (3) = 19r + 10.

Case 5. n = 2, 3, 4, 5, 6, 7.

A 4-total prime cordial labeling follows from Table 3.

n 2 3 4 5 6 7

u1 4 4 4 4 4 4

u2 3 2 2 4 4 4

u3 3 3 2 2 2

u4 1 3 3 2

u5 1 3 3

u6 1 1

u7 1

v1 4 4 4 4 4 4

v2 3 2 2 2 4

v3 3 3 2 2

v4 1 3 3

v5 1 3

v6 1

s1 2 4 4 4 4 4

s2 3 3 2 2 4

s3 1 3 2 2

s4 3 3 3

s5 1 3

s6 1

x1 4 4 4 4 4 4

x2 2 2 2 2 4

x3 3 3 2 2

x4 1 3 3

x5 1 3

x6 1
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y1 3 2 2 4 4 4

y2 3 3 3 2 2

y3 1 3 1 2

y4 1 3 3

y5 1 3

y6 1

z1 2 4 4 4 4 4

z2 1 2 2 2 2

z3 3 3 1 2

z4 1 3 3

z5 1 3

z6 1

w1 2 4 4 4 4 4

w2 1 3 2 2 2

w3 2 3 4 2

w4 1 3 3

w5 3 3

w6 1

p1 1 2 4 4 4 4

p2 4 1 2 2 4 4

p3 3 3 2 2 2

p4 1 3 3 3

p5 1 3 3

p6 1 1

p7 1

q1 3 2 4 4 4 4

q2 3 1 2 2 4 4

q3 3 3 2 2 2

q4 1 3 3 2

q5 1 3 3

q6 1 1

q7 1

Table 3



112 R.Ponraj, J.Maruthamani and R.Kala

This completes the proof. 2
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Abstract: Let G be a graph and f : V (G) → {1, 2, 3, . . . , p + q} be an injection. For each

uv, the induced edge labeling f∗ is defined as

f
∗(uv) =

⌊

2 [f(u)2 + f(u)f(v) + f(v)2]

3 [f(u) + f(v)]

⌋

.

Then f is called a super F -centroidal mean labeling if f(V (G)) ∪ {f∗(uv) : uv ∈ E(G)} =

{1, 2, 3, . . . , p+ q}. A graph that admits a super F -centroidal mean labeling is called a super

F -centroidal mean graph. In this paper, the super F -centroidal meanness of some standard

graphs have been studied.

Key Words: F -centroidal mean graph, super F -centroidal mean labeling, Smarandachely

super F -centroidal mean labeling, super F -centroidal mean graph.
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§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E)

be a graph with p vertices and q edges. For notations and terminology, we follow [7]. For a

detailed survey on graph labeling, we refer [6].

Path on n vertices is denoted by Pn and a cycle on n vertices is denoted by Cn. A star graph

Sn is the complete bipartite graph K1,n. The union G1 ∪G2 of any two graphs G1 and G2 with

disjoint vertex sets, has vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The middle graph

M(G) of a graph G is the graph whose vertex set is {v : v ∈ V (G)}∪{e : e ∈ E(G)} and the edge

set is {e1e2 : e1, e2 ∈ E(G) and e1 and e2 are adjacent edges of G} ∪ {ve : v ∈ V (G), e ∈ E(G)

and e is incident with v}. The graph G ◦ Sm is obtained from G by attaching m pendant

vertices to each vertex of G. A Twig TW (Pn), n ≥ 3 is a graph obtained from a path by

attaching exactly two pendant vertices to each internal vertices of the path Pn. A subdivision

of a graph G, denoted by S(G), is a graph obtained by subdividing edge of G by a vertex. An

arbitrary subdivision of a graph G is a graph obtained from G by a sequence of elementary

subdivisions forming edges into paths through new vertices of degree 2. Square of a graph G,

1Received December 31, 2018, Accepted September 5, 2019.
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denoted by G2, has the vertex set as in G and two vertices are adjacent in G2 if they are at a

distance either 1 or 2 apart in G. The baloon of a graph G, Pn(G) is the graph obtained from

G by identifying an end vertex of Pn at a vertex of G. The graph Pn(Cm) is called a dragon.

The concept of geometric mean labeling [1] and super geometric mean labeling [2] were

introduced by Durai Baskar et al. and studied for some standard graphs. Arockiaraj et al.

introduced the concept of F -root square labeling [3] and super F -root square labeling [4]. The

concept of F -centroidal mean labeling [5] was introduced and developed its meanness for some

standard graphs.

Arockiaraj et al. [5], defined the F -centroidal mean labeling as follows:

A function f is called an F -centroidal mean labeling of a graph G(V, E) with p vertices

and q edges if f : V (G) → {1, 2, 3, · · · , q +1} is injective and the induced function f∗ : E(G) →
{1, 2, 3, · · · , q} defined as

f∗(uv) =

⌊

2 [f(u)2 + f(u)f(v) + f(v)2]

3 [f(u) + f(v)]

⌋

is bijective for all uv ∈ E(G). A graph that admits an F -centroidal mean labeling is called

an F -centroidal mean graph. Motivated by the works of so many authors in the area of graph

labeling, we introduced a new type of labeling called a super F -centroidal mean labeling.

Let G be a graph and f : V (G) → {1, 2, 3, · · · , p + q} be an injection. For each uv, the

induced edge labeling f∗ is defined as

f∗(uv) =

⌊

2 [f(u)2 + f(u)f(v) + f(v)2]

3 [f(u) + f(v)]

⌋

.

Then f is called a super F -centroidal mean labeling if f(V (G)) ∪ {f∗(uv) : uv ∈ E(G)} =

{1, 2, 3, · · · , p + q}. A graph that admits a super F -centroidal mean labeling is called a super

F -centroidal mean graph. Generally, let C ⊂ {1, 2, 3, · · · , p + q}. If f(V (G))
⋃{f∗(uv) : uv ∈

E(G)} = {1, 2, 3, · · · , p + q} \ C, such a f is called a Smarandachely super F -centroidal mean

labeling on C. Clearly, if C = ∅, a Smarandachely super F -centroidal mean labeling on C is

nothing else but the super F -centroidal mean labeling on G.

A super F -centroidal mean labeling of the graph C4 is shown in Figure 1.s
s s
s1 8

3 6

2

5

7

4

Figure 1 A super F -centroidal mean labeling of C4

In this paper, we have studied the super F -centroidal meanness of some standard graphs.
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§2. Main Results

Theorem 2.1 A union of any number of paths is a super F -centroidal mean graph.

Proof Let the graph G be the union of k paths. Let {v(i)
j : 1 ≤ j ≤ pi} be the vertices

of the ith path Ppi
with pi ≥ 2 and 1 ≤ i ≤ k. Define f : V (G) →

{

1, 2, 3, · · · ,
k
∑

i=1

2pi − k

}

as

follows:

f(v
(1)
j )) = 2j − 1, for 1 ≤ j ≤ p1 and

f
(

v
(i)
j

)

= f(v(i−1)
pi−1

) + 2j − 1, for 2 ≤ i ≤ k and 1 ≤ j ≤ pi.

Then the induced edge labeling f∗ is obtained as follows:

f∗(v(1)
j v

(1)
j+1) = 2j, for 1 ≤ j ≤ p1 − 1 and

f∗
(

v
(i)
j v

(i)
j+1

)

= f(v(i−1)
pi−1

) + 2j, for 2 ≤ i ≤ k and 1 ≤ j ≤ p1 − 1.

Hence, f is a super F -centroidal mean labeling of G. Thus the graph G is a super F -centroidal

mean graph. 2ttt t t t tt
1 3 5 7 9

10 12 14 16

17 19 21

2 4 6 8

11 13 15

18 20t tt t
Figure 2 A super F -centroidal mean labeling of union of P5, P4 and P3

Corollary 2.2 Every path Pn is a super F -centroidal mean graph, for n ≥ 1.

Theorem 2.3 The middle graph M(Pn) of a path Pn is a super F -centroidal mean graph, for

n ≥ 4.

Proof Let V (Pn) = {v1, v2, v3, · · · , vn} and E(Pn) = {ei = vivi+1 : 1 ≤ i ≤ n − 1} be the

vertex set and edge set of the path Pn. Then,

V (M(Pn)) = {v1, v2, v3, . . . , vn, e1, e2, e3, . . . , en−1} and

E(M(Pn)) = {viei, eivi+1 : 1 ≤ i ≤ n − 1} ∪ {eiei+1 : 1 ≤ i ≤ n − 2}.

Define f : V (M(Pn)) → {1, 2, 3, · · · , 5n − 5} as follows:

f(vi) = 5i − 4, for 1 ≤ i ≤ n − 1,

f(vn) = 5n− 5 and

f(ei) = 5i − 2, for 1 ≤ i ≤ n − 1.
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Then, the induced edge labeling f∗ is obtained as follows:

f∗(viei) = 5i − 3, for 1 ≤ i ≤ n − 1

f∗(eivi+1) = 5i − 1, for 1 ≤ i ≤ n − 1

f∗(eiei+1) = 5i, for 1 ≤ i ≤ n − 2.

Hence f is a super F -centroidal mean labeling of M(Pn). Thus the middle graph M(Pn) of a

path Pn is a super F -centroidal mean graph, for n ≥ 4. 2
8 13

6 11

5

2

10

4 7 9 12 14 17 19
29

s s s s sss s s s s ss
3

1

18 23 28

16 21 26 30

15 20 25

22 27
24

Figure 3 A super F -centroidal mean labeling of M(P7)

1

3

5 7

9

11 13

15

17 19

21

23 25

27

29

2 4 8 10 14 16 20 22 26 28

6 12 18 24

1 7 9 15 17

3 5 11 13 19

2 6 10 14 18

4 8 1612t tt tt t t tt tt t ttt t t t t t t t tt
t

1
6 7 8 11 15

16
19 23 24 27 31

2
4 5 10 12

14 18
20

22 26
28

30

3 139 17 21 25 29t t ttt t t t t t t t t t tt
Figure 4. A super F -centroidal mean labeling of P5 ◦ S1, P6 ◦ S2 and P4 ◦ S3

Theorem 2.4 The graph Pn ◦ Sm is a super F -centroidal mean graph, for n ≥ 1 and m ≤ 3.

Proof Let u1, u2, · · · , un be the vertices of the path Pn and v
(i)
1 , v

(i)
2 , . . . , v

(i)
m be the pendant

vertices attached at each vertex ui of the path Pn, for 1 ≤ i ≤ n.

Case 1. m = 1.
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Define f : V (Pn ◦ S1) → {1, 2, 3, · · · , 4n − 1} as follows:

f(ui) =







4i − 1, 1 ≤ i ≤ n and i is odd

4i − 3, 2 ≤ i ≤ n and i is even and

f(v
(i)
1 ) =







4i − 3, 1 ≤ i ≤ n and i is odd

4i − 1, 2 ≤ i ≤ n and i is even.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiui+1) = 4i, for 1 ≤ i ≤ n − 1 and

f∗(v(i)
1 ui) = 4i − 2, for 1 ≤ i ≤ n.

Case 2. m = 2.

Define f : V (Pn ◦ S2) → {1, 2, 3, · · · , 6n − 1} as follows:

f(ui) = 6i − 3, for 1 ≤ i ≤ n,

f(v
(i)
1 ) = 6i − 5, for 1 ≤ i ≤ n and

f(v
(i)
2 ) = 6i − 1, for 1 ≤ i ≤ n.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiui+1) = 6i, for 1 ≤ i ≤ n − 1,

f∗(v(i)
1 ui) = 6i − 4, for 1 ≤ i ≤ n and

f∗(v(i)
2 ui) = 6i − 2, for 1 ≤ i ≤ n.

Case 3. m = 3.

Define f : V (Pn ◦ S3) → {1, 2, 3, · · · , 8n − 1} as follows:

f(ui) =







3, i = 1

8i − 3, 2 ≤ i ≤ n,

f(v
(i)
1 ) =







1, i = 1

8i − 8, 2 ≤ i ≤ n,

f(v
(i)
2 ) =







6, i = 1

8i − 5, 2 ≤ i ≤ n and

f(v
(i)
3 ) = 8i − 1, for 1 ≤ i ≤ n.
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Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiui+1) = 8i + 1, for 1 ≤ i ≤ n − 1,

f∗(v(i)
1 ui) = 8i − 6, for 1 ≤ i ≤ n,

f∗(v(i)
2 ui) = 8i − 4, for 1 ≤ i ≤ n and

f∗(v(i)
3 ui) =







5, i = 1

8i − 2, 2 ≤ i ≤ n.

In each case, f is a super F -centroidal mean labeling of Pn ◦ Sm. Thus the graph Pn ◦ Sm

is a super F -centroidal mean graph, for n ≥ 1 and m ≤ 3. 2
Theorem 2.5 The twig graph TW (Pn) of the path Pn is a super F -centroidal mean graph,

only when n ≥ 4.

Proof Let v1, v2, v3, · · · , vn be the vertices of the path Pn and u
(i)
1 , u

(i)
2 be the pendant

vertices at each vertex vi, for 2 ≤ i ≤ n − 1.

Assume that n ≥ 4.

Define f : V (TW (Pn)) → {1, 2, 3, · · · , 6n − 9} as follows:

f(vi) =















2i − 1, 1 ≤ i ≤ 2

6i − 7, 3 ≤ i ≤ n − 1

6i − 9, i = n,

f(u
(i)
1 ) =







6, i = 2

6i − 9, 3 ≤ i ≤ n − 1 and

f(u
(i)
2 ) =















8, i = 2

6i − 5, 3 ≤ i ≤ n − 2

6i − 4, i = n − 1.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(vivi+1) =







5i − 3, 1 ≤ i ≤ 2

6i − 4, 3 ≤ i ≤ n − 2,

f∗ (vn−1vn) = 6n − 11,

f∗(viu
(i)
1 ) = 6i − 8, for 2 ≤ i ≤ n − 1 and

f∗(viu
(i)
2 ) =







5, i = 2

6i − 6, 3 ≤ i ≤ n − 1.

Hence f is a super F -centroidal mean labeling of TW (Pn). Thus the twig graph TW (Pn)

is a super F -centroidal mean graph, for n ≥ 4. 2
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1 3 11 17 23 29 33

6 9 13 15 19 21 25 27 32

2 14 20 26 31

4 5 10 12 16 18 22 24 28 30

s s s sss ss s s s s s s s s s
8

7

Figure 5. A super F -centroidal mean labeling of TW (P7)

Theorem 2.6 The graph [Pn; S1] is a super F -centroidal mean graph, for n ≥ 1.

Proof Let u1, u2, u3, · · · , un be the vertices of the path Pn and v
(i)
1 , v

(i)
2 , v

(i)
3 , · · · , v

(i)
m+1

be the vertices of the star graph Sm such that v
(i)
1 is the central vertex of the star graph

Sm, 1 ≤ i ≤ n.

Assume that m = 1. Define f : V ([Pn; S1]) → {1, 2, 3, · · · , 6n − 1} as follows:

f(ui) = 6i − 1, for 1 ≤ i ≤ n,

f(v
(i)
1 ) = 6i − 3, for 1 ≤ i ≤ n and

f(v
(i)
2 ) =







1, i = 1

6i − 6, 2 ≤ i ≤ n.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiui+1) = 6i + 2, for 1 ≤ i ≤ n − 1,

f∗(uiv
(i)
1 ) = 6i − 2, for 1 ≤ i ≤ n and

f∗(v(i)
1 v

(i)
2 ) =







2, i = 1

6i − 5, 2 ≤ i ≤ n.

Hence f is a super F -centroidal mean labeling of [Pn; S1]. Thus the graph [Pn; S1] is a

super F -centroidal mean graph, for n ≥ 1. 2sss ss ss ss ss
s ss s

3

5 11 17 23 29

12 18 241 6

9 15 21 27

7

284

13 19 252

20 268 14

10 16 22

Figure 6 A super F -centroidal mean labeling of [P5; S1]

Theorem 2.7 Arbitrary subdivision of K1,3 is a super F -centroidal mean graph.
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Proof Let G be the graph of arbitrary subdivision of K1,3. Let v0, v1, v2 and v3 be the

vertices of K1,3 in which v0 is the central vertex and v1, v2 and v3 are the pendent vertices of

K1,3. Let the edges v0v1, v0v2 and v0v3 of S3 be subdivided by p1, p2 and p3 number of vertices

respectively.

Let v0, v
(1)
1 , v

(1)
2 , v

(1)
3 , · · · , v

(1)
p1+1= v1, v0, v

(2)
1 , v

(2)
2 , v

(2)
3 , · · · , v

(2)
p2+1= v2 and v0, v

(3)
1 , v

(3)
2 , v

(3)
3 ,

· · · , v
(3)
p3+1(= v3) be the vertices of G and v0 = v

(i)
0 for 1 ≤ i ≤ 3.

Let e
(i)
j = v

(i)
j−1v

(i)
j for 1 ≤ j ≤ pi + 1 and 1 ≤ i ≤ 3 be the edges with G and it has

p1 + p2 + p3 + 4 vertices and p1 + p2 + p3 + 3 edges with p1 ≤ p2 ≤ p3.

Case 1. p1 = p2, p1 ≥ 1 and p3 ≥ 3.

Define f : V (G) → {1, 2, 3, · · · , 2(p1 + p2 + p3) + 7} as follows:

f(v0) = 2(p1 + p2) + 5,

f(v
(1)
j ) =







2(p1 + p2), j = 1

2(p1 + p2) + 5 − 4j, 2 ≤ j ≤ p1 + 1,

f(v
(2)
j ) =







2(p1 + p2) + 7 − 4j, 1 ≤ j ≤ 2

2(p1 + p2) + 6 − 4j, 3 ≤ j ≤ p2 + 1 and

f∗(v(3)
j ) = 2(p1 + p2) + 5 + 2j for 1 ≤ j ≤ p3 + 1.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(v0v
(i)
1 ) = 2(p1 + p2) + 2i, for 1 ≤ i ≤ 3,

f∗(v(1)
j v

(1)
j+1) =







2(p1 + p2) − 2, j = 1

2(p1 + p2) + 3 − 4j, 2 ≤ j ≤ p1,

f∗(v(2)
j v

(2)
j+1) =







2(p1 + p2) + 1, j = 1

2(p1 + p2) + 4 − 4j, 2 ≤ j ≤ p2 and

f∗(v(3)
j v

(3)
j+1) = 2(p1 + p2) + 6 + 2j, for 1 ≤ j ≤ p3.

Case 2. p1 < p2.

Define f : V (G) → {1, 2, 3, · · · , 2(p1 + p2 + p3) + 7} as follows:

f(v0) = 2(p1 + p2) + 5,
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f(v
(1)
j ) =







2(p1 + p2) + 3, j = 1

2(p1 + p2) + 8 − 4j, 2 ≤ j ≤ p1 + 1,

f(v
(2)
j ) =







2(p1 + p2) + 3 − 4j, 1 ≤ j ≤ p1

2p2 + 3 − 2j, p1 + 1 ≤ j ≤ p2 + 1 and

f∗
(

v
(3)
j

)

= 2(p1 + p2) + 5 + 2j for 1 ≤ j ≤ p3 + 1.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(v0v
(i)
1 ) = 2(p1 + p2) + 2i, for 1 ≤ i ≤ 3,

f∗(v(1)
j v

(1)
j+1) =







2(p1 + p2) + 5 − 4j, j = 1

2(p1 + p2) + 6 − 4j, 2 ≤ j ≤ p1,

f∗(v(2)
j v

(2)
j+1) =







2(p1 + p2) + 1 − 4j, 1 ≤ j ≤ p1 − 1

2p2 + 2 − 2j, p1 ≤ j ≤ p2 and

f∗(v(3)
j v

(3)
j+1) = 2(p1 + p2) + 6 + 2j, for 1 ≤ j ≤ p3.

In both cases, f is a super F -centroidal mean labeling of the arbitrary subdivision of S3.
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Figure 7. A super F -centroidal mean labeling of G with
p1 = p2 = 5, p3 = 7 and p1 = 4, p2 = 6, p3 = 7

The graphs does not fall on the Case 1 are found to be a super F -centroidal mean graphs

whose super F -centroidal mean labeling is shown in Figure 8. 2
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Figure 8 A super F -centroidal mean labeling of G with
p1 = p2 = p3 = 1, p1 = p2 = 1, p3 = 2 and p1 = p2 = p3 = 2

Theorem 2.8 Every cycle Cn is a super F -centroidal mean graph, for n ≥ 4.

Proof Let u1, u2, · · · , un be the vertices of the cycle Cn. Assume that n ≥ 5.

A vertex labeling f : V (Cn) → {1, 2, 3, · · · , 2n} is defined as

f(ui) =































































1, i = 1

4i − 4, 2 ≤ i ≤
⌊

n
2

⌋

+ 1 and n is odd

4i − 6, i =
⌊

n
2

⌋

+ 2 and n is odd

4n− 4i + 5,
⌊

n
2

⌋

+ 3 ≤ i ≤ n and n is odd

4i − 5, 2 ≤ i ≤
⌊

n
2

⌋

and n is even

4i − 4, i =
⌊

n
2

⌋

+ 1 and n is even

4n− 4i + 6,
⌊

n
2

⌋

+ 2 ≤ i ≤ n and n is even.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiui+1) =











































































2, i = 1 and n is odd

4i − 2, 2 ≤ i ≤
⌊

n
2

⌋

and n is odd

4i − 3, i =
⌊

n
2

⌋

+ 1 and n is odd

4n − 4i + 3,
⌊

n
2

⌋

+ 2 ≤ i ≤ n − 1 and n is odd

3i − 1, 1 ≤ i ≤ 2 and n is even

4i − 3, 3 ≤ i ≤
⌊

n
2

⌋

and n is even

4i − 5, i =
⌊

n
2

⌋

+ 1 and n is even

4n − 4i + 4,
⌊

n
2

⌋

+ 2 ≤ i ≤ n − 1 and n is even and
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f∗(unu1) =







3, n is odd

4, n is even.

Hence f is a super F -centroidal mean labeling of Cn, for n ≥ 5.

Thus the graph Cn is a super F -centroidal mean graph, for n ≥ 5.
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Figure 9 A super F -centroidal mean labeling of C9 and C10

For n = 4, a super F -centroidal mean labeling of C4, is shown in Figure 1. But, the graph

C3 is not a super F -centroidal mean graph. 2
Theorem 2.9 Pn ∪ Cm is a super F -centroidal mean graph, for n ≥ 1 and m ≥ 3.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycle Cm and the path

Pn respectively.

Case 1. m ≥ 4.

Define f : V (Pn ∪ Cm) → {1, 2, 3, · · · , 2m + 2n − 1} as follows:

f(ui) =































































1, i = 1

4i − 4, 2 ≤ i ≤
⌊

m
2

⌋

2m − 3, i =
⌊

m
2

⌋

+ 1 and m is odd

2m, i =
⌊

m
2

⌋

+ 1 and m is even

2m, i =
⌊

m
2

⌋

+ 2 and m is odd

2m − 3, i =
⌊

m
2

⌋

+ 2 and m is even

4m + 5 − 4i,
⌊

m
2

⌋

+ 3 ≤ i ≤ n and n is even and

f(vi) = 2m + 2i − 1, for 1 ≤ i ≤ n.
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Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiui+1) =







































4i − 2, 1 ≤ i ≤
⌊

m
2

⌋

2m − 1, i =
⌊

m
2

⌋

+ 1

2m − 2, i =
⌊

m
2

⌋

+ 2 and m is odd

2m − 5, i =
⌊

m
2

⌋

+ 2 and m is even

4m + 3 − 4i,
⌊

m
2

⌋

+ 3 ≤ i ≤ m − 1,

f∗(u1um) = 3 and

f∗(vivi+1) = 2m + 2i, for 1 ≤ i ≤ n − 1.

Case 2. m = 3.

Define f : V (Pn ∪ C3) → {1, 2, 3, · · · , 2n + 5} as follows:

f(vi) = 2i − 1, for 1 ≤ i ≤ n,

f(u1) = 2n,

f(u2) = 2n + 3 and

f(u3) = 2n + 5.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(vivi+1) = 2i, for 1 ≤ i ≤ n − 1,

f∗(u1u2) = 2n + 1,

f∗(u2u3) = 2n + 4 and

f∗(u1u3) = 2n + 2.

Hence f is a super F -centroidal mean labeling of Pn ∪ Cm. Thus the graph Pn ∪ Cm is a

super F -centroidal mean graph for n ≥ 1 and m ≥ 3. 2

s sssss
1 3 5 7 9

2 4 6 8s s
10 15
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1

42
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14 16 18 20
10

ss ss ss s s s ss
Figure 10 A super F -centroidal mean labeling of P5 ∪ C6 and P4 ∪ C3
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Theorem 2.10 P 2
n is a super F -centroidal mean graph, for n ≥ 3.

Proof Let v1, v2, · · · , vn be the vertices of the path Pn. Assume that n 6= 5. Define f :

V (P 2
n) → {1, 2, 3, · · · , 3n − 3} as follows:

f(vi) =







3i − 2, 1 ≤ i ≤ n − 2 and i is odd

3i − 3, 1 ≤ i ≤ n − 2 and i is even,

f(vn−1) = 3n − 5 and

f(vn) = 3n − 3.

Then, the induced edge labeling f∗ is obtained as follows:

f∗(vivi+1) = 3i − 1, for 1 ≤ i ≤ n − 1,

f∗(vivi+2) =







3i + 1, 1 ≤ i ≤ n − 4 and i is odd

3i, 2 ≤ i ≤ n − 4 and i is even,

f∗(vn−3vn−1) =







3n− 9, n is odd

3n− 8, n is even and

f∗(vn−2vn) = 3n − 6.

r rr r r r r
1 16 18

2 5 8 11 14 17

15

6

4

73 13
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12

Figure 11 A super F -centroidal mean labeling of P 2
7

For n = 5, a super F -centroidal mean labeling of P 5
n is shown the Figure 12.

r r r r r2 11

6

713

5 9

10 12

4 8

Figure 12 A super F -centroidal mean labeling of P 2
5
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Hence f is a super F -centroidal mean labeling of P 2
n . Thus the graph P 2

n is a super F -

centroidal mean graph, for n ≥ 3. 2
Theorem 2.11 If the graph G is a super F -centroidal mean graph, then Pn(G) is also a super

F -centroidal mean graph.

Proof Let f be a super F -centroidal mean graph of G. Let v1, v2, v3, · · · , vp be the vertices

and e1, e2, e3, · · · , eq be the edges of G so that the vertex having maximum vertex label is

taken as vp. Let u1, u2, u3, · · · , un and E1, E2, E3, · · · , En−1 be the vertices and edges of Pn

respectively and vp is identified with u1 in Pn(G).

Define g : V (Pn(G)) → {1, 2, 3, · · · , p + q + 2j − 2} as follows:

g(vi) = f(vi), for 1 ≤ i ≤ p and

g (uj) = p + q + 2j − 2, for 1 ≤ j ≤ n.

Then, the induced edge labeling g∗ is obtained as follows:

g∗(ei) = f(ei), for 1 ≤ i ≤ p and

g∗ (Ej) = p + q + 2j − 1, for 1 ≤ j ≤ n − 1.

Hence Pn(G) is a super F -centroidal mean graph. Thus the graph G is a super F -centroidal

mean graph then Pn(G) is also a super F -centroidal mean graph. 2
Corollary 2.12 A dragon Pn(Cm) is a super F -centroidal mean graph, for m ≥ 4 and n ≥ 2.

§3. Conclusion

In this paper, the super F -centroidal meanness of some standard graphs have been studied. It

is possible to investigate the super F -centroidal meanness for other graphs.
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Could mathematics characterizes the reality of all things T in the universe? The answer is

negative at least for today’s mathematics because all mathematical systems should be homoge-
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