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Abstract: A set S ⊆ V of a graph G = (V,E) is a Neighborhood set of G if G =⋃
v∈S〈N(v)〉, where 〈N(v)〉 is the subgraph induced by v and all vertices adjacent to v.

The neighborhood number, η(G) is the minimum cardinality of a neighborhood set of G.

The minimum neighborhood set S with |S| = η(G) is called η-set. Generally, the partially

balanced incomplete block(PBIB)-Designs are obtained from the family of strongly regular

graphs. Surprisingly, in this paper we obtain the PBIB-Designs and m-association schemes

for 1 ≤ m ≤ b p
2
c arising from η -sets of certain jump sizes of circulant graphs.
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§1. Introduction

Let G = (V,E) be a finite and undirected graph with no loops and multiple edges of vertex

set V and edge set E. As usual p = |V | and q = |E| denote the number of vertices and edges

of a graph G, respectively. For graph-theoretical terminologies which are not defined here, we

follow [15].

For a given positive integer p, let s1, s2, · · · , st be a sequence of integers with 0 < s1 <

s2 < · · · < st <
p+1
2 . The Circulant graph Cp(s1, s2, · · · , st) is the graph on p vertices labeled as

v1, v2, · · · , vp with vertex vi adjacent to each vertex v(i±sj)(mod p) and the values sj ; 1 ≤ j ≤ t
are called jump sizes.

The applications are mainly in pure mathematics and technology which mysteriously re-

flects the abstract concrete dichotomy of the theory of Circulant. Also, which are important in

digital encoding; this is a wondrous technology it enables devices ranging from computers to

music players to recover from errors in transmission and storage of data and restore the original

data. For more details, we refer to [17].

Bose and Nair [3] introduced a class of binary, equi-replicate and proper designs, which are

called partially balanced incomplete block (PBIB)-Designs. In these designs, all the elementary

contrasts are not estimated with the same variance. The variances depend on the type of

association between the treatments. There are many applications of PBIB-Designs in cluster
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sampling, digital fingerprint codes and architecture of web solution. For more details on PBIB-

Designs one can refer to [1], [6], [11], [12] and [13].

Given ν elements (objects or vertices), a relation satisfying the following conditions is said

to be an association scheme with m classes:

(i) Any two elements are either first associates, or second associates, · · · , or mth associates,

the relation of association being symmetric.

(ii) Each object x has nk k
th associates, the number nk being independent of x.

(iii) If two objects x and y are kth associates, then the number of objects which are ith

associates of x and jth associates of y is pkij and is independent of the kth associates x and y.

Also pkij = pkji.

With the association scheme on ν objects, a PBIB-Design is an arrangement of ν objects

into b sets (blocks) of size g where g < ν such that

(i) Every element is contained in exactly r blocks.

(ii) Each block contains g distinct elements.

(iii) Any two elements which are mth associates occur together in exactly λm blocks.

The numbers ν, b, g, r, λ1, λ2, · · · , λm are called the parameters of the first kind, whereas

the numbers n1, n2, · · · , nm, pkij (i, j, k = 1, 2, · · · , m) are called the parameters of the second

kind.

Bose [2] has initiated the study of strongly regular graph with parameters (p, l, σ, µ) of a

finite simple graph on p vertices, regular of degree l (with 0 < l < p − 1, so that there are

both edges and nonedges), such that any two distinct vertices have σ common neighbors when

they are adjacent, and µ common neighbors when they are nonadjacent. For more details on

strongly regular graph and its related concepts, we refer to [4] and [14].

A set S ⊆ V of a graph is a neighborhood set of G if G =
⋃
v∈S〈N(v)〉, where 〈N(v)〉 is the

subgraph induced by v and all vertices adjacent to v. The neighborhood number η(G) is the

minimum cardinality of a neighborhood set of G. The minimum neighborhood set of S with

|S| = η(G) is called η-set. This concept was first introduced by Sampathkumar and Neeralagi

[16]. For more details on neighborhood number and its related parameters, we refer to [7].

Slater [18] has introduced the concept of the number of dominating sets of G, which he

denoted by HED(G) in honor of Steve Hedetniemi. In this article, we will use τη(G) to denote

the total number of η-set of a graph G. PBIB-Design associated with graph theoretic parameters

are studied by [8], [9], [10] and [19].

§2. η(G) and τη(G) for Different Jump Sizes of Circulant Graphs

2.1 Circulant Graph Cp(1)

The circulant graph with jump size one is also known as cycle Cp for p ≥ 3, that is, Cp(1) ∼= Cp

with p ≥ 3.

Remark 2.1 The circulant graphs C4(1) and C5(1) are the strongly regular graphs.
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Theorem 2.1 For any circulant graph G1 = Cp(1) with p ≥ 4 vertices

(i) η(G1) =
⌈p

2

⌉
:

(ii) τη(G1) =

2 if p is even ,

p if p is odd.

Proof (i) The proof is due to [16].

(ii) Let G1 = Cp(1) be a circulant graph with p ≥ 4 vertices labeled as v1, v2, · · · , vp. We

have two cases for discussion:

Case 1. If p is even then by (i), we have η(G1) =
p

2
with two disjoint η-sets of G1 as

{v1, v3, v5, · · · , v(p−1)} and {v2, v4, v6, · · · , vp}. Hence τη(G1) = 2.

Case 2. If p is odd then by (i), we have η(G1) =
⌈p

2

⌉
with p number of η-sets of G1 as

{vi, v(i+1)(mod p), v(i+3)(mod p), · · · , v(i+ p−1
2 )(mod p)}; 1 ≤ i ≤ p. Hence τη(G1) = p. �

2.2 Circulant Graph Cp(bp2c)

The circulant graph Cp(bp2c), p ≥ 3 is a circulant graph with jump size bp2c.

Remark 2.2 The following results hold by definition of circulant graph:

(i) Cp(bp2c) ∼= Cp(1); p = 2n− 1, n ≥ 2;

(ii) The circulant graph Cp(bp2c) with p = 2n, n ≥ 1 vertices contain n times of K2’s and

they are disconnected, which are not strongly regular.

Theorem 2.2 For any circulant graph G2 = Cp(bp2c) with p ≥ 4 vertices,

(i) η(G2) =
⌈p

2

⌉
;

(ii) τη(G2) =

2p if n is even

p if p is odd.

Proof (i) Let G2 = Cp(bp2c) be any circulant graph with p ≥ 4 vertices labeled as

v1, v2, · · · , vp. We have the following two cases:

Case 1. If p = 2n;n ≥ 2, then Cp(bp2c) is bipartite graph with n number of K ′2s. Hence

η(Cp(b
p

2
c)) =

p

2
.

Case 2. If p = 2n − 1;n ≥ 2, then by Theorem 2.1(i), neighborhood number of Cp(1) is dp2e
and by Remark 2.2(i), Cp(bp2c) ∼= Cp(1);

p = 2n− 1, n ≥ 2. Therefore, we have

η(Cp(b
p

2
c)) = dp

2
e, p ≥ 4.

(ii) For the values of τη(G2), we have
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Case 1. If p = 2n;n ≥ 2 then by (i), we have η(Cp(bp2c)) =
p

2
with 2p disjoint η-sets. Hence

τη(G1) = 2p.

Case 2. If p = 2n+ 1;n ≥ 2, then the proof follows from Theorem 2.1(ii). �

2.3 Circulant Graph with Odd Jump Sizes

The circulant graph Cp(1, 3, · · · , bp2c), p ≥ 6 is a circulant graph with odd jump sizes.

Remark 2.3 If the sequence is of an odd jump size from 1 to bp2c, then Cp(1, 3, · · · , bp2c) is

strongly regular graph.

Theorem 2.3 For any circulant graph G3 = Cp(1, 3, · · · , bp2c) with p = 4n−2 or 4n−1, n ≥ 2,

(i) η(G3) =
⌊
p
2

⌋
;

(ii) τη(G3) =

2 if p = 4n− 2; n ≥ 2

2p if p = 4n− 1; n ≥ 2.

Proof (i) LetG3 = Cp(1, 3, · · · , bp2c) be a circulant graph with vertices labeled as v1, v2, · · · , vp,
where p = 4n− 2 or 4n− 1, n ≥ 2. We have

Case 1. If p = 4n− 2;n ≥ 2, then Cp(1, 3, 5, · · · , bp2c) ∼= K p
2 ,

p
2
. Hence

η(Cp(1, 3, 5, · · · ,
⌊p

2

⌋
)) =

p

2
.

Case 2. If p = 4n− 1, n ≥ 2, then there are

S = {vi, v(i+1)(mod p), v(i+2)(mod p) · · · , v(i+b p2 c−1)(mod p)}

and

S = {vi, v(i+2)(mod p), v(i+4)(mod p) · · · , v(i+2b p2 c−2)(mod p)},

where 1 ≤ i ≤ p are the minimum neighborhood sets, containing bp2c elements. Therefore,

η(Cp(1, 3, 5, · · · ,
⌊p

2

⌋
)) =

⌊p
2

⌋
.

(ii) For the values of τη(G3), we have

Case 1. If p = 4n − 2;n ≥ 2, then by (i), we have η(G3) =
p

2
with two disjoint η-sets of G3

as {v1, v3, v5, · · · , v(p−1)} and {v2, v4, v6, · · · , vp}. Hence,

τη(G3) = 2.

Case 2. If p = 4n − 1, n ≥ 2 then by (i), we have η(G3) =
⌈p

2

⌉
with 2p number of η-sets.

Hence

τη(G3) = 2p. �
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2.4 Circulant Graph with Even Jump Sizes

The circulant graph Cp(2, 4, · · · , bp2c); p ≥ 6 is a circulant graph with even jump sizes.

Remark 2.4 The circulant graphs C5(2), C6(2), C8(2, 4), C10(2, 4), C12(2, 4, 6) are few exam-

ples of strongly regular graphs.

Theorem 2.4 For any circulant graph G4 = Cp(2, 4, · · · , bp2c) with p = 4n or 4n+ 1, n ≥ 2,

(i) η(G4) =

2 if p = 4n; n ≥ 2

4 if p = 4n+ 1; n ≥ 2.

(ii) τη(G4) =

(p2 )2 if p = 4n; n ≥ 2

4p if p = 4n+ 1; n ≥ 2.
.

Proof (i) Let G4 = Cp(2, 4, · · · , bp2c) be a circulant graph with p = 4n or 4n + 1, n ≥ 2.

We have the following two cases for discussion:

Case 1. If p = 4n; n ≥ 2, the greatest common divisor of 2, 4, 6 · · · , bp2c = 2 6= 1. Hence G4

has two disconnected blocks B1 = {v1, v3, · · · , vp−1} and B2 = {v2, v4, · · · , vp} for 1 ≤ i ≤ p

and each block is complete graph Kp/2. This implies, η(G4) = 2.

Case 2. If p = 4n+ 1, n ≥ 2, then the result follows from Theorem 2.3(i).

(ii) For the values of τη(G4), we have the following two cases:

Case 1. If p = 4n, n ≥ 2, then by (i), there exists η-sets {vi, vj} of G4, such that vi ∈ B1 and

vj ∈ B2. Thus, it follows that

τη(G4) = (
p

2
)2.

Case 2. If p = 4n+ 1, n ≥ 2, then the result is similar to Theorem 2.1(ii). �

2.5 Circulant Graph Cp(1, 2, · · · , bp2c)

The circulant graph with p ≥ 3 vertices and having jump size 1, 2, · · · , bp2c is known as the

complete graph Kp, that is,

Cp

(
1, 2, · · · ,

⌊p
2

⌋)
∼= Kp.

Remark 2.5 The complete graph Kp is strongly regular for all p ≥ 3. The status of the trivial

singleton graph K1 is unclear. Opinions differ on if K2 is a strongly regular graph, since it has

no well-defined µ parameter, it is preferable to consider as not to be a strongly regular.

Theorem 2.5 For any circulant graph G5 = Cp(1, 2, · · · , bp2c) with p ≥ 3 vertices,

(i) η(G5) = 1;

(ii) τη(G5) = p.

Proof Let G5 = Cp(1, 2, · · · , bp2c) be a circulant graph with p ≥ 3 vertices. Then,

(i) The proof is due to [16].
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(ii) By Theorem 2.1(i), we have η(G5) = 1 and η-sets of G5 are {vi}; 1 ≤ i ≤ p. Thus

τη(G5) = p. �

§3. Matrix Representation of Circulant Graphs via Association Schemes

The matrix representations of certain classes of circulant graphs are shown as in the following

table:

Circulant
Relations for Association Scheme

Matrix

Graph (n ≥ 2) Respresentation.

G1

p = 2n
Two distinct vertices are said to be first associates,

Type 1
if their jump size is one as well as adjacent and

p = 2n+ 1
kth associates where (2 ≤ k ≤ b p

2
c), if their jump

Type 2
size is k as well as non adjacent.

G2

p = 2n
Two distinct vertices are said to be kth associates,

Type 1
where (1 ≤ k ≤ b p−2

2
c), if their jump size is k as

p = 2n+ 1
well as non adjacent and are b p

2
cth associates if

Type 2
their jump size b p

2
c as well as adjacent.

G3

p = 4n− 2
Two distinct vertices are said to be odd associates,

Type 1
if their jump size are odd as well as adjacent and

p = 4n− 1
even associates if their jump size are even as well

Type 2
as non adjacent

G4

p = 4n
Two distinct vertices are said to be even associa-

Type 1
tes, if their jump size is even as well as adjacent

p = 4n+ 1
and are odd associates, if their jump size are odd

Type 2
as well as non-adjacent

G5

Two distinct vertices vi and vj of V are kth assoc- Type 1

iates, 1 ≤ k ≤ b p
2
c, if |x−y| = k and are adjacent. Type 2

Table 1. Relation defining association schemes with matrix representation.

In continuation of the relation from the above table, the following types of tables can be

constructed for the association schemes and they are:

Type 1. The matrix representation of circulant graph for p(≥ 2) even, with an association

scheme is as follows:
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Association scheme

Elements First Second · · · k · · · p
2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p), · · · v1+ p
2

v(1+k)(mod p)

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p), · · · v2+ p
2

v(2+k)(mod p)

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p), · · · v3+ p
2

v(3+k)(mod p)
...

...
...

...
...

...
...

vi v(i−1)(mod p), v(i−2)(mod p), · · · v(p−(k−i))(mod p), · · · v(i+ p
2 )(mod p)

v(i+1)(mod p) v(i+2)(mod p) v(i+k)(mod p)
...

...
...

...
...

...
...

vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p
2

Table 2. Association schemes of circulant graphs for p (≥ 2) is even.

By Table 2, the parameters of second kind are given by ni = 2 for 1 ≤ i ≤ p
2 − 1 and

n p
2

= 1.

With the association scheme for the Table 2, we have the matrix representation of the

circulant graph Cp(s1, s2, · · · , st); p (≥ 2) vertices is

P k =


pk11 pk12 . . . pk1 p

2

pk21 pk22 . . . pk2 p
2

...
...

...
...

pkp
2 1

pkp
2 2

. . . pkp
2

p
2

 .

Therefore, the possible values of k in the matrix P k are given below:

If k = 1, then

(i) p1ij = 1 for 1 ≤ i ≤ p
2 − 1, j = i+ 1;

(ii) p1ij = 1 for 1 ≤ j ≤ p
2 − 1, i = 1 + j.

If 2 ≤ k ≤ p
2 − 1, then

(i) pkij = 1 for 1 ≤ j ≤ p
2 − 1 as well as i+ j = k, j = k + i and i+ j = p− k;

(ii) pkij = 1 for 1 ≤ j ≤ p
2 − 1, i = k + j and i+ j = p− k.

If k = p
2 , then pkij = 2 for 1 ≤ i ≤ p

2 − 1 and j = k − i with the remaining entries zero.

Type 2. The matrix representation of circulant graph for p(≥ 2) odd, with an association

scheme is as follows:
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Association scheme

Elements First Second · · · k · · · p−1
2

v1 vp, v2 vp−1, v3 · · · v(p−(k−1))(mod p), · · · v
1+ p−1

2
, v

1+ p−1
2

+1

v(1+k)(mod p)

v2 v1, v3 vp, v4 · · · v(p−(k−2))(mod p), · · · v
2+ p−1

2
, v

2+ p−1
2

+1

v(2+k)(mod p)

v3 v2, v4 v1, v5 · · · v(p−(k−3))(mod p), · · · v
3+ p−1

2
, v

3+ p−1
2

+1

v(3+k)(mod p)

...
...

...
...

...
...

...

vi v(i−1)(mod p), v(i−2)(mod p), · · · v(p−(k−i))(mod p), · · · v
(i+ p−1

2
)(mod p)

,

v(i+1)(mod p) v(i+2)(mod p) v(i+k)(mod p) v
(i+ p−1

2
+1)(mod p)

...
...

...
...

...
...

...

vp vp−1, v1 vp−2, v2 · · · vp−k, vk · · · v p−1
2

, v p−1
2

+1

Table 3. Association schemes of circulant graph with p(≥ 3) is odd.

By Table 3 the parameters of second kind are given by ni = 2 for 1 ≤ i ≤ p−1
2 and n p

2
= 1.

With the association scheme for the Table 3, we have the matrix representation of the

Circulant graph Cp(s1, s2, · · · , st); p (≥ 3) vertices is

P k =



pk11 pk12 . . . pk
1 p−1

2

pk21 pk22 . . . pk
2 p−1

2

...
...

...
...

pk
( p−1

2 )1
pk
( p−1

2 )2
. . . pk

( p−1
2 ) ( p−1

2 )


.

Therefore, the possible values of k in the matrix P k are given below:

If k = 1, then

(i) p1ij = 1 for 1 ≤ i ≤ p−1
2 − 1 j = i+ 1;

(ii) p1ij = 1 for 1 ≤ j ≤ p−1
2 − 1, i = 1 + j;

(iii) p1ij = 1 for i = p−1
2 , j = p−1

2 .

If 2 ≤ k ≤ p−3
2 , then

(i) pkij = 1 for 1 ≤ i ≤ p−3
2 as well as i+ j = k, j = k + i and i+ j = p− k;

(ii) pkij = 1 for 1 ≤ j ≤ p−3
2 as well as i = k + j and i+ j = p− k.

If k = p−1
2 , then

(i) pkij = 1, for 1 ≤ i ≤ p−3
2 , j = p−1

2 − i;
(ii) pkij = 1, for 1 ≤ i ≤ p−1

2 , j = p+1
2 − i with remaining entries are all zero.



PBIB-Designs and Association Schemes from Minimum Neighborhood Sets of Certain Jump Sizes of Circulant Graphs 9

§4. The Parameters of PBIB-Designs

By considering Theorems 2.1 to 2.5, Tables 1 and 2 and the possible values of k in the matrix

P k using two different types, we have the parameters of PBIB-Design as follows:

Circuant Graph
Parameters of PBIB-Designs

p b g r λm

G1

p = 2n, n ≥ 2 p 2
p

2
1 1 if m is even 0 if m is odd

p = 2n+ 1, n ≥ 2 p p

⌈
p

2

⌉ ⌈
p

2

⌉ ⌈
p

2

⌉
−

⌈
m− 2

2

⌉
if m is even

⌈
m

2

⌉
if m is odd

G2

p = 2n, n ≥ 2 p 2p
p

2
2p−1 2p−2 if 1 ≤ m < p

2 0 if m = p
2

p = 2n+ 1, n ≥ 2 p p

⌈
p

2

⌉ ⌈
p

2

⌉ ⌈
p

2

⌉
−

⌈
m− 2

2

⌉
if m is even

⌈
m

2

⌉
if m is odd

G3

p = 4n− 2, n ≥ 2 p 2
p

2
1 1 if m is even 0 if m is odd

p = 4n− 1, n ≥ 2 p 2p

⌊
p

2

⌋
p− 1 p+ m

2 − 5 if m is even

⌊
p

2

⌋
−

⌈
m

2

⌉
if m is odd

G4

p = 4n, n ≥ 2 p
p2

4
2

p

2
0 if m is even 0 if m is odd

p = 4n+ 1, n ≥ 2 p 4p 4 16 Problem 5.1

G5 p p 1 1 0

Table 4. Parameters of PBIB-designs.

§5. Conclusion and Open Problems

Generally, the PBIB-Designs are obtained from the families of strongly regular graphs. Inter-

estingly, in this paper we determined the total number of η - sets, the PBIB-Designs and its

association schemes arising from the η - sets of certain circulant graphs. Finally, we pose some

open problems as follows:

Problem 5.1 Generalize the λm, using PBIB-Designs associated with G6 = Cp(2, 4, · · · , bp2c);
p = 4n+ 1, n ≥ 2.

Problem 5.2 Find all the strongly regular graphs for even and odd jump sizes of the circulant

graphs.
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