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On a Boundary Value Problem with

Fuzzy Forcing Function and Fuzzy Boundary Values
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Abstract: In this study, a problem with fuzzy forcing function and fuzzy boundary values is

investigated. The problem is solved by two different solution methods. Theorems are proved

about solutions. Comparison results are given. Example is solved on studied problem.

Graphics of the solutions are drawn. Conclusions are given. It is stated which method is

more useful.

Key Words: Fuzzy boundary value problems, second-order fuzzy differential equation,

generalized differentiability.

AMS(2010): 03E72, 34A07.

§1. Introduction

Fuzzy logic is studied by many researchers [10, 18]. In recent years, the topic of fuzzy differential

equations has been rapidly growing [1, 11, 13, 20, 23]. Because, solving the fuzzy differential

equations is a very important topic. Fuzzy differential equations can be studied by different

approaches. These are Hukuhara differentiability [5, 15], generalized differentiability [2, 3] and

to generate the fuzzy solution from the crips solution. There are at most four solutions for fuzzy

boundary value problems using the generalized differentiability [17]. Liu [19] showed that these

four solutions reduce to two different solutions when the function is monotone. To generate

the fuzzy solution from the crips solution can be three ways. These are extension principle [5,

6], the concept of differential inclusion [14] and fuzzy problem is to consider as a set of crips

problem [8].

The aim of this study is to investigate the solutions of the fuzzy boundary value problem

with fuzzy forcing function and fuzzy boundary values by two different solution methods.

§2. Preliminaries

Definition 2.1([22]) A fuzzy number is a mapping u : R→ [0, 1] with the following properties:

(1) u is normal;

1Received March 1, 2021, Accepted June 2, 2021.



2 Hülya GÜLTEKİN ÇİTİL

(2) u is convex fuzzy set;

(3) u is upper semi-continuous on R;

(4) cl {x ∈ R | u (x) > 0} is compact, where cl denotes the closure of a subset.

Let RF denote the space of fuzzy numbers.

Definition 2.2([17]) Let u ∈ RF . The α-level set of u is

[u]
α

= {x ∈ R | u (x) ≥ α} , 0 < α ≤ 1.

[u]
α

= [uα, uα] denotes the α-level set of u.

Remark 2.1([7, 17]) The sufficient and necessary conditions for [uα, uα] to define the para-

metric form of a fuzzy number as follows:

(1) uα is bounded monotonic increasing (nondecreasing) left-continuous function on (0, 1]

and right-continuous for α = 0 ,

(2) uα is bounded monotonic decreasing (nonincreasing) left-continuous function on (0, 1]

and right-continuous for α = 0,

(3) uα ≤ uα, 0 ≤ α ≤ 1.

Definition 2.3([12, 17, 21]) Let u, v ∈ RF . If there exists w ∈ RF such that u = v + w, then

w is called the Hukuhara difference of fuzzy numbers u and v,and it is denoted by w = u	 v.

Definition 2.4([4, 12, 17]) Let f : [a, b] → RF and t0 ∈ [a, b] . We say that f is Hukuhara

differentiable at t0, if there exists an element f
′
(t0) ∈ RF such that for all h > 0 sufficiently

small, ∃f (t0 + h)	 f (t0) , f (t0)	 f (t0 − h) and the limits hold

lim
h→0

f (t0 + h)	 f (t0)

h
= lim
h→0

f (t0)	 f (t0 − h)

h
= f

′
(t0) .

Definition 2.5([17]) Let f : [a, b] → RF and t0 ∈ [a, b] . We say that f is (1)-differentiable at

t0, if there exists an element f
′
(t0) ∈ RF such that for all h > 0 sufficiently small (near to 0),

exist f (t0 + h)	 f (t0) , f (t0)	 f (t0 − h) and the limits

lim
h→0

f (t0 + h)	 f (t0)

h
= lim
h→0

f (t0)	 f (t0 − h)

h
= f

′
(t0) ,

and f is (2)-differentiable if for all h > 0 sufficiently small (near to 0), exist f (t0)	f (t0 + h) ,

f (t0 − h)	 f (t0) and the limits

lim
h→0

f (t0)	 f (t0 + h)

−h
= lim
h→0

f (t0 − h)	 f (t0)

−h
= f

′
(t0) .

Theorem 2.6([16]) Let f : [a, b]→ RF be fuzzy function, where [f (t)]
α

=
[
f
α

(t) , fα (t)
]

for

each α ∈ [0, 1] .
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(i) If f is (1)-differentiable then f
α

and fα are differentiable functions and
[
f
′
(t)
]α

=[
f
′

α
(t) , f

′

α (t)
]
,

(ii) If f is (2)-differentiable then f
α

and fα are differentiable functions and
[
f
′
(t)
]α

=[
f
′

α (t) , f
′

α
(t)
]
.

Theorem 2.2([16]) Let f
′

: [a, b] → RF be fuzzy function, where [f (t)]
α

=
[
f
α

(t) , fα (t)
]
,

for each α ∈ [0, 1] , f is (1)-differentiable or (2)-differentiable.

(i) If f and f
′

are (1)-differentiable then f
′

α
and f

′

α are differentiable functions and[
f
′′

(t)
]α

=
[
f
′′

α
(t) , f

′′

α (t)
]
,

(ii) If f is (1)-differentiable and f
′

is (2)-differentiable then f
′

α
and f

′

α are differentiable

functions and
[
f
′′

(t)
]α

=

[
f
′′

α (t) , f
′′

α
(t)

]
,

(iii) If f is (2)-differentiable and f
′

is (1)-differentiable then f
′

α
and f

′

α are differentiable

functions and
[
f
′′

(t)
]α

=

[
f
′′

α (t) , f
′′

α
(t)

]
,

(iv) If f and f
′

are (2)-differentiable then f
′

α
and f

′

α are differentiable functions and[
f
′′

(t)
]α

=
[
f
′′

α
(t) , f

′′

α (t)
]
.

§3. Main Results

Consider the two-point boundary value problem

y
′′

(t) = λy (t) +
∼
F (t) , y(0) = β, y(`) = γ, (3.1)

where
∼
F (t) = t2 + (−1, 0, 1) is fuzzy forcing function,

β =

(
c,
c+ c

2
, c

)
, γ =

(
d,
d+ d

2
, d

)
are symmetric triangular fuzzy numbers and λ > 0.

3.1. Solution Method 1.([9]) Let divide the problem (3.1) into three different problems

following:

(i) The first problem is

y
′′

(t) = λy (t) + t2, y(0) =
c+ c

2
, y(`) =

d+ d

2
. (3.2)

(ii) The second problem is

y
′′

(t) = λy (t) , y(0) =

(
c− c

2
, 0,

c− c
2

)
, y(`) =

(
d− d

2
, 0,

d− d
2

)
. (3.3)
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(iii) The third problem is

y
′′

= λy + (−1, 0, 1) , y(0) = 0, y(`) = 0. (3.4)

The solution of the differential equation in (3.2) is

y (t) = c1e
√
λt + c2e

−
√
λt − 1

λ
t2 − 2

λ2
.

Using the boundary conditions, the coefficients c1 and c2 are found as

c1 =

(
d+d

2 + 1
λ`

2 + 2
λ2

)
− e−

√
λ`
(
c+c

2 + 2
λ2

)
e
√
λ` − e−

√
λ`

,

c2 =
e
√
λ`
(
c+c

2 + 2
λ2

)
−
(
d+d

2 + 1
λ`

2 + 2
λ2

)
e
√
λ` − e−

√
λ`

.

Then, the solution of (3.2) is

y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c+ c

2
+

2

λ2

)
(3.5)

+
sinh

(√
λt
)

sinh
(√

λ`
) (d+ d

2
+

1

λ
`2 +

2

λ2

)
− 1

λ
t2 − 2

λ2
.

Since x1 = e
√
λt, x2 = e−

√
λt are the linear independent solutions of the differential equation

in (3.3),

w1 (t) =
x2 (`)x1 (t)− x1 (`)x2 (t)

x1 (0)x2 (`)− x1 (`)x2 (0)

=
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) ,

w2 (t) =
x1 (0)x2 (t)− x2 (0)x1 (t)

x1 (0)x2 (`)− x1 (`)x2 (0)

=
sinh

(√
λt
)

sinh
(√

λ`
) .

Then, the solution of the problem (3.3) is

y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c− c
2

, 0,
c− c

2

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d− d

2
, 0,

d− d
2

)
. (3.6)
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Since the solution of the equation y
′′

= λy − 1 is

y−1 (t) = − 1

λ

 sinh
(√

λ (`− t)
)

sinh
(√

λ`
) +

sinh
(√

λt
)

sinh
(√

λ`
) − 1


and the solution of the equation y

′′
= λy + 1 is

y1 (t) =
1

λ

 sinh
(√

λ (`− t)
)

sinh
(√

λ`
) +

sinh
(√

λt
)

sinh
(√

λ`
) − 1

 ,

the solution of fuzzy boundary value problem (3.4) is

y (t) = {min {y−1 (t) , 0, y1 (t)} , 0,max {y−1 (t) , 0, y1 (t)}} . (3.7)

Then, from (3.6) and (3.7), the fuzzy lower solution is

y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c− c
2
− 1

λ

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d− d

2
− 1

λ

)
+

1

λ
, (3.8)

and the fuzzy upper solution is

y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c− c
2

+
1

λ

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d− d

2
+

1

λ

)
− 1

λ
. (3.9)

That is, the fuzzy solution is
∼
y (t) =

(
y (t) , 0, y (t)

)
. (3.10)

Finally, from (3.5) and (3.10), the solution of the problem (3.1) is

∼
Y (t) =

(
y (t) , y (t) , y (t)

)
(3.11)

y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c+
2

λ2
− 1

λ

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d+

2

λ2
+

1

λ

(
`2 − 1

))

+
1

λ

(
1− t2

)
− 2

λ2
,

y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c+ c

2
+

2

λ2

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d+ d

2
+

1

λ
`2 +

2

λ2

)

− 1

λ
t2 − 2

λ2
,
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y (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c+
2

λ2
+

1

λ

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d+

2

λ2
+

1

λ

(
`2 + 1

))

− 1

λ

(
1 + t2

)
− 2

λ2
.

3.2. Solution Method 2. The solution is according to the generalized differentiability. Con-

sider α−level sets of the boundary value problem (3.1), that is

y
′′

(t) = λy (t) +
[
t2
]α
, y(0) = [β]

α
, y(`) = [γ]

α
, (3.12)

where [
t2
]α

=
[
t2 − 1 + α, t2 + 1− α

]
,

[β]
α

=

[
c+

(
c− c

2

)
α, c−

(
c− c

2

)
α

]
,

[γ]
α

=

[
d+

(
d− d

2

)
α, d−

(
d− d

2

)
α

]
.

Also, (i,j) solution means that y is i-differentiable and y
′

is j-differentiable (i,j=1,2).

Using the generalized differentiability and fuzzy arithmetic, for the solutions (1, 1) and

(2, 2), 
y
′′

α
= λy

α
+ t2 − 1 + α

y
α

(0) = c+
(
c−c

2

)
α

y
α

(`) = d+
(
d−d

2

)
α

(3.13)


y
′′

α = λyα + t2 + 1− α

yα (0) = c−
(
c−c

2

)
α

yα (`) = d−
(
d−d

2

)
α

(3.14)

must be solved and for the solutions (1,2) and (2,1)

y
′′

α = λy
α

+ t2 − 1 + α

y
′′

α
= λyα + t2 + 1− α

y
α

(0) = c+
(
c−c

2

)
α, yα (0) = c−

(
c−c

2

)
α

y
α

(`) = d+
(
d−d

2

)
α, yα (`) = d−

(
d−d

2

)
α

(3.15)

must be solved.

(1) The solutions (1,1) and (2,2)

From the solutions of the differential equations in (3.13) and (3.14), the lower and the upper

solutions of the boundary value problem (3.12) are obtained as

y
α

(t) = c1e
√
λt + c2e

−
√
λt − 1

λ
t2 − 2

λ2
+

1

λ
(1− α) ,
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yα (t) = c1e
√
λt + c2e

−
√
λt − 1

λ
t2 − 2

λ2
+

1

λ
(α− 1) .

Using the boundary conditions, c1, c2, c1, c2 are solved as

c1 =

(
d+

(
d−d

2

)
α+ 2

λ2 + 1
λ

(
`2 + α− 1

))
− e−

√
λ`
(
c+

(
c−c

2

)
α+ 2

λ2 − 1
λ (1− α)

)
e
√
λ` − e−

√
λ`

,

c2 =
e
√
λ`
(
c+

(
c−c

2

)
α+ 2

λ2 − 1
λ (1− α)

)
−
(
d+

(
d−d

2

)
α+ 2

λ2 + 1
λ

(
`2 + α− 1

))
e
√
λ` − e−

√
λ`

,

c1 =

(
d−

(
d−d

2

)
α+ 2

λ2 + 1
λ

(
`2 + 1− α

))
− e−

√
λ`
(
c−

(
c−c

2

)
α+ 2

λ2 − 1
λ (α− 1)

)
e
√
λ` − e−

√
λ`

,

c2 =
e
√
λ`
(
c−

(
c−c

2

)
α+ 2

λ2 − 1
λ (α− 1)

)
−
(
d−

(
d−d

2

)
α+ 2

λ2 + 1
λ

(
`2 + 1− α

))
e
√
λ` − e−

√
λ`

.

From this, for the solutions (1,1) and (2,2) the solution of (3.12) is

[y (t)]
α

=
[
y
α

(t) , yα (t)
]
, (3.16)

y
α

(t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c+

(
c− c

2

)
α+

2

λ2
− 1

λ
(1− α)

)
(3.17)

+
sinh

(√
λt
)

sinh
(√

λ`
) (d+

(
d− d

2

)
α+

2

λ2
+

1

λ

(
`2 + α− 1

))

− 1

λ
t2 − 2

λ2
+

1

λ
(1− α) ,

yα (t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c−
(
c− c

2

)
α+

2

λ2
− 1

λ
(α− 1)

)
(3.18)

+
sinh

(√
λt
)

sinh
(√

λ`
) (d− (d− d

2

)
α+

2

λ2
+

1

λ

(
`2 + 1− α

))

− 1

λ
t2 − 2

λ2
+

1

λ
(α− 1) .

Proposition 3.1 The solution (3.11) according to the solution method 1 is the same as the

solution (3.16) according to the solution method 2.

Proof If α− cut of the solution (3.11) is taken, we have

y
α

(t) = y (t) +

(
y (t)− y (t)

2

)
α, yα (t) = y (t)−

(
y (t)− y (t)

2

)
α,
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[
∼
Y (t)

]
=
[
y
α

(t) , yα (t)
]
.

That is, the proof is complete. �

Theorem 3.1 The (1, 1) solution of the problem (3.12) is a valid α− level set for t∈ [0, `]

satisfying the inequality

tanh
(√

λt
)
−

cosh
(√

λ`
)
−
(
d−d+ 2

λ

c−c+ 2
λ

)
sinh

(√
λ`
)

 ≥ 0, (3.19)

The (2, 2) solution of the problem (3.12) is a valid α− level set for t∈ [0, `] satisfying the

inequality

tanh
(√

λt
)
−

cosh
(√

λ`
)
−
(
d−d+ 2

λ

c−c+ 2
λ

)
sinh

(√
λ`
)

 ≤ 0. (3.20)

Proof If

∂y
α

(t)

∂α
> 0,

∂yα (t)

∂α
< 0, y

α
(t) ≤ yα (t) , y

′

α
(t) ≤ y

′

α (t) and y
′′

α
(t) ≤ y

′′

α (t) ,

the (1, 1) solution of the problem (3.12) is a valid α− level set.

If

∂y
α

(t)

∂α
> 0,

∂yα (t)

∂α
< 0, y

α
(t) ≤ yα (t) , y

′

α (t) ≤ y
′

α
(t) and y

′′

α
(t) ≤ y

′′

α (t) ,

the (2, 2) solution of the problem (3.12) is a valid α− level set.

For the (1, 1) solution,

∂y
α

(t)

∂α
=

sinh
(√

λ (`− t)
)

sinh
(√

λ`
) (

c− c
2

+
1

λ

)
+

sinh
(√

λt
)

sinh
(√

λ`
) (d− d

2
+

1

λ

)
− 1

λ
> 0,

∂yα (t)

∂α
= −

sinh
(√

λ (`− t)
)

sinh
(√

λ`
) (

c− c
2

+
1

λ

)
−

sinh
(√

λt
)

sinh
(√

λ`
) (d− d

2
+

1

λ

)
+

1

λ
< 0,

yα (t)− y
α

(t) = (1− α)

 sinh
(√

λ (`− t)
)

sinh
(√

λ`
) (

c− c+
2

λ

)

+
sinh

(√
λt
)

sinh
(√

λ`
) (d− d+

2

λ

)
− 2

λ

 ≥ 0
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Also, derivating of (3.17) and (3.18), we have

y
′

α (t)− y
′

α
(t) = (1− α)

−
√
λ cosh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c− c+
2

λ

)

+

√
λ cosh

(√
λt
)

sinh
(√

λ`
) (

d− d+
2

λ

) .

Then, if

cosh
(√

λt
)(

d− d+
2

λ

)
≥ cosh

(√
λ (`− t)

)(
c− c+

2

λ

)
,

we have

y
′

α
(t) ≤ y

′

α (t) .

From this, making the necessary operations, it must be

tanh
(√

λt
)
≥

cosh
(√

λ`
)
−
(
d−d+ 2

λ

c−c+ 2
λ

)
sinh
√
λ`)

.

Also, again derivating of (3.17) and (3.18), we have

y
′′

α (t)− y
′′

α
(t) = (1− α)

λ sinh
(√

λ (`− t)
)

sinh
(√

λ`
) (

c− c+
2

λ

)

+
λ sinh

(√
λt
)

sinh
(√

λ`
) (

d− d+
2

λ

) ≥ 0.

Consequently, the (1, 1) solution of the problem (3.12) is a valid α− level set for t∈ [0, `]

satisfying the inequality (3.19). For the (2, 2) solution, the proof is similar. �

Theorem 3.2 For any t ∈ [0, `] , the solutions (1,1) and (2,2) of the problem (3.12) are

symmetric triangle fuzzy numbers.

Proof Since

y
1

(t) =
sinh

(√
λ (`− t)

)
sinh

(√
λ`
) (

c+ c

2
+

2

λ2

)

+
sinh

(√
λt
)

sinh
(√

λ`
) (d+ d

2
+

2

λ2
+
`2

λ

)
− 1

λ
t2 − 2

λ2

= y1 (t) ,
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y
1

(t)− y
α

(t) = (1− α)

 sinh
(√

λ (`− t)
)

sinh
(√

λ`
) (

c− c
2

+
1

λ

)

+
sinh

(√
λt
)

sinh
(√

λ`
) (d− d

2
+

1

λ

)
− 1

λ


= yα (t)− y1 (t) ,

the solutions (1, 1) and (2, 2) of the problem (3.12) are symmetric triangle fuzzy numbers for

any t ∈ [0, `] . �

(2) The solutions (1,2) and (2,1)

Using the generalized differentiability and fuzzy arithmetic, the solution of (3.15) is

[y (t)]
α

=
[
y
α

(t) , yα (t)
]
, (3.21)

y
α

(t) = c1e
√
λt + c2e

−
√
λt − c3 sin

(√
λt
)
− c4 cos

(√
λt
)
− 1

λ
t2 − 2

λ2
+

1

λ
(1− α) ,

yα (t) = c1e
√
λt + c2e

−
√
λt + c3 sin

(√
λt
)

+ c4 cos
(√

λt
)
− 1

λ
t2 − 2

λ2
− 1

λ
(1− α) .

From the boundary conditions, the coefficients c1, c2, c3 and c4 are obtained as

c1 =

(
1
λ`

2 + 2
λ2 + d+d

2

)
− e−

√
λ`
(

2
λ2 + c+c

2

)
e
√
λ` − e−

√
λ`

,

c2 =
e
√
λ`
(

2
λ2 + c+c

2

)
−
(

1
λ`

2 + 2
λ2 + d+d

2

)
e
√
λ` − e−

√
λ`

,

c3 =
(1− α)

(
2
λ + c−c

2 + d−d
2

)
sin
(√

λ`
) , ` 6= nπ√

λ
,

c4 = (1− α)

(
1

λ
+
c− c

2

)
.

Theorem 3.3 The (1, 2) solution of the problem (3.12) is a valid α− level set for t∈ [0, `]

satisfying the inequalities 2
λ + c−c

2 + d−d
2

sin
(√

λ`
)

 sin
(√

λt
)

+

(
1

λ
+
c− c

2

)
cos
(√

λt
)
− 1

λ
≥ 0, (3.22)

 2
λ + c−c

2 + d−d
2

sin
(√

λ`
)

 cos
(√

λt
)
−
(

1

λ
+
c− c

2

)
sin
(√

λt
)
≥ 0. (3.23)

The (2, 1) solution of the problem (3.12) is a valid α− level set for t∈ [0, `] satisfying the
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inequalities  2
λ + c−c

2 + d−d
2

sin
(√

λ`
)

 sin
(√

λt
)

+

(
1

λ
+
c− c

2

)
cos
(√

λt
)
− 1

λ
≥ 0, (3.24)

 2
λ + c−c

2 + d−d
2

sin
(√

λ`
)

 cos
(√

λt
)
−
(

1

λ
+
c− c

2

)
sin
(√

λt
)
≤ 0. (3.25)

Proof If

∂y
α

(t)

∂α
> 0,

∂yα (t)

∂α
< 0, y

α
(t) ≤ yα (t) , y

′

α
(t) ≤ y

′

α (t) and y
′′

α (t) ≤ y
′′

α
(t) ,

the (1, 2) solution of the problem (3.12) is a valid α− level set.

If

∂y
α

(t)

∂α
> 0,

∂yα (t)

∂α
< 0, y

α
(t) ≤ yα (t) , y

′

α (t) ≤ y
′

α
(t) and y

′′

α (t) ≤ y
′′

α
(t) ,

the (2, 1) solution of the problem (3.12) is a valid α− level set.

For the (1, 2) solution, from

∂y
α

(t)

∂α
> 0,

∂yα (t)

∂α
< 0 and yα (t)− y

α
(t) ≥ 0,

it must satisfies the inequality (3.22), from y
′

α (t) − y′
α

(t) ≥ 0, it must satisfies the inequality

(3.23). Also, from y
′′

α
(t)− y

′′

α (t) ≥ 0, it must be 2
λ + c−c

2 + d−d
2

sin
(√

λ`
)

 sin
(√

λt
)

+

(
1

λ
+
c− c

2

)
cos
(√

λt
)
≥ 0.

Then, the (1, 2) solution of the problem (3.12) is a valid α− level set for t∈ [0, `] satisfying

the inequalities (3.22) and (3.23). For the (2, 1) solution, the proof is similar. �

Theorem 3.4 For any t ∈ [0, `] , the solutions (1,2) and (2,1) of the problem (3.12) are

symmetric triangle fuzzy numbers.

Proof Since

y
1

(t) = c1e
√
λt + c2e

−
√
λt − 1

λ
t2 − 2

λ2
= y1 (t) ,

y
1

(t)− y
α

(t) = c3 sin
(√

λt
)

+ c4 cos
(√

λt
)
− 1

λ
(1− α) = yα (t)− y1 (t) ,

the solutions (1,2) and (2,1) of the problem (3.12) are symmetric triangle fuzzy numbers for

any t ∈ [0, `] . �
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Example 3.1 Consider the fuzzy boundary value problem

y
′′

(t) = y (t) +
[
t2
]α
, y(0) = [0]

α
, y(1) = [1]

α
, (3.26)

and [0]
α

= [−1 + α, 1− α] , [1]
α

= [α, 2− α] . Then, the (1, 1) and (2, 2) solutions of the problem

(3.26) are

y
α

(t) =
2α sinh (1− t)

sinh (1)
+

(2α+ 2) sinh (t)

sinh (1)
− t2 − 1− α, (3.27)

yα (t) =
(4− 2α) sinh (1− t)

sinh (1)
+

(6− 2α) sinh (t)

sinh (1)
− t2 − 3 + α. (3.28)

[y (t)]
α

=
[
y
α

(t) , yα (t)
]
. (3.29)

The (1, 2) and (2, 1) solutions of the problem (3.26) are

y
α

(t) =

(
4− 2e−1

e− e−1

)
et +

(
2e− 4

e− e−1

)
e−t −

(
4 (1− α)

sin (1)

)
sin (t) (3.30)

−2 (1− α) cos (t)− t2 − α− 1,

yα (t) =

(
4− 2e−1

e− e−1

)
et +

(
2e− 4

e− e−1

)
e−t +

(
4 (1− α)

sin (1)

)
sin (t) (3.31)

+2 (1− α) cos (t)− t2 + α− 3.

[y (t)]
α

=
[
y
α

(t) , yα (t)
]
. (3.32)

The (1, 1) solution is a valid α− level set for t∈ [0, 1] satisfying the inequality tanh (t) −

(
cosh(1)−1

sinh(1)

)
≥ 0, the (2, 2) solution is a valid α− level set for t∈ [0, 1] satisfying the inequality

tanh (t)−
(

cosh(1)−1
sinh(1)

)
≤ 0.

Figure 1. Graphic of the function tanh (t)−
(

cosh(1)−1
sinh(1)

)



On a Boundary Value Problem with Fuzzy Forcing Function and Fuzzy Boundary Values 13

According to Figure 1, the (1, 1) solution is a valid α− level set for t ≥ 0.5 and the (2, 2)

solution is a valid α− level set for t ≤ 0.5

The (1, 2) solution is a valid α− level set for t∈ [0, 1] satisfying the inequalities 4 sin(t)
sin(1) +

2 cos (t)− 1 ≥ 0 and 4 cos(t)
sin(1) − 2 sin (t) ≥ 0. The (1, 2) solution is a valid α− level set for t∈ [0, 1]

satisfying the inequalities 4
sin(1) sin (t) + 2 cos (t)− 1 ≥ 0 and 4

sin(1) cos (t)− 2 sin (t) ≤ 0.

Figure 2. Graphic of the function 4 sin(t)
sin(1) + 2 cos (t)− 1

Figure 3. Graphic of the function 4 cos(t)
sin(1) − 2 sin (t)

According to Figure 2 and Figure 3, the (1, 2) solution is a valid α− level set and the (2, 1)

solution is not a valid α− level set.

Also, the solutions (3.27)-(3.29) and (3.30)-(3.32) are symmetric triangular fuzzy numbers

for any t ∈ [0, 1] .
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Figure 4. Graphic of (3.27)-(3.29) for α = 0.5

Blue → yα (t), Red → y
α

(t), Green → y1 (t) = y
1

(t)

Figure 5. Graphic of (3.30)-(3.32) for α = 0.5

Blue → yα (t), Red → y
α

(t), Green → y1 (t) = y
1

(t)

§4. Conclusion

In this paper, a problem with fuzzy forcing function and fuzzy boundary values is investigated.

The problem is solved by two different solution methods. It is found that the solution of the

problem according to the solution method 1 is the same as the solution according to the solution

method 2 for the solutions (1,1) and (2,2). It is shown whether the solutions (1,1), (2,2), (1,2)

and (2,1) are valid α−level sets or not. Also, all the solutions are symmetric triangle fuzzy

numbers for any t ∈ [0, `]. Example is solved. It is shown whether the solutions are valid fuzzy

functions or not. Graphics of solutions are drawn. The solution method 2, that is, solution

method according to the generalized differentiability is more useful than the solution method

1. Because, it is found the wider solutions of the problem with the solution method 2.
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Abstract: In this paper three electric fields are described via Darboux triad components

in Euclidean 3-space. Later variations of three cases of electric field with respect to Darboux

triad are studied. Finally Lorentz force equations are presented via electromagnetic magnetic

curves with respect to Darboux triad in Euclidean 3-space.
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§1. Introduction

The geometric phase is described as the angle of rotation a light wave travelling in optic. The

phenomenon of a geometric phase have many applications in condensed-matter physics, optics,

particle physics, gravity, cosmology, chemical physics and mathematics [1-6]. The geometric

phase is connected with parallel transport of the polarization along curved light [7-9].

Berry studied adiabatic phase and Pancharatnam’s phase for polarized light [10]. Recently

numerous authors presented the the electric field variation of along an optical fiber [11-14].

Balakrishnan et al. presented anholonomy density via Frenet triad in Euclidean 3-space

E3 [15]. Three geometric phases and parallel transports for numerous frames have been investi-

gated by Gürbüz in [16-20]. Balakrishnan introduced geometric phase for first class associated

with some solitons for Darboux triad in E3 [21]. New classes associated with the nonlinear

Schrödinger NLS equation for Darboux triad in E3 have been given in [22].

The electric polarization theory contains the geometric phase phenomenon [23]. Mukunda

and Simon showed that the unit electric vector field E is written via the principal normal vector

field N and the binormal vector field B of the Frenet triad {T,N,B} in Euclidean 3-space [24].

In this paper we express three electric fields via Darboux triad apparatus. Later evolutions of

three electric fields are studied via Darboux triad in E3. Eventually Lorentz force equations are

obtained via electromagnetic curves with respect to Darboux triad in E3.

1Supported by the Scientific Research Agency of Eskişehir Osmangazi University (ESOGU BAP Project
No.202019016).

2Received January 3, 2021, Accepted June 5, 2021.
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§2. Preliminaries

Let Γ1 be a curve on a connected surface S with the arc length σ in E3. Apart from Frenet

triad, at every point of curve, there is a Darboux triad {t,g,n}. t is the tangent vector, n

is the normal of surface and g = t× n. The spatial evolution of the Darboux triad {t,g,n} is

given by [25] 
tσ

gσ

nσ

 =


0 κ

(ς)
g κ

(ς)
n

−κ(ς)
g 0 τ

(ς)
g

−κ(ς)
n −τ (ς)

g 0




t

g

n

 (1)

κ
(ς)
g is the geodesic curvature, the normal curvature is κ

(ς)
n and τ

(ς)
g is the geodesic torsion of

the curve Γ1. The time evolution of the Darboux triad {t,g,n} is given by
tu

gu

nu

 =


0 κ

(o)
g κ

(o)
n

−κ(o)
g 0 τ

(o)
g

−κ(o)
n −τ (o)

g 0




t

g

n

 (2)

where u denotes time and tu = ∂t
∂u .

A magnetic field is a closed 2-form F in E3. The Lorentz force Φ of a magnetic background

(E3, 〈, 〉) is a (1,1) type skew-symmetric tensor and it is described as

F(x, y) = 〈Φx, y〉

x, y ∈ χ(E3). A smooth curve Γ in (E3, 〈, 〉) is described as a magnetic curve of the dynamical

system connected with the magnetic field F if its velocity vector field satisfies the following

differential equation Γσσ = Φ(Γσ). Divergence free vector fields and magnetic fields are one to

one correspondence, the Lorentz force Φ concerned with the magnetic field M [26], [27]

Φ(x) = M ∧ x.

§3. Geometric Phase for First Case of Electric Field with Darboux Triad in E3

Balakrishan introduced first frame {P1,P2,P
∗
2} and first transformation ξ of curve evolution

concerned with the NLS equation with respect to Darboux triad in E3 as following [21] :

P1 = t, P2 =
g + in√

2
ei

∫ σ τ(ς)
g dσ

′

, P∗2 =
g − in√

2
e−i

∫ σ τ(ς)
g dσ

′

(3)

ξ =
κg + iκn√

2
ei

∫ σ τ(ς)
g dσ

′

. (4)

The spatial evolution of the first frame {P1,P2,P
∗
2} is given by

P1σ = ξ∗P2 + ξP∗2, P2σ = −ξP1, P∗2σ = −ξ∗P1 (5)
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where ξ∗ is the conjugate of ξ. Also temporal evolution of {P1,P2,P
∗
2} is

P1u = tu = −λ∗P2 − λP∗2 (6)

P2u = λP1 + iIP2 (7)

where I(σ, u) is a real function. From P2uσ = P2σu, it can be obtained:

Iσ = iλξ∗ − iλ∗ξ. (8)

where

AD1dσdu = (τ (o)
gu − τ (ς)

gs )dσdu

is first anholonomy density measure for polarization plane of linearized light wave travelling

along optic fiber in E3 [21].

λ = − (r + iw)√
2

ei
∫
τ(ς)
g dσ

′

(9)

satisfies Eqs.(6), (7) and (8). The time evolution of the Darboux triad is given by

tu = ς
(o)
1 × t = rg + wn (10)

gu = ς
(o)
1 × g = −rt + τ (o)

g n (11)

nu = ς
(o)
1 × n = −wt− τ (o)

g g (12)

where ς
(o)
1 = (τ

(o)
g t+B1g+C1n), r = C1, w = −B1. Using Eq.(4) and Eq.(9), Iσ = κ

(ς)
n r−κ(ς)

g w.

The time evolution of Darboux triad for first class can be written by

tu = rg + wn (13)

gu = −rt + (

∫ σ1

τ (ς)
gu dσ

′
− I)n (14)

nu = −wt− (

∫ σ1

τ (ς)
gu dσ

′
− I)g (15)

and anholonomy density

AD1(σ, u) = −Iσ = −rκ(ς)
n + wκ(ς)

g

for first class. Total phase P for first class with respect to Darboux triad in Euclidean 3-space

is given by

P = −
∫ u2

u1

∫ σ1

σ0

Iσdσdu =

∫ u2

u1

∫ σ1

σ0

〈t, tσ × tu〉 dσdu

=

∫ u2

u1

∫ σ1

σ0

(−rκ(ς)
n + wκ(ς)

g )dσdu
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Also [22]

P1u = −iξ∗σP2 + iξσP∗2

P2u = −iξσP1 + IP2,

P∗2u = iξ∗σ − IP∗2, I =iξξ∗.

From P1uσ = P1σu and P2uσ = P2σu, the NLS equation system

ξu = iξσσ + i |ξ|2 ξ

ξ∗u = −iξσσ − i |ξ|2 ξ.

is obtained.

A optical fiber can be described by the curve Γ1(σ) on any surface with respect to Darboux

triad in E3. The change of the electric field E1 can be written by

E1σ = ϕ1t + ϕ2g + ϕ3n. (16)

Case 1. Assume that

〈E1, t〉 = 0. (17)

Using Eq.(16) and Eq.(17), it can be obtained

ϕ1 = −κg 〈E1,g〉 − κn 〈E1,n〉 . (18)

When no various loss mechanism along the optic fiber,

〈E1,E1〉 = const. (19)

Using Eq.(16) and taking derivative with respect to σ of Eq.(19), it can be derived

ϕ2 〈E1,g〉 = −ϕ3 〈E1,n〉 . (20)

Via Eq.(20), it can be obtained

ϕ2 = $ 〈E1,n〉 , ϕ3 = −〈E1,g〉 (21)

The evolution for the polarization of light wave travelling from the point Γ1(σ0) to the point

Γ1(σ1) along the Γ1 = Γ1(σ) curve with respect to Darboux triad is given by the evolution of

the electric field E1.

Consider 〈E1,g〉 6= 0, 〈E1,n〉 6= 0. Substituting Eqs.(18) and (21) in Eq.(16), the change

of the electric field E1 is written by

E1σ = (−κg 〈E1,g〉 − κn 〈E1,n〉)t+$ 〈E1,n〉g−$ 〈E1,g〉n (22)
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where $ is a parameter. Using Eq.(20) for $ = 0, Eq.(22) is rewritten by

E1σ = (−κg 〈E1,g〉 − κn 〈E1,n〉)t (23)

The Fermi-Walker derivative of the electric field E1 with respect to Darboux triad in E3 is

given by
DFWE1σ = E1σ − 〈t,E1〉 tσ + 〈tσ,E1〉 t. (24)

The electric field E1 is the Fermi-Walker parallel transport if and only if

DFWE1σ = 0. (25)

Using Eqs.(17), (24) and (25) it can be obtained

E1σ = 〈tσ,E1〉n. (26)

The electric field vector E1 with aid of the Darboux triad apparatus g and n is expressed

by

E1σ(σ) = Ω(σ)
(g + in)√

2
+ Ω∗(σ)

g − in√
2

. (27)

where E1E
∗
1 = 1 and |Ω(σ)|2 + |Ω∗(σ)|2 = 1,E∗1 is complex conjugate of E1.

P =

∫ σ1

τ (ς)
g dσ

′

is the change phase of the polarization light injected into this fiber with respect to Darboux

triad in E3.

Ω(σ) = ei
∫ σ1 τ(ς)

g dσ
′

Ω(σ0)

Ω∗(σ) = e
−i ∫ σ1 τ(ς)

g dσ
′

Ω∗(σ0)

with the polarization coefficients are

Ω(σ0) =

(
g + in√

2

)∗
E1(σ0)

Ω∗(σ0) =

(
g − in√

2

)∗
E1(σ0).

Also via P2, P∗2, Ω(σ0) and Ω∗(σ0), the electric field E1(σ) is expressed as

E1(σ) = P2Ω(σ0) + P∗2Ω∗(σ0) (28)

Respectively, taking derivative with respect to σ and the time u of Eq.(28), the spatial and
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temporal evolutions of the electric field E1 for Darboux triad are derived as following:

E1σ = P2σΩ(σ0) + P∗2σΩ∗(σ0)

E1u = P2uΩ(σ0) + P∗2uΩ∗(σ0).

From compatibility condition E1σu = E1uσ, the nonlinear Schrödinger NLS equation

system.

The Lorentz force equation Φ(t) of the electric field vector E1 is given by

Φ(t)E1 = E1σ = M(t) ×E1 (29)

and 〈
Φ(t)E1, t

〉
= −

〈
E1,Φ

(t)t
〉
,
〈

Φ(t)E1,g
〉

= −
〈
E1,Φ

(t)g
〉

(30)〈
Φ(t)E1,n

〉
= −

〈
E1,Φ

(t)n
〉
. (31)

The trajectory of travelling particle along the magnetic field M(t) with respect to Darboux

triad in E3 is described as electromagnetic trajectory. If DEM(t) curve follows the magnetic

trajectory, it is described as the Darboux electromagnetic curve in E3. With the help of Eqs.

(30), (31) the Lorentz force Φt equations in the Darboux force equations of the DEM(t) curve

of the Γ1 are given by 
Φ(t)(t)

Φ(t)(g)

Φ(t)(n)

 =


0 −κ(ς)

g −κ(ς)
n

κ
(ς)
g 0 −$

κ
(ς)
n $ 0




t

g

n

 (32)

DEM(t) curve of the Γ1 is a magnetic trajectory of the magnetic field M(t) divergence free

field iff M(t) is given by in the following

M(t) = −$t + κng−κgn

§4. Geometric Phase for Second Case of Electric Field with Darboux Triad in E3

Respectively, the second frame {Q1,Q2,Q
∗
2} and second transformation φ associated with the

NLS equation via Darboux triad is given by [22]

Q1 = g, (33)

Q2 =
t + in√

2
ei

∫ σ1 κ(ς)
n dσ

′

, Q∗2 =
t− in√

2
e−i

∫ σ1 κ(ς)
n dσ

′

(34)

φ =
(−κ(ς)

g + iτ
(ς)
g )√

2
e
i
∫σ κ(ς)n dσ

′

(35)
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Using Eqs.(33) and (34) the spatial evolution of the frame {Q1,Q2,Q
∗
2} is given by

Q1σ = φ∗Q2 + φQ∗2

Q2σ = −φQ1

Q∗2σ = −φ∗Q1

where φ∗ =
(−κ(ς)

g −iτ
(ς)
g )

√
2

e
−i

∫σ κ(ς)n dσ

.

Consider

Q1u = gu = a2Q2 + b2Q
∗
2 + c2Q1 (36)

Q2u = h2Q2 + f2Q
∗
2 + ϑQ1. (37)

From 〈Q1u,Q1〉 = 0⇒ c2 = 0, 〈Q1u,Q2〉 = b2, 〈Q2u,Q1〉 = ϑ⇒ b2 = −ϑ,
〈Q2u,Q2〉 = f2 = 0, 〈Q∗2u,Q2〉 = −h2 ⇒ h2 = −f∗2 and a2 = −ϑ∗.
Eqs.(36) and (37) are rewritten by

Q1u = gu = −ϑ∗Q2 − ϑQ∗2 (38)

Q2u = ϑQ1 + iJQ2 (39)

with J (σ, u) a real function. From Q2uσ = Q2σu the followings are obtained

φu = −ϑσ + iJ φ

Jσ = iϑφ∗ − iϑ∗φ. (40)

When t and n rotates around g with κ
(ς)
n (σ), a geometric phase P =

σ1∫
σ0

κ
(ς)
n (σ)dσ

′
arises

between t, n and corresponding nonrotating Darboux triad in E3.

When the linearized light wave travelling moves from u1 to u2 along the curve in optic fiber,

a geometric phase P =
u2∫
u1

κ
(o)
n (u)du arises between natural Darboux triad and nonrotating

Darboux triad in Euclidean 3-space. The rotation angles of polarization plane can be given by

P1 = κ(ς)
n (σ, u)∆σ + κ(o)

n (σ + ∆σ, u)∆u

P2 = κ(o)
n (σ, u)∆u+ κ(ς)

n (σ, u+ ∆u)∆σ

The phase difference are given by δP = P1 − P2 = AD2(σ, u)∆σ∆u.

AD2 = (κ
(ς)
nσ − κ(o)

nu) is second anholonomy density measure for polarization plane of linearized

light wave travelling along optic fiber for second case in E3. Also

ϑ = − (l + iw)√
2

ei
∫ σ1 κ(ς)

n dσ
′

(41)

satisfies Eqs.(39) and (40). The time evolution of Darboux triad for second class is given by
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[22]

tu = ς
(o)
2 × t =− lg + κ(o)

n n (42)

gu = ς
(o)
2 × g = lt + wn (43)

nu = ς
(o)
2 × n = −κ(o)

n t− wg (44)

where ς
(o)
2 = A2t− κ(ς)

n g + C2n, l = −C2, w = −A2.

Using Eqs.(35), (40) and (41) it can be obtained

Jσ = −(τ (ς)
g l + κ(ς)

g w). (45)

From Eqs.(34), (39), (42), (43) and (44), the time evolution of Darboux triad for second

class with Eq.(43) is given by

tu = lg + (

∫ σ1

κ(ς)
nudσ

′
− J )n

nu = −(

∫ σ1

κ(ς)
nudσ

′
− J )t− wg

and the anholonomy density AD2(σ, u) = −Jσ = (τ
(ς)
g l + κ

(ς)
g w) for second class. Total phase

P for second class with respect to Darboux triad in E3 is given by

P = −
∫ u2

u1

∫ σ1

σ0

Jσdσdu =

∫ u2

u1

∫ σ1

σ0

(τ (ς)
g l + κ(ς)

g w)dσdu

=

∫ u2

u1

∫ σ1

σ0

〈g,gσ × gu〉 dσdu.

The quantum geometric phase for second class of curve evolution with respect to Darboux

triad in E3 is obtained

P = i

∫ σ1

σ0

dσ
∂

∂σ

∫ u2

u1

〈Q2u,Q
∗
2〉 du.

Also [22]

Q1u = −iφ∗σQ2 + iφσQ∗2, Q2u = −iφσQ1 + JQ2,

Q∗2u = iφ∗σQ1 − JQ∗2, J =iφφ∗

From φ1uσ = φ1σu and φ2uσ = φ2σu, the NLS equation

φu = iφσσ + i | φ |2 φ

is obtained.

A optical fiber can be described by a curve Γ2(σ) with respect to Darboux triad in E3. The

direction of electric field E2 is given by the direction of the state of the linearly polarized light

wave injected to the fiber with respect to Darboux triad in E3. The change of the electric field
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E2 with respect to Darboux frame in E3 can be given by

E2σ = ζ1t + ζ2g + ζ3n. (46)

Case 2. Assume that

〈E2,g〉 = 0. (47)

Using Eqs. (46) and (47), it can be written by

ζ2 = −κg 〈E2, t〉 − τg 〈E2,n〉 (48)

Consider

〈E2,E2〉 = const. (49)

Taking derivative with respect to σ of Eq.(49), the followings are obtained

ζ1 〈E2, t〉 = −ζ3 〈E2,n〉 (50)

ζ1 = χ 〈E2,n〉 , ζ3 = −χ 〈E2, t〉 (51)

where χ is a parameter.

Using Eq.(20) and 〈E2, t〉 6= 0, 〈E2,n〉 6= 0. Substituting Eqs. (48) and (51) in (46), the

evolution of the electric field vector E2 with respect to Darboux triad is given by

E2σ = χ 〈E2,n〉 t+(−κg 〈E2, t〉 − τg 〈E2,n〉)g − χ 〈E2, t〉n (52)

Via Eq.(52) for χ = 0,

E2σ = (−κg 〈E2, t〉 − τg 〈E2,n〉)g (53)

The modified Fermi-Walker derivative for the electric field vector E2 with respect to Dar-

boux triad for second class is described by

DmFWE2σ = E2σ − 〈g,E2〉gσ + 〈gσ,E2〉g (54)

The electric field E2 is the modified Fermi-Walker parallel if and only if

DmFWE2σ = 0. (55)

Via Eqs.(47), (54) and (55), one obtains E2σ = 〈gσ,E2〉n.

The electric field vector E2 with aid of the Darboux triad apparatus t and n can be

expressed by

E2(σ) = Υ(σ)
(t + in)√

2
+ Υ∗(σ)

t− in√
2
. (56)

where E2E
∗
2 = 1 and |Υ(σ)|2 + |Υ∗(σ)|2 = 1.
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Here Υ(σ) and Υ∗(σ) are

Υ(σ) = ei
∫ σ1 κ(ς)

n dσ
′

Υ(σ0), Υ∗(σ) = e
−i

∫σ1 κ(ς)n dσ
′

Υ∗(σ0) (57)

and the polarization coefficients are

Υ(σ0) =

(
t + in√

2

)∗
E2(σ0), Υ∗(σ0) =

(
t− in√

2

)∗
E2(σ0) (58)

Via Eqs.(34) and (57), Eq.(56) is re-expressed by

E2(σ) = Q2Υ(σ0) + Q∗2Υ∗(σ0). (59)

Respectively, the spatial and temporal evolutions of the electric field E2 for Darboux triad

are derived as following:

E2σ = Q2σΥ(σ0) + Q∗2σΥ∗(σ0)

E2u = Q2uΥ(σ0) + Q∗2uΥ∗(σ0).

From compatibility condition E2σu = E2uσ, the NLS equation system connected with the

electric field E2 is derived.

Geometric phase for polarized light injected into a fiber with respect to Darboux triad for

second case in E3 is given by

P =

∫ σ1

κ(ς)
n dσ

′
.

Consider the Lorentz force equation Φ(g) for second case of the electric field vector

Φ(g)E2 = E2σ = M(g) ×E2 (60)

and 〈
Φ(g)E2, t

〉
= −

〈
E2,Φ

(g)t
〉
,
〈

Φ(g)E2,g
〉

= −
〈
E2,Φ

(g)g
〉
, (61)〈

Φ(g)E2,n
〉

= −
〈
E2,Φ

(g)n
〉
. (62)

The trajectory of travelling particle along the magnetic field M(g) with respect to Darboux

triad is described as the electromagnetic trajectory. If DEM(g) curve follows the magnetic

trajectory, it is described as the Darboux electromagnetic curve. With the help of Eqs. (61)

and(62), the Lorentz force Φg in the Darboux triad of the DEM(g) curve of Γ2 are given by
Φ(g)(t)

Φ(g)(g)

Φ(g)(n)

 =


0 −κ(ς)

g −χ

κ
(ς)
g 0 τg

χ −τ (ς)
g 0




t

g

n

 (63)
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Via Eq. (63), the vector field divergence free M(g) is given by

M(g) = χg + τgt−κgn.

§5. Geometric Phase for Third Case of Electric Field with Darboux Triad

The third frame {R1,R2,R
∗
2} and the third transformation ψ for third class of curve evolution

concerned with the NLS equation with respect to Darboux triad in E3 are given by [22]

R1 = n, (64)

R2 =
t + ig√

2
ei

∫ σ1 κ(ς)
g dσ

′

, R∗2 =
t− ig√

2
e−i

∫ σ1 κ(ς)
g dσ

′

(65)

ψ =
(κ

(ς)
n + iτ

(ς)
g )√

2
e
i
∫σ κ(ς)g dσ

′

(66)

Using Eqs. (65) and (66), the spatial evolution of {R1,R2,R
∗
2} is given by [22]

R1σ = −ψ∗R2 − ψR∗2, R2σ = ψR1, R∗2σ = ψ∗R1 (67)

where ψ∗ =
(κ(ς)
n −iτ

(ς)
g )

√
2

e
−i

∫σ κ(ς)g dσ
′

.

Consider

R1u = nu = a3R2 + b3R
∗
2 + c3R1, (68)

R2u = h3R2 + f3R
∗
2 + ηR1. (69)

From 〈R1u,R1〉 = 0⇒ c3 = 0, 〈R1u,R2〉 = b3, 〈R2u,R1〉 = η ⇒ b3 = −η,
〈R2u,R2〉 = f3 = 0, 〈R1u,R

∗
2〉 = a3 ⇒ η∗ = a3, 〈R∗2u,R2〉 = −h3 ⇒ h3 = −f∗3 .

Eqs. (68) and (69) can be rewritten by

R1u = nu = −η∗R2 − ηV∗2, (70)

R2u = ηR1 + iLR2 (71)

with L(σ, u) is a real function. From R2uσ = R2σu the followings can be derived by

ψu = ησ + iLσψ, (72)

Lσ = iη∗ψ − iηψ∗. (73)

When t and g rotates around n with κ
(ς)
g (σ), a geometric phase P =

σ1∫
σ0

κ
(ς)
g dσ arises

between t, g and corresponding nonrotating Darboux triad in E3. When the linearized light

wave travelling moves from u1 to u2 along the curve in optic fiber, a geometric phase P =
u2∫
u1

κ
(o)
g du develops between natural Darboux triad and nonrotating Darboux triad in E3. The
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rotation angles of polarization plane can be given by

P1 = κ(ς)
g (σ, u)∆σ + κ(o)

g (σ + ∆σ, u)∆u

P2 = κ(o)
g (σ, u)∆u+ κ(ς)

g (σ, u+ ∆u)∆σ.

Phase difference are given as δP = P1 − P2 = AD3(σ, u)∆σ∆u, where AD3 = (κ
(ς)
gσ − κ(o)

gu )

is third anholonomy density measure for polarization plane of linearized light wave travelling

along optic fiber for third class in E3. Also

η = − (j + iz)√
2

ei
∫ σ1 κ(ς)

g dσ
′

(74)

satisfies Eqs.(70), (71) and (73). The time evolution of Darboux triad is given by [22]

tu = ς
(o)
3 × t =κ(o)

g g − jn, (75)

gu = ς
(o)
3 × g = −κ(o)

g t− zn, (76)

nu = ς
(o)
3 × n = jt + zg (77)

where ς
(o)
3 = A3t +B3g + κ

(o)
g n, z = −A3, j = B3. Using Eqs. (66), (74) it can be obtained

Lσ = jτ (ς)
g − κ(ς)

n z. (78)

The time evolution of Darboux triad for third class connected with the NLS equation is

given by

nu = jt + zg (79)

tu = −jn− (

∫ σ1

κ(ς)
gudσ

′
− L)g (80)

gu = (L−
∫ σ1

κ(ς)
gudσ

′
)t− zn. (81)

The anholonomy density AD3 for third class with respect to Darboux frame in Euclidean

3-space:

AD3(σ, u) = −Lσ = κ(ς)
n z − jτ (ς)

g . (82)

and the total phase P for third class with respect to Darboux triad in E3 is given by

P = −
∫ u2

u1

∫ σ1

σ0

Lσdσdu

=

∫ u2

u1

∫ σ1

σ0

(κ(ς)
n z − jτ (ς)

g )dσdu =

∫ u2

u1

∫ σ1

σ0

〈n,nσ × nu〉 dσdu.

The quantum geometric phase is given

P = i

∫ σ1

σ0

dσ
∂

∂σ

∫ u2

u1

〈R2u,R
∗
2〉 du.
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A optical fiber can be described by a curve Γ3(σ) with respect to Darboux frame in E3.

The direction of electric field E3 denotes the direction of the state of the linearly polarized light

wave injected to fiber with respect to Darboux frame in E3. The change of the electric field E3

with respect to Darboux triad can be written by

E3σ = π1t + π2g + π3n. (83)

Case 3. Assume that

〈E3,n〉 = 0. (84)

From Eq.(84)

〈E3σ,n〉 = 〈E3,κnt+τgg〉

π3 = κn 〈E3, t〉+ τg 〈E3,g〉 (85)

Also

〈E3,E3〉 = const. (86)

Using Eq.(83) and taking derivative with respect to σ of Eq.(86), it can be obtained

π1 〈E3, t〉 = −π2 〈E3,g〉 (87)

π1 = ε 〈E3,g〉 , π2 = −ε 〈E3, t〉 (88)

where ε is a parameter. The evolution in the polarization of light wave travelling from the point

Γ3(σ0) to Γ3(σ1) along curve with respect to Darboux triad is given by the evolution of the

electric field E3. 〈E3, t〉 6= 0, 〈E3,n〉 6= 0. Substituting Eqs. (85) and (88) in (83), the Eq.(83)

is rewritten by

E3σ = ε 〈E3,g〉 t− ε 〈E2, t〉g+(κn 〈E3, t〉+ τg 〈E3,g〉)n (89)

Via Eq.(89) for ε = 0,

E3σ = (κn 〈E3, t〉+ τg 〈E3,g〉)n (90)

The modified Fermi-Walker derivative for the electric field E3 with respect to Darboux

triad for third class is described by

DmFWE3σ = E3σ − 〈n,E2〉nσ + 〈nσ,E2〉n (91)

The electric field E3 is the Fermi-Walker parallel if and only if

DmFWE3σ = 0. (92)

Via (84), (91), (92), one obtains E3σ = 〈nσ,E2〉n.
The electric field vector E3 with respect to the Darboux triad apparatus t and g can be

written by

E3(σ) = Σ(σ)
(t + ig)√

2
+ Σ∗(σ)

t− ig√
2
. (93)



30 Nevin Ertuğ Gürbüz

where E3E
∗
3 = 1 and |Σ(σ)|2 + |Σ∗(σ)|2 = 1. Here

Σ(σ) = ei
∫ σ1 κ(ς)

g dσ
′

Σ(σ0), Σ∗(σ) = e
−i

∫σ1 κ(ς)g dσ
′

Σ∗(σ0). (94)

The polarization coefficients are

Σ(σ0) =

(
t + ig√

2

)∗
E3(σ0)

Σ∗(σ0) =

(
t− ig√

2

)∗
E3(σ0).

Eq.(93) is re-expressed as the following

E3(σ) = R2Σ(σ0) + R∗2Σ∗(σ0) (95)

When taking derivative with respect to σ and the time u of Eq. (95), the spatial and

temporal evolutions of the electric field E3 for Darboux triad are derived as follows

E3σ = R2σΣ(σ0) + R∗2σΣ∗(σ0)

E3u = R2uΣ(σ0) + R∗2uΣ∗(σ0)

From compatibility condition E3σu = E3uσ, the nonlinear Schrödinger equation NLS

system connected with the electric field E3 is obtained.

P =

∫ σ1

κ(ς)
g dσ

′

is the change phase of the polarization light injected into a fiber for third case of the electric

field with respect to Darboux frame in E3. Consider the Lorentz force equation Φ(n) for third

case of the electric field vector

Φ(n)E3 = E3σ = M(n) ×E3,〈
Φ(n)E3, t

〉
= −

〈
E3,Φ

(n)t
〉
,
〈

Φ(n)E3,g
〉

= −
〈
E3,Φ

(n)g
〉

〈
Φ(n)E3,n

〉
= −

〈
E3,Φ

(n)n
〉
.

The trajectory of travelling particle along the magnetic field M(n) with respect to Darboux

frame is described as the electromagnetic trajectory. If the curve DEM(n) follows the magnetic

trajectory, it is described as the Darboux electromagnetic curve. With the help of Eq. (61)

the Darboux Lorentz force equations along the optic fiber for third case the electric field are

obtained 
Φ(n)(t)

Φ(n)(g)

Φ(n)(n)

 =


0 −ε κ

(ς)
n

ε τ
(ς)
g 0

−κ(ς)
n −τ (ς)

g 0




t

g

n

 (96)
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DEM(n) curve of the Γ3 is the magnetic trajectory of the magnetic field M(n) iff the vector

field divergence free M(n) is given by

M(n) = −κ(ς)
n g − εn+τ (ς)

g t.
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[20] N.Gürbüz and Dae Won Yoon, Fermi-Walker parallel transport according to quasi frame

in three dimensional Minkowski space, JGSP 54 (2019) 1–12.

[21] R. Balakrishan, Space curve evolution, geometric phase and solitons, Theoretical and Math-

ematical Physics, 99 (1994) 501–504.
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Abstract: Recently, a novel invariant is considered, which is the Nirmala index defined as

the sum of the square root of the degrees of the pairs of adjacent vertices. In this paper,

we introduce the first and second inverse Nirmala indices of a graph and compute exact

formulas for certain nanostructures.
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§1. Introduction

Let G be a simple, finite, connected graph with the vertex set V (G) and edge set E(G). The

degree dG(u) of a vertex u is the number of vertices adjacent to u. The additional definitions

and notations, the reader may refer to [1].

A molocular graph is a graph in which the vertices correspond to the atoms and the edges

to the bonds of a molecule. A topological index is a numeric quantity from structural graph

of a molecule. Several topological indices have been considered in Theoretical Chemistry, and

have found some applications, especially in QSPR/QSAR study, see [2, 3, 4].

In chemical science, numerous vertex degree based topological indices or graph indices have

been introduced and extensively studied in [4, 5].

The Sombor index was defined by Gutman in [6] as

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

Recently, some Sombor indices were studied in [7, 8,9, 10, 11, 12, 13, 14].

In [15], Kulli introduced the Nirmala index of a graph G and it is defined as

N(G) =
∑

uv∈E(G)

√
dG(u) + dG(v).

1Received April 19, 2021, Accepted June 6, 2021.
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We now define the first and second inverse Nirmala indices of a graph G as

IN1(G) =
∑

uv∈E(G)

[
1

dG(u)
+

1

dG(v)

] 1
2

,

IN2(G) =
∑

uv∈E(G)

[
1

dG(u)
+

1

dG(v)

]− 1
2

.

In this study, we compute the first and second inverse Nirmala indices for four families of

dendrimers. For dendrimers, see [16].

§2. Results for Porphyrin Dendrimer DnPn

We consider the family of porphyrin dendrimers. This family of dendrimers is denoted by DnPn.

The molecular graph of DnPn is shown in Figure 1.

Figure 1. The molecular graph of DnPn

Let G be the molecular graph of DnPn. By calculation, we find that G has 96n−10 vertices

and 105n− 11 edges. In DnPn, there are six types of edges based on degrees of end vertices of

each edge as given in Table 1.

dG(u), dG(v) \ uv ∈ E(G) (1, 3) (1, 4) (2, 2) (2, 3) (3, 3) (3, 4)

Number of edges 2n 24n 10n− 5 48n− 6 13n 8n

Table 1: Edge partition of DnPn

In the following theorem, we compute the first and second inverse Nirmala indices of DnPn.

Theorem 2.1 Let DnPn be the family of porphyrin dendrimers. Then

IN1(DnPn) =

(
4√
3

+ 12
√

5 + 10 + 48

√
5√
6

+ 13

√
2√
3

+
4
√

7√
3

)
n− 5− 6

√
5√
6
,

IN2(DnPn) =

(√
3 +

48√
5

+ 10 + 48

√
6√
5

+ 13

√
3√
2

+
16
√

3√
7

)
n− 5− 6

√
6√
5
.
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Proof From the definitions and by using Table 1, we deduce

IN1(DnPn) = 2n

[
1

1
+

1

3

] 1
2

+ 24n

[
1

1
+

1

4

] 1
2

+ (10n− 5)

[
1

2
+

1

2

] 1
2

+ (48n− 6)

[
1

2
+

1

3

] 1
2

+ 13n

[
1

3
+

1

3

] 1
2

+ 8n

[
1

3
+

1

4

] 1
2

=

(
4√
3

+ 12
√

5 + 10 + 48

√
5√
6

+ 13

√
2√
3

+
4
√

7√
3

)
n− 5− 6

√
5√
6
.

and

IN2(DnPn) = 2n

[
1

1
+

1

3

]− 1
2

+ 24n

[
1

1
+

1

4

]− 1
2

+ (10n− 5)

[
1

2
+

1

2

]− 1
2

+ (48n− 6)

[
1

2
+

1

3

]− 1
2

+ 13n

[
1

3
+

1

3

]− 1
2

+ 8n

[
1

3
+

1

4

]− 1
2

=

(√
3 +

48√
5

+ 10 + 48

√
6√
5

+ 13

√
3√
2

+
16
√

3√
7

)
n− 5− 6

√
6√
5
. �

§3. Results for Propyl Ether Imine Dendrimer PETIM

We consider the family of propyl ether imine dendrimers. This family of dendrimers is denoted

by PETIM. The molecular graph of PETIM is depicted in Figure 2.

Figure 2. The molecular graph of PETIM

Let G be the molecular graph of PETIM . By calculation, we find that G has 24×2n−23
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vertices and 24 × 2n − 24 edges. In PETIM , there are three types of edges based on degrees

of end vertices of each edge as given in Table 2.

dG(u), dG(v) \ uv ∈ E(G) (1, 2) (2, 2) (2, 3)

Number of edges 2× 2n 16× 2n − 18 6× 2n − 6

Table 2: Edge partition of PETIM

In the following theorem, we compute the first and second inverse Nirmala indices of

PETIM .

Theorem 3.1 Let PETIM be the family of propyl ether imine dendrimers. Then

IN1(PETIM) = (
√

6 + 16 +
√

30)2n − (18 +
√

30),

IN2(PETIM) =

(
2
√

2√
3

+ 16 +
6
√

6√
5

)
2n −

(
18 +

6
√

6√
5

)
.

Proof From definitions and by using Table 2, we derive

IN1(PETIM) =(2× 2n)

[
1

1
+

1

2

] 1
2

+ (16× 2n − 18)

[
1

2
+

1

2

] 1
2

+ (6× 2n − 6)

[
1

2
+

1

3

] 1
2

= (
√

6 + 16 +
√

30)2n − (18 +
√

30),

IN2(PETIM) =(2× 2n)

[
1

1
+

1

2

]− 1
2

+ (16× 2n − 18)

[
1

2
+

1

2

]− 1
2

+ (6× 2n − 6)

[
1

2
+

1

3

]− 1
2

=

(
2
√

2√
3

+ 16 +
6
√

6√
5

)
2n −

(
18 +

6
√

6√
5

)
. �

§4. Results for Poly Ethylene Amide Dendrimer PETAA

We consider the family of poly ethylene amide amine dendrimers. This family of dendrimers is

denoted by PETAA. The molecular graph of PETAA is presented in Figure 3.

Figure 3. The molecular graph of PETAA



Computation of Inverse Nirmala Indices of Certain Nanostructures 37

Let G be the molecular graph of PETAA. By calculation, we find that G has 44× 2n− 18

vertices and 44× 2n − 19 edges. In PETAA, there are four types of edges based on degrees of

end vertices of each edge as given in Table 3.

dG(u), dG(v) \ uv ∈ E(G) (1, 2) (1, 3) (2, 2) (2,3)

Number of edges 4× 2n 4× 2n − 2 16× 2n − 8 20× 2n − 9

Table 3: Edge partition of PETAA

In the following theorem, we compute the first and second inverse Nirmala indices of

PETAA.

Theorem 4.1 Let PETAA be the family of poly ethylene amide amine dendrimers. Then

IN1(PETAA) =

(
4
√

3√
2

+
8√
3

+ 16 +
20
√

5√
6

)
2n −

(
4√
3

+ 8 +
9
√

5√
6

)
,

IN2(PETAA) =

(
4
√

2√
3

+ 2
√

3 + 16 +
20
√

6√
5

)
2n −

(√
3 + 8 +

9
√

6√
5

)
.

Proof By using definitions and Table 3, we obtain

IN1(PETAA) = (4× 2n)

[
1

1
+

1

2

] 1
2

+ (4× 2n − 2)

[
1

1
+

1

3

] 1
2

+ (16× 2n − 8)

[
1

2
+

1

2

] 1
2

+ (20× 2n − 9)

[
1

2
+

1

3

] 1
2

=

(
4
√

3√
2

+
8√
3

+ 16 +
20
√

5√
6

)
2n −

(
4√
3

+ 8 +
9
√

5√
6

)
.

and

IN2(PETAA) = (4× 2n)

[
1

1
+

1

2

]− 1
2

+ (4× 2n − 2)

[
1

1
+

1

3

]− 1
2

+ (16× 2n − 8)

[
1

2
+

1

2

]− 1
2

+ (20× 2n − 9)

[
1

2
+

1

3

]− 1
2

=

(
4
√

2√
3

+ 2
√

3 + 16 +
20
√

6√
5

)
2n −

(√
3 + 8 +

9
√

6√
5

)
. �

§5. Results for Zinc Prophyrin Dendrimer DPZn

We consider the family of zinc prophyrin dendrimers. This family of dendrimers is denoted

by DPZn, where n is the steps of growth in this type of dendrimers. The molecular graph of

DPZn is shown in Figure 4.
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Figure 4. The molecular graph of DPZn

Let G be the molecular graph of DPZn. By calculation, we obtain that G has 56× 2n − 7

vertices and 64× 2n− 4 edges. In DPZn, there are four types of edges based on degrees of end

vertices of each edge as given in Table 4.

dG(u), dG(v) \ uv ∈ E(G) (2, 2) (2, 3) (3, 3) (3,4)

Number of edges 16× 2n − 4 40× 2n − 16 8× 2n + 12 4

Table 4: Edge partition of DPZn

In the following theorem, we determine the Nirmala index and its exponential of DPZn.

Theorem 5.1 Let DPZn be the family of zinc prophyrin dendrimers. Then

IN1(DPZn) =

(
16 +

40
√

5√
6

+
8
√

2√
3

)
2n −

(
4 +

16
√

5√
6

+
12
√

2√
3
− 2
√

7√
3

)
,

IN2(DPZn) =

(
16 +

40
√

6√
5

+
8
√

3√
2

)
2n −

(
4 +

16
√

6√
5
− 12

√
3√

2
− 8
√

3√
7

)
.

Proof From definitions and by using Table 4, we deduce

IN1(DPZn) = (16× 2n − 4)

[
1

2
+

1

2

] 1
2

+ (40× 2n − 16)

[
1

2
+

1

3

] 1
3

+ (8× 2n + 12)

[
1

3
+

1

3

] 1
2

+ 4

[
1

3
+

1

4

] 1
2

=

(
16 +

40
√

5√
6

+
8
√

2√
3

)
2n −

(
4 +

16
√

5√
6

+
12
√

2√
3
− 2
√

7√
3

)
.
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and

IN2(DPZn) = (16× 2n − 4)

[
1

2
+

1

2

]− 1
2

+ (40× 2n − 16)

[
1

2
+

1

3

]− 1
3

+ (8× 2n + 12)

[
1

3
+

1

3

]− 1
2

+ 4

[
1

3
+

1

4

]− 1
2

=

(
16 +

40
√

6√
5

+
8
√

3√
2

)
2n −

(
4 +

16
√

6√
5
− 12

√
3√

2
− 8
√

3√
7

)
. �

§6. Conclusion

In this study, we have defined the first and second inverse Nirmala indices of a molecular graph.

Furthermore, the first and second inverse Nirmala indices for certain dendrimers are computed.
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Abstract: Let M be a noncommutative 2-torsion free semiprime Γ-semiring satisfying a

certain assumption with centre Zα(M) and T : M →M be an additive mapping. We prove

results: 1) If T is centralizing on a Jordan Γ-subring J of M , then T is commutating on J ;

2) If T is centralizing right centralizer on M , then T is commutating; 3) If T is centralizing

right centralizer on M , then T is centralizer and 4) If T is centralizing right centralizer on

M , then T satisfies the relation

[x, y]αβT (x) = [T (x), y]αβx

for all x, y ∈M and α, β ∈ Γ.
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§1. Introduction

The notion of gamma ring was first introduced in [1], which is currently notable as ΓN -ring.

Bernes [2] broadly generalized and extended the concept of ΓN -ring to Γ-ring and shown that

every ΓN -ring is a Γ-ring. The Γ-ring is more general than the classical ring and it is concluded

that Γ-ring need not to be a ring [1, 2]. Later, much theory relevant to the classical rings have

been generalized and extended to the theory of Γ-rings, especially, Luh [3] and Kyuno [4] deeply

studied on the structure of Γ-rings and explored various generalizations of analogous parts in

ring theory.

Over the years, Bell and Martindale [5] and Zalar [6] developed some notable results on

centralizing mappings of semiprime rings. Vukman [7-10] presented may remarkable findings

via the concept of centralizers on prime and semiprime rings. Recently, the research on cen-

tralizers of prime and semiprime rings have been extended to prime and semiprime gamma

rings and semiprime gamma semirings in the aspects of Jordan centralizers [12, 13], centralizers

[11, 13C15], centralizers on Lie ideals [16, 17], centralizers with involutions [18, 19], Jordan

derivations on Lie ideals [16] and generalized derivations on prime and semiprime gamma rings

with centralizing and commuting [20, 21] as well.

1Received March 3, 2021, Accepted June 8, 2021.
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H.S. Vandiver introduced the algebraic study of semiring in 1934 [22, 23] and Rao [24]

extended such research to the Γ-semirings and established some basic theories on gamma rings

as well as on gamma semiring. A number of important features on Γ-semirings are presented in

[12, 25, 26]. However, the research on centralizing left/right centralizers on prime and semiprime

gamma semiring is still unknown area. Thus the purpose of this article is to study on semiprime

gamma semiring via centralizing right centralizers [11, 20]. The study is inspired by the work

of [25, 26]. The results presented in this paper through out for right centralizers, which are also

true for left centralizers because of left-right symmetry.

§2. Preliminaries

Let M and Γ be additive Abelian groups. If there exists a mapping (x, α, y) → xαy of M ×
Γ×M →M , which satisfies the following conditions:

(a) xαx ∈M ;

(b) xα(y + z) = xαy + xαz and (x+ y)αz = xαz + yαz;

(c) x(α+ β)y = xαy + xβy;

(d) (xαy)βz = xα(yβz)

for all x, y, z ∈ M and α, β ∈ Γ, then M is called a Γ-ring. Every ring M is a Γ-ring with

M = Γ.

Let M and Γ be two additive commutative semigroups. Then M is called a Γ-semiring if

M is itself a Γ-ring. Obviously, every semiring M is a Γ-semiring with M = Γ. A non-empty

subset A of a Γ-semiring M is said to be a sub Γ-semiring of M if (A,+) is a subsemigroup

of (M,+) and xαy ∈ A for all x, y ∈ A and α ∈ Γ. A Γ-semiring M is said to have a zero

element if there exists an element 0 ∈ M such that 0 + x = x = x+ 0 and 0αx = 0 = xα0 for

all x ∈ M and α ∈ Γ. A Γ-semiring M is said to be prime if xαy = 0 implies x = 0 or y = 0

for all x, y ∈ S and α ∈ Γ. A Γ-semiring S is said to be semiprime if xαx = 0 implies x = 0

for all x ∈ S and α ∈ Γ. A Γ-semiring M is said to be n-torsion free if nx = 0 implies x = 0

for all x ∈ M . A Γ-semiring M is said to be commutative if xαy = yαx for all x, y ∈ M and

α ∈ Γ. Let M be a Γ-semiring. Then the set Zα(M) = {x ∈M : xαy = yαx ∀y ∈M,α ∈ Γ}
is called the centre of the Γ-semiring M . Let M be a Γ-ring. Then [x, y]α = xαy−yαx is called

the commutator of x and y with respect to α, where x, y ∈M and α ∈ Γ.

We make the basic commutator identities following

[aαb, c]β = [a, c]βαb+ a[α, β]cb+ aα[b, c]β ,

[a, bαc]β = [a, b]βαc+ b[α, β]ac+ bα[a, c]β

for all a, b, c ∈M and α, β ∈ Γ. We consider the following assumption [11],

aαbβc = aβbαc (2.1)

for all a, b, c ∈ M , and α, β ∈ Γ, which we extensively used in this paper. According to the



Results on Centralizers of Semiprime Gamma Semirings 43

assumption(2.1), the above two identities reduce to

[aαb, c]β = [a, c]βαb+ aα[b, c]β , (2.2)

[a, bαc]β = [a, b]βαc+ bα[a, c]β . (2.3)

The identities (2.2) and (2.3) are also used thoroughly in this article.

An additive mapping T : M →M is called a left (right) centralizer if

T (xαy) = T (x)αy(T (xαy) = xαT (y))

holds for all x, y ∈ M and α ∈ Γ. An additive mapping T : M → M is centralizer if it is

both a left and a right centralizer. For any fixed a ∈ M and α ∈ Γ, the mapping T (x) = aαx

is a left centralizer and T (x) = xαa is a right centralizer. A mapping T : M → M is called

centralizing if [T (x), x]α ∈ Zα(M) for all x ∈ M , α ∈ Γ. A mapping T of a Γ-semiring M

into itself is said to be commuting if [T (x), x]α = 0. We recall if T : M → M is commuting,

then [T (x), y]α = [x, T (y)]α for all x, y ∈ M and α ∈ Γ. Obviously, every commuting mapping

T : M → M is centralizing. If A be a subset of Γ-semiring M and xαy + yαx ∈ A for all

x, y ∈ A and α ∈ Γ, then A is called a Jordan subring of M .

§3. Main results

In this section, we obtain the following results with their proofs in sense of 2-torsion free

semiprime Γ-semiring with the certain assumption (2.1) and using various commutation iden-

tities.

Theorem 3.1 Suppose M is a 2- torsion free cancellative semiprime Γ-semiring satisfying the

assumption (2.1) and J is a Jordan subring of M . If an additive mapping T : M → M is

centralizing on J , then T is commuting on J .

Proof By the definition of centralizing T on J , we have

[T (x), x]α ∈ Zα(M). (3.1)

For the linearization, we put x = x+ y in (3.1), which yields

[T (x), x]α + [T (x), y]α + [T (y), x]α + [T (y), y]α ∈ Zα(M),

⇒ [T (x), y]α + [T (y), x]α ∈ Zα(M) (3.2)

for all x, y ∈ J and α ∈ Γ. In particular, for y = xβx, we obtain

[T (x), xβx]α + [T (xβx), x]α ∈ Zα(M) for all x, y ∈ J, α ∈ Γ,

⇒ [T (x), x]αβx+ xβ[T (x), x]α + [T (xβx), x]α ∈ Zα(M).
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Using the definition of the centre of Γ-semiring Zα(M), we have

[T (x), x]αβx+ [T (x), x]αβx+ [T (xβx), x]α ∈ Zα(M),

⇒ 2[T (x), x]αβx+ [T (xβx), x]α ∈ Zα(M). (3.3)

Suppose x ∈ J is a fixed element with z = [T (x), x]α ∈ Zα(M) and a = [T (xβx), x]α.

Then (3.3) can rewrite in the following form

[T (x), 2zβx+ a]α = 0. (3.4)

By the expansion of the commutation identities (3.4), we get

[T (x), 2zβx]α + [T (x), a]α = 0,

⇒ 2zβ[T (x), x]α + 2[T (x), z]αβx+ [T (x), a]α = 0,

⇒ 2zβz + [T (x), a]α = 0,

⇒ [T (x), a]α = −2zβz. (3.5)

On the other hand, we have

[T (xβx), xβx]α ∈ Zα(M) (3.6)

for all x ∈ J and α, β ∈ Γ. This implies

[T (xβx), x]αβx+ xβ[T (xβx), x]α ∈ Zα(M). (3.7)

Now using the relation (3.7), we can write [T (x), aβx+xβa]α = 0 and apply (3.4), it takes

the following explicit form

[T (x), a]αβx+ aβ[T (x), x]α + [T (x), x]αβa+ xβ[T (x), a]α = 0,

⇒ −2zβzβx+ aβz + zβa+ xβ(−2zβz) = 0,

⇒ −2zβzβx+ zβa+ zβa− 2zβzβx = 0, by using the definition of Zα(M),

⇒ 2zβa− 4zβzβx = 0⇒ a = 2zβx. (3.8)

Using (3.8) in (3.5), we have

[T (x), 2zβx]α = −2zβz,

⇒ 2{[T (x), z]αβx+ zβ[T (x), x]α} = −2zβz,

⇒ [T (x), z]αβx+ zβ[T (x), x]α = −zβz,

⇒ [T (x), z]αβx+ zβ[T (x), x]α = −zβz,

⇒ zβ[T (x), x]α = −zβz,

⇒ zβz = −zβz ⇒ 2zβz = 0. (3.9)
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By the 2-torsion free semiprimeness of M , we conclude that zβz = 0 implies z = 0 for all

β ∈ Γ. Therefore [T (x), x]α = 0 for all x ∈ J and hence T is commutating on J . �

Theorem 3.2 Suppose that M is a cancellative semiprime Γ-semiring satisfying the assumption

(2.1). If T : M →M is a centralizing right centralizer, then T is commuting.

Proof If we consider M is 2-torsion free cancellative semiprime Γ-semiring satisfying the

assumption (2.1), then the theorem is nothing to prove for J = M in account of Theorem 3.1.

We now assume that M is not 2-torsion free Γ-semiring. In this case, we consider the following

relation

2[x, T (x)]α = 0. (3.10)

for all x ∈M and α ∈ Γ. We now substitute x+ y for x in (3.10), which yields

2[x+ y, T (x+ y)]α = 0,

⇒ 2[x, T (y)]α + 2[y, T (x)]α = 0,

⇒ [x, T (y)]α = −[y, T (x)]α (3.11)

for all x, y ∈M and α ∈ Γ. We now again linearise the assumption [x, T (x)]α ∈ Zα(M) by the

transformation x = x+ y, which leads to

[x, T (y)]α + [y, T (x)]α ∈ Zα(M) (3.12)

for all x, y ∈M and α ∈ Γ. By using the definition of Zα(M) in (3.12), we enable to express as

[([x, T (y)]α + [y, T (x)]α), x]β = 0 (3.13)

for all x, y ∈M and α, β ∈ Γ. This implies

([x, T (y)]α + [y, T (x)]α)βx− xβ([x, T (y)]α + [y, T (x)]α) = 0,

⇒ [x, T (y)]αβx+ [y, T (x)]αβx− xβ[x, T (y)]α − xβ[y, T (x)]α = 0. (3.14)

Using (3.11) in (3.14), we obtain

[x, T (y)]αβx+ [y, T (x)]αβx+ xβ[x, T (y)]α + xβ[y, T (x)]α = 0. (3.15)

Again from the assumption [x, T (x)]α ∈ Zα(M) and the definition of Zα(M), we found

[x, T (x)]αβy = (xαT (x)− T (x)αx)βy

= xαT (x)βy − T (x)αxβy

= yβxαT (x)− yβT (x)αx

= yβ(xαT (x)− T (x)αx) = yβ[x, T (x)]α (3.16)
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for all x, y ∈M and α, β ∈ Γ. Applying the result(3.16) in (3.11), we get

2[x, T (x)]α = 0,

⇒ [x, T (x)]α + [x, T (x)]α = 0,

⇒ yβ[x, T (x)]α + yβ[x, T (x)]α = 0, right multiplying by yβ,

⇒ [x, T (x)]αβy + yβ[x, T (x)]α = 0, using (3.16), (3.17)

for all x, y ∈M and α, β ∈ Γ. Adding the relations (3.15) and (3.17) and simplifying, we have

[(xβy + yβx), T (x)]α + [xβx, T (y)]α = 0. (3.18)

Now using xγy for y in the relation (3.18), we arrive at

[(xβxγy + xγyβx), T (x)]α + [xβx, T (xγy)]α = 0 (3.19)

for all x, y ∈M and α, β, γ ∈ Γ. By using assumption (2.1) in (3.19), we obtain

[(xγxβy + xγyβx), T (x)]α + [xβx, T (xγy)]α = 0,

⇒ [xγ(xβy + yβx), T (x)]α + [xβx, T (xγy)]α = 0,

⇒ [x, T (x)]αγ(xβy + yβx) + xγ[(xβy + yβx), T (x)]α + xγ[xβx, T (y)]α = 0. (3.20)

Using (3.18) in (3.20), it reduces to

[x, T (x)]αγ(xβy + yβx)− xγ[xβx, T (y)]α + xγ[xβx, T (y)]α = 0,

⇒ [x, T (x)]αγ(xβy + yβx) = 0,

⇒ [x, T (x)]αγ(xβy − yβx+ 2yβx) = 0,

⇒ [x, T (x)]αγ(xβy − yβx) + 2[x, T (x)]αγyβx = 0,

⇒ [x, T (x)]αγ(xβy − yβx) = 0, using (3.10),

⇒ [x, T (x)]αγ[x, y]β = 0 (3.21)

for all x, y ∈M and α, β, γ ∈ Γ. Replacing y by T (x) and β = α in (3.21), we obtain

[x, T (x)]αγ[x, T (x)]α = 0 (3.22)

for all x ∈ M and α, γ ∈ Γ. For the semiprimeness of Γ-semiring, [x, T (x)]αγ[x, T (x)]α = 0

implies [x, T (x)]α = 0 for all x ∈ M and α, γ ∈ Γ. Therefore T is commuting and hence the

theorem is proved. �

Theorem 3.3 Suppose that M is a cancellative semiprime Γ-semiring satisfying the assumption

(2.1). If T : M →M is a centralizing right centralizer on M , then T is centralizer.

Proof Since T is a centralizing right centralizer on M , we have

T (xαy) = xαT (y) (3.23)
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for all x, y ∈ M and α ∈ Γ. We aim to prove that T (xαy) = T (x)αy for all x, y ∈ M and

α ∈ Γ. According to the statement and Theorem 3.2, T is commuting on M . In this case, we

can write [x, T (x)]α = 0. This implies

xαT (x) = T (x)αx (3.24)

for all x ∈M and α ∈ Γ. Now linearizing the relation (3.24) by setting x = x+ y, yields

[x, T (y)]α + [y, T (x)]α = 0 (3.25)

for all x, y ∈M and α ∈ Γ. Applying xβy for x and using the definition, we obtain

[xβy, T (y)]α + [y, T (xβy)]α = 0,

⇒ xβ[y, T (y)]α + [x, T (y)]αβy + [y, T (xβy)]α = 0,

⇒ [x, T (y)]αβy + [y, xβT (y)]α = 0,

⇒ xαT (y)βy − T (y)αxβy + yαxβT (y)− xβT (y)αy = 0,

⇒ xβT (y)αy − xβT (y)αy + yαxβT (y)− T (y)αxβy = 0,

⇒ yαxβT (y)− T (y)αxβy = 0,

⇒ yαxβT (y) = T (y)αxβy (3.26)

for all x, y ∈ M and α, β ∈ Γ. Let T (y) = y in (3.26), then we have yαxβT (y) = yαxβy. This

implies yβxαT (y) = yβxαy. By using the cancellation law, it shows that xαT (y) = xαy, which

implies that T (xαy) = xαy for all x, y ∈ M and α ∈ Γ. Thus for choosing T (x) = x, we write

T (xαy) = T (x)αy. By using the assumption (2.1), this implies

xαT (y) = T (x)αy. (3.27)

If we consider z ∈M and β ∈ Γ, then we can write (T (xαy)−xαT (y))βzβ(T (xαy)−xαT (y)) =

0 for all x, y ∈ M and α ∈ Γ. By the definition of semiprime Γ-semiring M , it leads to

T (xαy)− xαT (y) = 0. That is,

T (xαy) = xαT (y). (3.28)

Comparing (3.27) and (3.28), we conclude that

T (xαy) = T (x)αy (3.29)

for all x, y ∈ M and α ∈ Γ. Therefore, T is a centralizer on M and hence, the theorem is

proved. �

The study of the above theorems, we can provide the following remarks.

Remark 3.1 Every centralizer on a cancellative semiprime Γ-semiring is commuting, because

of T (xαx) = T (x)αx = xαT (x) for all x ∈ M and α ∈ Γ and hence is a centralizing right

centralizer.
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Remark 3.2 An additive mapping T of a cancellative semiprime Γ-semiring M is a centralizer

if and only if it is a centralizing right centralizer on M .

Corollary 3.1 Suppose that T is a commuting right centralizer of a semiprime Γ-semiring M

satisfying the assumption (2.1), then T satisfies the relation [x, y]αβT (x) = [T (x), y]αβx for all

x, y ∈M and α, β ∈ Γ.

Proof By the statement, we have T (xαy) = xαT (y) for all x, y ∈M and α ∈ Γ. Since T is

also commuting on M , it is easily seen that [x, T (x)]α = 0. Putting x = x+ y for linearization,

we arrive at

[x, T (y)]α + [y, T (x)]α = 0 (3.30)

for all x, y ∈M and α ∈ Γ. Replacing y by yβx in (3.30) and using the relation [x, T (x)]α = 0,

we obtain

[x, T (yβx)]α + [yβx, T (x)]α = 0,

⇒ [x, yβT (x)]α + [yβx, T (x)]α = 0,

⇒ [x, y]αβT (x) + yβ[x, T (x)]α + [y, T (x)]αβx+ yβ[x, T (x)]α = 0,

⇒ [x, y]αβT (x) + [y, T (x)]αβx = 0,

⇒ [x, y]αβT (x)− [T (x), y]αβx = 0,

⇒ [x, y]αβT (x) = [T (x), y]αβx (3.31)

for all x, y ∈M and α, β ∈ Γ. Hence, the theorem is proved. �

Corollary 3.2 Suppose that M is a prime Γ-semiring and T is a commuting right centralizer

on M . If T (x) ∈ Zα(M) for all x ∈M , then T = 0 or M is commutative.

Proof Since T (x) ∈ Zα(M), in this case we have [T (x), y]α = 0 for all x, y ∈M and α ∈ Γ.

We also have [x, y]αβT (x) = [T (x), y]αβx for all x, y ∈M and α, β ∈ Γ. Thus

[x, y]αβT (x) = 0 (3.32)

for all x, y ∈M and α, β ∈ Γ. Setting y = yγz in (3.32), we have

[x, yγz]αβT (x) = 0,

⇒ {[x, y]αγz + yγ[x, z]α}βT (x) = 0,

⇒ [x, y]αγzβT (x) + yγ[x, z]αβT (x) = 0,

⇒ [x, y]αγzβT (x) = 0, for all x, y, z ∈M,

⇒ (xαy − yαx)γzβT (x) = 0,

⇒ (xαyγz − yαxγz)βT (x) = 0.

For the prime Γ-semiringness of M , we have (xαyγz− yαxγz) = 0 or βT (x) = 0. Thus we

have seen that T = 0 or M is commutative, and hence, the theorem is proved. �
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Abstract: A robot can determine its location by a set of fixed landmarks (consider the

robot path is like a graph). By a signal from the robot, it can determine how far it from

each among a set of fixed landmarks. We can formulate this problem such that the robot can

always determine its location as the following: how to compute the minimum landmarks and

where these landmarks should be placed. The metric dimension problem of a given graph

can answer about the above two questions. The metric basis of the graph represents the

set of landmarks and the metric dimension of the graph is equal to the cardinality of the

landmarks. The determining of the metric dimension of an arbitrary graph is an NP-complete

problem. In this paper we determine the metric dimension of new classes of networks with

polynomial algorithms. In particular, the metric dimension of the triangular snake graph,

the ladder graph Ln, Bk, the k-home chain graph Hk and the k-kite chain graph Kk are

determined. We propose an exponential algorithm for finding the metric dimension of a given

graph. We also introduce the results of computer calculations that determined the metric

dimension of various classes of networks by using an approximate algorithm namely integer

linear programming. Finally, a comparative analysis between the proposed approximate and

exponential algorithms shows that the LINGO solver outperforms the proposed algorithm

for huge graphs.

Key Words: Metric dimension, resolving set, basis, integer programming, NP-hardness,

robot navigation.

AMS(2010): 05C30.

§1. Introduction

A robot can determine its location by a set of fixed landmarks (consider the robot path is like a

graph). It is known that a robot is different distances from a set of fixed landmarks. By a signal

from the robot, it can determine how far it from each among a set of fixed landmarks. We can

formulate this problem such that the robot can always determine its location as the following:

1Received March 10, 2021, Accepted June 10, 2021.
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how to compute the minimum landmarks and where these landmarks should be placed. The

metric dimension problem of a given graph can answer about the above two questions. The

metric basis of the graph represents the set of landmarks and the metric dimension of the graph

is equal to the cardinality of the landmarks. The concept of the metric dimension has proven

to be useful in a variety of fields. Chartrand et al. [1] applied the resolving set of a metric

dimension in chemistry to classify chemical compounds. Khuller et al. [2] applied resolving sets

in robotic navigation, and Sebo et al. [3] applied them in combinatorial search and optimization

problems.

A systematic definition of the metric dimension is proposed. Let G be a connected graph

and d(x, y) be the distance between vertices x and y. A subset of vertices w = {w1, · · · , wk}
is called a resolving set for G if for every two distinct vertices x, y ∈ V (G), there is a vertex

wi ∈ w such that d(x,wi) 6= d(y, wi). The metric dimension md(G) of G is the minimum

cardinality of a resolving set for G.

Figure 1 shows how the different signals determine the robot’s location. Suppose the robot

moves on the path graph (straight line) and there is a landmark vertex (v4) that sends different

signals (the distances are 3, 2, 1, and 0 between v1, v2, v3, and v4 and the landmark vertex v4,

respectively) to the robot to determine its location.

Figure 1. How the different signals determine the robot’s location

Slater [4],[5] proposed the notion of a minimum resolving set. After that Slater proposed

a different term (location set) for the resolving set for a connected graph G. He studied the

location number of G as the cardinality of a minimum resolving set. Harary and Melter [6]

used a different term (metric dimension) for the same problem. The metric dimension of some

graphs such as trees, paths, and complete graphs were determined by Chartrand et al. [7].

They introduced the bounds of the metric dimensions for any connected graphs. They also

formulated this problem as an integer linear programming problem. Gerey and Johnson [8]

proved that the metric dimension problem is an NP-complete problem for an arbitrary graph.

The metric dimension problem for grid graphs was studied by Melter and Tomescu [9]. The

metric dimension of graphs obtained by the cartesian product of two or more graphs was studied

by Caceres et al. [10]. Chartrand et al. [11] find each graph of order n that has metric dimension

1, n− 2 or n− 1.

In this work we determine the metric dimension of new classes of networks with polynomial

algorithms. In particular, the metric dimension of the triangular snake graph, the ladder graph

Ln, Bk , the k-home chain graph Hk and the k-kite chain graph Kk are determined. We propose

an exponential algorithm for finding the metric dimension of a given graph. We also introduce

the results of computer calculations that determined the metric dimension of various classes
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of networks by using an approximate algorithm namely integer linear programming. Finally,

a comparative analysis between the proposed approximate and exponential algorithms shows

that the LINGO solver outperforms the proposed algorithm for huge graphs.

§2. Main Results: Polynomial Algorithms of Some Special Classes of Networks

Here, we prove that the metric dimension of the triangular snake graph ∆k− snake, the ladder

graph Ln, the k-home chain graph Hk, the k-kite chain graph Kk and the k-envelop chain

graph En equals 2. Samir Khuller et al [12] proved that for graph G with metric dimension 2

and metric basis {a, b}, the following are true:

(1) There is no more than one path (P ) between a and b;

(2) The degree (a) ≤ 3 and degree (b) ≤ 3;

(3) The degree (c) ≤ 5 such that c ∈ P , c 6= a and c 6= b.

Theorem 2.1 Let G be a triangular snake graph (∆k − snake) with k blocks and n vertices,

then md(G) = 2.

Figure 2. Triangular snake graph (∆k − snake).

Proof We label the triangular snake network G = (∆k− snake) as shown in Figure 2 such

that k is the blocks number. It is clear that | V (G) | is n = 2k + 1. Let w = {v1, v2k} so that

the proof has three cases, i.e., k = 1, k > 1 with the odd labeling of the vertices and k > 1 with

the even labeling of the vertices.

Case 1. For k = 1, the proof is trivial because the graph G = C3.

Case 2. For k > 1, the odd labeling of the vertices is the following:

Begin

for (i = 1; i ≤ n− 2; i = i+ 2) do

d(vi, w) =
(
i−1

2 , n−i2

)
end

d(vn, w) =
(

(n−1)
2 ,1

)
End

Case 3. For k > 1, the even labeling of the vertices is the following:

Begin

for(i = 2; i ≤ n− 3; i = i+ 2) do

d(vi, w) =
(
i
2 ,

n−i+1
2

)
end

d(vn−1, w) =
(

(n−1)
2 , 0

)
End

This completes the proof. �
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Obviously, there are no two vertices with the same labeling , we then obtain a resolving

set w with | w|, so we have md (∆n − snake) = 2. The proof of the algorithm of Theorem

1 involves a for-loop, so the algorithm complexity is O(n), indicating that it is of polynomial

time.

Theorem 2.2 Let G be a ladder graph Ln, where n ≥ 4, then md(G) = 2.

Figure 3. Ladder graph Ln.

Proof We label the triangular snake network G = (∆k− snake) as shown in Figure 2 such

that k is the blocks number. It is clear that | V (G) | is n = 2k + 1. Let w = {v1, v2k} so that

the proof has three cases, i.e., k = 1, k > 1 with the odd labeling of the vertices and k > 1 with

the even labeling of the vertices.

Case 1. For k = 1, the proof is trivial because the graph G = C3.

Case 2. For k > 1, the odd labeling of the vertices is the following:

Begin

for(i = 1; i ≤ n− 2; i = i+ 2) do

d(vi, w) =
(
i−1

2 , n−i2

)
end

d(vn, w) =
(

(n−1)
2 ,1

)
End

Case 3. For k > 1, the even labeling of the vertices is the following:

Begin

for(i = 2; i ≤ n− 3; i = i+ 2) do

d(vi, w) =
(
i
2 ,

n−i+1
2

)
end

d(vn−1, w) =
(

(n−1)
2 , 0

)
End

This completes the proof. �

We label a ladder graph G = Ln as shown in Figure 3. It is clear that | V (G) | is n = 2k+2

such that k is the blocks number of G. Let w = {v1, vk+1}
Begin

for (i = 1; i ≤ n
2 ; i+ +) do

d(v1, w) =
(
i− 1, n2 − i

)
end
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for (i = n; i ≤ n
2 + 1; i−) do

d(vi, w) =
(
n− i+ 1, i− n

2

)
end

End

Obviously, there are no two vertices with the same labelling, we then obtain a resolving

set w with | w|, so we have md(Ln) = 2. The algorithm of the proof of Theorem 2 contains two

for-loops, but they are not inner loops, so the algorithm complexity is O(n), indicating that it

is of polynomial time.

Theorem 2.3 Let G be graph Bk , where n ≥ 4, then md(G) = 2.

Figure 4. Graph Bk

Proof We label the triangular snake network G = (∆k− snake) as shown in Figure 2 such

that k is the blocks number. It is clear that | V (G) | is n = 2k + 1. Let w = {v1, v2k} so that

the proof has three cases, i.e., k = 1, k > 1 with the odd labeling of the vertices and k > 1 with

the even labeling of the vertices.

Case 1. For k = 1, the proof is trivial because the graph G = C3.

Case 2. For k > 1, the odd labeling of the vertices is the following:

Begin

for (i = 1; i ≤ n− 2; i = i+ 2) do

d(vi, w) =
(
i−1

2 , n−i2

)
end

d(vn, w) =
(

(n−1)
2 ,1

)
End

Case 3. For k > 1, the even labeling of the vertices is the following:

Begin

for (i = 2; i ≤ n− 3; i = i+ 2) do

d(vi, w) =
(
i
2 ,

n−i+1
2

)
end d(vn−1, w) =

(
(n−1)

2 , 0
)

End

This completes the proof. �

We label a graph G = Bk as shown in Figure 4 such that k is the blocks number. It is

clear that V (G) is n = 2k + 4. Let w = {v1, vk+2}. We want to prove that w is a resolving set

by showing that d(vi, w) 6= d(vj , w) for all i 6= j. Observe that:

Begin j1 = 0 ; j2 = 1
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for (i = 1; i ≤ k + 1; i+ +) do

d(vi, w) = (j1, j2)

j1 = j1 + 1;j2 = j2 + 1

end

d(vk+2, w) = (1, 0) j1 = 1 ; j2 = 1

for (i = k + 1; i ≤ n− 1; i+ +) do d(vi, w) = (j1, j2)

j1 = j1 + 1;j2 = j2 + 1

end

d(vn, w) =
(
n−2

2 , n2
)

End

Obviously, there are no two vertices with the same labelling, we then obtain a resolving

set w with| w|, so we have md(Bk) = 2. The algorithm of the proof of Theorem 3 has two

for-loops, but they are not inner loops, so the algorithm complexity is O(n), indicating that it

is of polynomial time.

Theorem 2.4 Let G be a k-home chain graph Hk , where k ≥ 2 then md(G) = 2.

Figure 5. k-home chain graph Hk.

Proof We label the triangular snake network G = (∆k− snake) as shown in Figure 2 such

that k is the blocks number. It is clear that | V (G) | is n = 2k + 1. Let w = {v1, v2k} so that

the proof has three cases, i.e., k = 1, k > 1 with the odd labeling of the vertices and k > 1 with

the even labeling of the vertices.

Case 1. For k = 1, the proof is trivial because the graph G = C3.

Case 2. For k > 1, the odd labeling of the vertices is the following:

Begin

for (i = 1; i ≤ n− 2; i = i+ 2) do

d(vi, w) =
(
i−1

2 , n−i2

)
end

d(vn, w) =
(

(n−1)
2 ,1

)
End

Case 3: for k > 1, the even labeling of the vertices is the following:

Begin

for (i = 2; i ≤ n− 3; i = i+ 2) do
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d(vi, w) =
(
i
2 ,

n−i+1
2

)
end d(vn−1, w) =

(
(n−1)

2 , 0
)

End

This completes the proof. �

We label a graph G = Hk as shown in Figure 5 such that k is the blocks number. It is

clear that | V (G) | is n = 3k + 2. Let w = {v1, vk} .We want to prove that w is a resolving set

by showing that d(vi, w) 6= d(vj , w) for all i 6= j. Observe that:

Begin d(v1,W ) = (0, k) j = k − 1

for (i = 2; i ≤ k − 1; i+ +) do

d(vi,W ) = (i, j), j = j − 1

end

d(vk,W ) = (k, 0), d(vk+1,W ) = (1, k)

for (i = k + 2; i ≤ 2k; i+ +) do

j1 = 1, j2 = k − 1

d(vi,W ) = (j1, j2)

j1 = j1 + 1; j2 = j2 − 1

end

d(v2k+1,W ) = (k, 1) d(v2k+2,W ) = (2, k + 1)

for (i = 2k + 3; i ≤ n− 1; i+ +) do

j1 = 2, j2 = k

d(vi,W ) = (j1, j2)

j1 = j1 + 1; j2 = j2 − 1

end

d(vn,W ) = (n+1
3 , 2)

End

Obviously, there are no two vertices with the same labelling; we then obtain a resolving

set w with | w|, so we have md(Hk) = 2. The algorithm of the proof of Theorem 4 has three

for-loops, but they are not inner loops, so the algorithm complexity is O(n), indicating that it

is of polynomial time algorithm.

Theorem 2.5 Let G be a k-kite chain graph Kk where k ≥ 2 with n vertices and k blocks, then

md(G) = 2.

Figure 6. k-kite chain graph Kk.
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Proof We label the triangular snake network G = (∆k− snake) as shown in Figure 2 such

that k is the blocks number. It is clear that | V (G) | is n = 2k + 1. Let w = {v1, v2k} so that

the proof has three cases, i.e., k = 1, k > 1 with the odd labeling of the vertices and k > 1 with

the even labeling of the vertices.

Case 1. For k = 1, the proof is trivial because the graph G = C3.

Case 2. For k > 1, the odd labeling of the vertices is the following:

Begin

for (i = 1; i ≤ n− 2; i = i+ 2) do

d(vi, w) =
(
i−1

2 , n−i2

)
end

d(vn, w) =
(

(n−1)
2 ,1

)
End

Case 3: for k > 1, the even labeling of the vertices is the following:

Begin

for (i = 2; i ≤ n− 3; i = i+ 2) do

d(vi, w) =
(
i
2 ,

n−i+1
2

)
end

d(vn−1, w) =
(

(n−1)
2 , 0

)
End

This completes the proof. �

We label the k-kite chain graph G = Kk as shown in Figure 6 such that k is the blocks

number of Kk. It is clear that | V (G) | is n = 3k + 2. Let w = {v1, vk+1} . We want to prove

that w is a resolving set by showing that d(vi, w) 6= d(vj , w) for all i 6= j. Observe that:

Begin

for (i = 1; i ≤ k + 1; i+ +) do

d(vi,W ) = (i− 1, k − i+ 1)

end

j1 = 1; j2 = k

for (i = k + 2; i ≤ 2k + 1; i+ +) do

d(vi,W ) = (j1, j2) ;j1 = j1 + 1 ; j2 = j2 − 1

end

j3 = 1; j4 = k + 1

for (i = 2k + 2; i ≤ 3k + 1; i+ +) do

d(vi,W ) = (j3, j4) ; j3 = j3 + 1; j4 = j4 − 1

end

End

Obviously, there are no two vertices with the same labelling, and so we obtain a resolving

set w with| w|. Thus,md(Kk) = 2. The algorithm of the proof of Theorem 5 has three for-

loops, but they are not inner loops, so the algorithm complexity is O(n), indicating that it is

of polynomial time.
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§3. An Exponential Algorithm for a Given Network

In the previous section, we proposed polynomial time algorithms for special cases (triangular

snake graph ∆k − snake, the ladder graph Ln, Bk, the k-home chain graph Hk and the k-

kite chain graph Kk). Here, we introduce an algorithm that gives the metric dimension of an

arbitrary graph G. Unfortunately, the time complexity of this algorithm is exponential time

O(2n). Recall that Gerey and Johnson [8] showed that determining the metric dimension of an

arbitrary graph is an NP-complete problem.

Algorithm 1. Finding the metric dimension of a given graph

Input : An adjacency matrix A[n][n] of an n-vertex simple connected graph G.

Output: The metric dimension of G.

Begin Apply Floyed -Warshall’s method to compute the distance matrix D[n][n] of G.

Initialization:

S1∗n = 0;En∗n = 0; counter = cardinality = 0 and metric dimesion = inf

Generating all subsets

while ( counter < 2n − 1)

for ( i = n; i ≥ 1; i−) do

if S[i] = 0 then

S[i] = 1

max = i+ 1

for (j = max; j ≤ n; j + +) do

S[j] = 0

end

counter = counter +1

cardinality = non-zero elements of S[i]

break;

end

end

Check all subsets of P (V G)whether resolving set or not.

for ( i = n; i ≥ 1; i−) do

for (j = n ; j ≥ 1; j –) do

E[i][, j] = 0

end

end

for ( i = n; i ≥ 1; i−) do

for ( j = n; j ≥ 1; j−) do
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if S[j] = 1 then

E[i][, j] = D[i][, j]

end

end

end

for ( i = n; i ≥ 1; i−) do

for ( j = i+ 1; j ≥ 1; j−) do

if E[i][:] = E[j][:] then

break

end

end

if ( E[i][:] = E[j][:] ) then

break

end

end

if ( E[i][:] or E[j][:] ) and (metric dimension > cardinality) then

metric dimension = cardinality;

end

end while

End Begin

Example 3.1 We show the intermediate stages of above Algorithm for the cycle graph. It is

clear that the graph G = C3 has 3 vertices and 3 edges. The graph G has adjacency matrix

A and distance matrix D such that A = D =


0 1 1

1 0 1

1 1 0

. Algorithm 1 can calculate 2n

subsets as follows:

S0 =
[

0 0 0
]
S1 =

[
0 0 1

]
S2 =

[
0 1 0

]
S3 =

[
0 1 1

]
S4 =

[
1 0 0

]
S5 =

[
1 0 1

]
S6 =

[
1 1 0

]
S7 =

[
1 1 1

]
Now, checks each of the above subsets Si : i = 0, · · · , 2n − 1 to determine whether a

resolving set as follows: the matrix Ei is calculated for each subset Si such that:

E0 =


0 0 0

0 0 0

0 0 0

E1 =


0 0 1

0 0 1

0 0 0

E2 =


0 1 0

0 0 0

0 1 0

E3 =


0 1 1

0 0 1

0 1 0


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E4 =


0 0 0

1 0 0

1 0 0

E5 =


0 0 1

1 0 1

1 0 0

E6 =


0 1 0

1 0 0

1 1 0

E7 =


0 1 1

1 0 1

1 1 0


If there exist two rows are equal in the matrix Ei then the subset Si is non-resolving set

otherwise it is resolving set; the algorithm determines that S3, S5, S6 and S7 are resolving sets

and the others are non-resolving sets. Finally Algorithm 1 determines the metric dimension

that is equal to the number of elements of the smallest resolving set for G so md(G) =| S3 |=|
S5 |=| S6 |= 2.

Complexity of Algorithm 1. Obviously, Algorithm 1 is an exponential algorithm. It consists

of one while-loop that has four for-loops each with an inner loop. So the total complexity of

Algorithm 1 is

≈
[
O(n2) +O(n2) +O(n2) +O(n2)

]
O(2n) ≈

[
4O(n2)

]
O (2n) ≈ O (2n) .

§4. Formulation of the Problem as Integer Linear Programming Model

In the previous section, we proposed an exponential algorithm that determines the metric

dimension for a given graph but this algorithm cannot determine the metric dimension of very

large graphs in a reasonable time. In this section we introduce a powerful technique “integer

linear programming technique” that determines the metric dimension for a very large graph.

This technique finds the metric dimension in a reasonable time. We now describe this problem

of determining the metric dimension and a basis for a graph in terms of an integer linear

programming problem [13-16]. Chartrand et al [11] formulated the problem of finding the metric

dimension as follows: Let G be a connected graph of order n with V (G) = {v1, v2, · · · , vn} and

let D = [dij ] be the distance matrix of G, that is, dij = d(vi, vj) for 1 ≤ i; j ≤ n. For

xi ∈ {0, 1}; 1 ≤ i ≤ n, define the function z by: z(x1, x2, · · · , xn) =
∑n

1 xi such that the

number of constraints equals to n!
2!(n−2)! then, the integer linear programming will be as follows:

Minimum z = x1 + x2 + · · ·+ xn

Subject to:

for (i = 1; i = n; i+ +) do

for (j = 1; j = n; j + +) do

| di1 − dj1 | x1+ | di2 − dj2 | x2+ | di3 − dj3 | x3 > 0

end

end

where xi ∈ {0, 1}.
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Example 4.1 From the above formulation, we have the following mathematical model for

the cycle graph C3 with three vertices. min z = x1 + x2 + x3 subject to 0x1 + x2 + x3 > 0,

x1 + 0x2 + x3 > 0, x1 + x2 + 0x3 > 0 and x1, x2, x3 ∈ {0, 1}. When we solve the above

mathematical model, we obtain the objective function z = 2 so the metric dimension for C3 is

2.

§5. Numerical Experiments

A connected graph which consists of k- blocks (triangles) and the block-cut-point graph is a

path is called k-triangular snake (or ∆k-snake) [12]. A connected graph in which the k blocks

are isomor1phic to the cycle Cn and the block-cutpoint graph is a path is denoted by kCn-

snake [13]. The ladder graph Ln is the Cartesian product of P 1 and Pn is the path graph

on n nodes. We describe our numerical experiments and present the computational results,

which demonstrate the efficiency of the proposed algorithm on a set of test problems (path,

cycle, ladder and ∆k-snake). Table 1 describes the computing environment. MATLAB solver

was used to solve the mathematical model.

Table 1. Description of the computing environment

CPU Intel (R) Core (TM) i3-3217U CPU@ 1.80 GHz

RAM Size 4 GB RAM

MATLAB version R2018a (9.4.0.813654)

Table 2 and Figure 6 show that the LINGO solver outperforms the proposed exponential

Algorithm 1, with respect to CPU time, for determining the metric dimension for the cycle

and path graphs. The LINGO solver can solve the problem for graphs with large sizes in a

reasonable time. The proposed exponential Algorithm 1 can find the metric dimension for a

given graph but in a non-reasonable time. However, the LINGO solver is not guaranteed to

obtain the exact metric dimension for general arbitrary graph so it is an approximate algorithm.

Figure 7. A comparison between the proposed algorithm and LINGO solver for finding the

metric dimension for cycle and path graphs
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Table 2. A comparison between the proposed algorithm and LINGO solver for finding the

metric dimension for cycle and path graphs

Cycle Path

d md LINGO CPU Algorithm 1 CPU d md LINGO CPU Algorithm1 CPU

1 − − − 0 1 0.00102 0.00173

2 − − − 1 1 0.00103 0.00436

3 1 2 0.03165 0.0060 2 1 0.02167 0.00573

4 2 2 0.03816 0.00602 3 1 0.02818 0.00584

5 2 2 0.04210 0.00621 4 1 0.03212 0.00781

6 3 2 0.04324 0.00817 5 1 0.03326 0.00861

7 3 2 0.04405 0.01283 6 1 0.03408 0.01692

8 4 2 0.04956 0.02309 7 1 0.03959 0.02898

9 4 2 0.04966 0.04872 8 1 0.04844 0.05044

10 5 2 0.04977 0.11682 9 1 0.04975 0.12025

11 5 2 0.04979 0.27877 10 1 0.04979 0.27940

12 6 2 0.04985 0.76805 11 1 0.04985 0.66518

13 6 2 0.04999 2.01020 12 1 0.04996 1.55260

14 7 2 0.05397 3.69079 13 1 0.05386 3.64734

15 7 2 0.05429 8.48939 14 1 0.05438 8.45053

16 8 2 0.05756 18.02579 15 1 0.05764 20.24835

17 8 2 0.05981 44.24297 16 1 0.05993 45.47590

18 9 2 0.06087 108.54759 17 1 0.06096 102.98411

19 9 2 0.06445 241.59339 18 1 0.06455 251.55695

20 10 2 0.06762 511.26855 19 1 0.06776 569.33483

Figure 8. A comparison between the proposed algorithm and LINGO solver for finding the

metric dimension for ∆k-snakes and ladder graphs
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It is clear that the curve for the LINGO solver is not visible in Figure 7, Figure 8 and

Figure 9 because it runs essentially along on the x-axis. Table 3 and Figure 8 show that the

LINGO solver outperforms the proposed algorithm, with respect to CPU time, for finding the

metric dimension for the ∆k-snake and ladder graphs.

Table 3. A comparison between the proposed algorithm and LINGO solver for finding the

metric dimension for ∆k-snakes and ladder graphs

∆k-snakes graph Ladder graph

k n d md LINGO CPU Algorithm1 CPU k n d md LINGO CPU Algorithm1 CPU

1 3 1 2 0.05337 0.00674 1 4 2 2 00.2791 0.00930

2 5 2 2 0.05624 0.00718 2 6 3 2 0.03037 0.01330

3 7 3 2 0.05803 0.01141 3 8 4 2 0.03301 0.02808

4 9 4 2 0.05951 0.03922 4 10 5 2 0.03336 0.11058

5 11 5 2 0.06009 0.20711 5 12 6 2 0.03389 0.62880

6 13 6 2 0.06476 1.19454 6 14 7 2 0.03431 3.71727

7 15 7 2 0.06445 6.00546 7 16 8 2 0.03594 19.96398

8 17 8 2 0.06501 31.78448 8 18 9 2 0.04105 107.23148

9 19 9 2 0.06679 167.52252 9 20 10 2 0.04293 651.14236

10 21 10 2 0.07332 994.01483 10 22 11 2 0.05581 6233.951601

Table 4 and Figure 9 show that the comparison between the proposed exponential Algo-

rithm 1 and the LINGO solver for determining the metric dimension for complete graphs with

a metric dimension larger than 2. The LINGO solver outperforms the proposed exponential

Algorithm 1 in terms of the CPU time. There is no guarantee of the superiority of the LINGO

solver in determining the exact metric dimension for a general arbitrary graph. The proposed

exponential Algorithm 1 has this guarantee for a given graph.

Figure 9: A comparison between the proposed algorithm and LINGO solver for finding the

metric dimension for ∆k-snakes and ladder graphs
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Table 4. Comparison between the proposed algorithm and LINGO solver for finding the

metric dimension for complete graphs.

complete

n d md LINGO CPU Algorithm1 CPU

1 0 1 0.00101 0.001000

2 1 1 0.00102 0.004620

3 1 2 0.02165 0.004850

4 1 3 0.02815 0.006700

5 1 4 0.03210 0.009000

6 1 5 0.03320 0.016920

7 1 6 0.03401 0.029990

8 1 7 0.03952 0.050440

9 1 8 0.04820 0.120250

10 1 9 0.04943 0.279400

11 1 10 0.04968 0.665180

12 1 11 0.04992 1.552600

13 1 12 0.04998 3.140139

14 1 13 0.05385 3.647340

15 1 14 0.05447 3.819237

16 1 15 0.05782 5.596174

17 1 16 0.05905 10.697527

18 1 17 0.06079 15.722732

19 1 18 0.06444 17.793874

20 1 19 0.06782 67.070074

§6. Conclusion

We determined the metric dimension of new classes of networks with polynomial algorithms.

In particular, we proved that the metric dimension of the triangular snake graph. ∆k − snake,
the ladder graph Ln, Bk, the k-home chain graph Hk and the k-kite chain graph Kk equals

2. We proposed an exponential algorithm for finding the metric dimension of a given graph.

We also introduced the results of computer calculations that determined the metric dimension

of various classes of networks by using an approximate algorithm, namely, integer linear pro-

gramming. Finally, a comparative analysis between the approximate algorithm (the LINGO

solver) and the proposed exponential algorithm showed that the LINGO solver outperforms the

proposed algorithm for very large graphs. In future work, we will apply variant integer linear

programming models [23-24] on the variant networks [25-26].
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Abstract: A graph is k-degenerate if its vertices can be successively deleted so that when

deleted, they have degree at most k. A k-tree is a graph that can be formed by starting with

Kk+1 and iterating the operation of making a new vertex adjacent to all the vertices of a

k-clique of the existing graph. A structural characterization of maximal 2-degenerate graphs

with diameter 2, containing 45 distinct infinite classes of graphs, is proven. A forbidden

subgraph characterization of k-trees with diameter 2 is proven.
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AMS(2010): 05C25.

§1. Introduction

In this paper, we work toward a characterization of the maximal k-degenerate graphs with

diameter 2.

Definition 1.1 Let k be a positive integer. A graph is k-degenerate if its vertices can be

successively deleted so that when deleted, they have degree at most k. A graph is maximal

k-degenerate if no edges can be added without violating this condition.

A k-tree is a graph that can be formed by starting with Kk+1 and iterating the operation of

making a new vertex adjacent to all the vertices of a k-clique of the existing graph.

A k-leaf is a degree k vertex of a maximal k-degenerate graph.

Lick and White introduced k-degenerate graphs in 1970 [13], and their properties have

been studied by many authors [2, 7, 8, 9, 10, 11, 12, 14, 16, 19]. For n ≥ k + 1, a maximal

k-degenerate graph has at least one k-leaf, and a k-tree has at least 2.

The three maximal 2-degenerate graphs of order 5 are shown below [3]. The two on the

left are 2-trees.

K2 +K3 P4 +K1 W−5

1Received February 6, 2021, Accepted June 10, 2021.
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Undefined notation and terminology will generally follow [3]. In particular, the join of

graphs G and H is denoted G+H, and the distance between vertices u and v is d (u, v). The

eccentricity eG (v) of a vertex v is the maximum distance between v and any other vertex of

G. If G is a graph, the square G2 is formed by adding all edges between pairs of vertices with

distance 2 in G.

We solve two special cases of the problem of characterizing the maximal k-degenerate

graphs with diameter 2. One restricts the problem to maximal 2-degenerate graphs, the other

restricts it to k-trees (which are all maximal k-degenerate). The first provides a structural

characterization, and the latter provides a forbidden subgraph characterization.

This work is inspired by a previous paper [6]. I coauthored with Zhongyuan Che on the

Wiener index of maximal k-degenerate graphs. We showed that the Wiener index is minimized

when these graphs have diameter 2. We also characterized 2-trees with diameter at most 2.

Proposition 1.2([6]) The following are equivalent for a 2-tree G:

(1) G has diameter at most 2;

(2) G does not contain P 2
6 ;

(3) G is T + K1 for any tree T , or any graph formed by adding any number of vertices

adjacent to pairs of vertices of K3.

§2. Maximal 2-Degenerate Graphs with Diameter 2

In this section, we provide a structural characterization of maximal 2-degenerate graphs with

diameter 2.

Definition 2.1 A dominating vertex of a graph is a vertex adjacent to all other vertices. A

fan is the graph Pn−1 +K1.

Lemma 2.2 If G is a maximal 2-degenerate graph with order n ≥ 3 containing a dominating

vertex, then G is a 2-tree that can be represented as T +K1 for some tree T . If G has exactly

two 2-leaves, then it is a fan.

Proof We use induction on n. When n = 3, G = K3 and the result holds. Let G be

a maximal 2-degenerate graph with order n containing dominating vertex u, and assume the

result holds for all graphs with order n− 1. Then G has a 2-leaf v, which is adjacent to u. Now

G− v is maximal 2-degenerate with order n− 1 [13], so it is a 2-tree that can be represented as

T +K1. Then the other neighbor of v is a neighbor of u, so G is a 2-tree that can be represented

as T +K1.

If G has exactly two 2-leaves, then deleting its dominating vertex produces a tree with

exactly two leaves, a path. Thus G is a fan. �

Definition 2.3 When constructing a maximal 2-degenerate graph, we duplicate a 2-leaf by

adding another 2-leaf with the same neighborhood. The inside graph H of a maximal 2-

degenerate graph G is formed by deleting all the 2-leaves. The stem set of G is the set of
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neighbors of 2-leaves.

Note that in a maximal 2-degenerate graph with diameter 2, any 2-leaf can be duplicated

arbitrarily many times. The new 2-leaf is distance two from its duplicate, and hence at most

two from every other vertex. Thus the result is a maximal 2-degenerate graph with diameter 2.

Lemma 2.4 In any maximal 2-degenerate graph with diameter 2 and order n > 3, either

(A) all 2-leaves have a single common neighbor, or

B) the stem set is S = {u, v, w}, and there are 2-leaves with neighborhoods {u, v}, {u,w},
and {v, w}.

Proof Any maximal 2-degenerate graph with diameter 2 has at least one 2-leaf. No 2-

leaves can have disjoint neighborhoods, since then they would be at least distance 3 apart.

If all 2-leaves have the same neighborhood, the result follows. If two 2-leaves have distinct

neighborhoods, we may call them {a, b} and {a, c}. Any other 2-leaf must have neighborhood

{b, c} or {a, x} for some x. �

Theorem 2.5 Let G be a maximal 2-degenerate graph with diameter 2. Then G is a 2-tree

that can be represented as T + K1 for some tree T , or the inside graph of G is one of the 44

possibilities shown below. (Vertices labeled x may be duplicated arbitrarily many times.) There

must be at least one 2-leaf of G neighboring any pair of black vertices or pair of black and gray

vertices, and there may be at least one 2-leaf of G neighboring any pair of black and lightgray

vertices.

x
x

x
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The proof of this theorem has many cases. We use Case A.2.1 to mean case A, Subcase

2, Subsubcase 1, and similarly for the other cases. Figures are referenced in parentheses, with

labels beginning with their main case (A or B). We say an inside graph is valid if it is the inside

graph of a maximal 2-degenerate graph with diameter 2.

Proof Let G be a maximal 2-degenerate graph with diameter 2 with inside graph H. By

Lemma 2.4, there are two possibilities for the positions of the 2-leaves.

Case A. All 2-leaves of G have a single common neighbor u.

Case A.1 If u is a dominating vertex of H, it does the same for G, so by Lemma 2.2, G

is a 2-tree that can be represented as T +K1 for some tree T .

Case A.2 If u has eccentricity 2 in H, let v1, ... vj be distance 1 from u, w1, · · · , wk
be distance 2 from u. Now no 2-leaf of H has neighborhood {u, vi} since a 2-leaf of G that

neighbors it and u is more than 2 from w1.

Case A.2.1 If w1 is a 2-leaf of H, there is a 2-leaf of G that neighbors it and u. Then w1

neighbors all other wi, and since w1 neighbors some vi, k ≤ 2. If k = 1, then u is a dominating

vertex of H − w1. By Lemma 2.2, H − w1 is a 2-tree. Now its 2-leaves are not 2-leaves of H,
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aside from possibly u. Then w1 is adjacent to all (two) of them, and H − w1 is a fan with at

most five vertices (A1, A2, A3).

Since all 2-leaves of G have a single common neighbor u, it is colored black (uniquely, in

Case A). Any 2-leaf of H must be black or gray, and any vertex distance 3 from u will be gray.

If {u, u′} is a dominating set of H, then u′ will be lightgray if not already colored. Since these

statuses are trivial to check, verification will be left to the reader for the other figures.

A1 A2 A3

If k = 2, there is no 2-leaf of H with neighborhood {u,w2}, since a 2-leaf of G neighboring it is

not within 2 of w1. Then w2 is a 2-leaf of H −w1. As before, H −w1 −w2 is a 2-tree, and w1

and w2 have two or three neighbors in it, including all its 2-leaves. Now T = H −w1 −w2 − u
is a tree with all vertices either neighbors of w2 or within 2 of w1.

If T a path, its length is at most 5. If T = P2, there is one possibility (A4). If T = P3,

w1 may neighbor a leaf and w2 may or may not neighbor the nonleaf, or w1 may neighbor the

nonleaf (A5, A6, A7). If T = P4, w1 may neighbor a leaf or nonleaf (A8, A9). If T = P5, w1

must neighbor the middle vertex, and w2 neighbors the leaves (A10). If T has three leaves, w2

neighbors two, and w1 neighbors the third, so T = K1,3 (A11).

A4 A5 A6 A7

A8 A9 A10 A11

Case A.2.2 Suppose there is a 2-leaf v1 of H neighboring u and w1. Then there is a

2-leaf of G neighboring u and v1. Then there is no w2, but v1 may be duplicated arbitrarily

many times. Let K be the inside graph of H (delete v1 and all its duplicates). Then w1 is a

2-leaf of K. Then u is a dominating vertex of K −w1, so by Lemma 2.2, K −w1 is a fan. This

fan must have order 3, 4, or 5 (A12, A13, A14).

A12 A13 A14

Case A.2.3 If u is a 2-leaf of H and no wi is, j = 2. If both v1 and v2 are 2-leaves of
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H − u, then H − u− v1 − v2, has order at most 4, so it is K2 (A15), K3 (A16), or K4 − e. In

the latter case, there are two ways to attach v1 and v2 to K4 − e (A17, A18).

A15 A16 A17 A18

Assume v1 is a 2-leaf of H − u and v2 is not. If v1 ↔ v2, say w1 ↔ v1. Then v2 is adjacent to

all other w’s. If v2 ↔ w1, v2 is adjacent to all vertices, so by Lemma 2.2, H is a 2-tree, and

some wi is a 2-leaf, contrary to assumption. If v2 = w1, then w1 is a 2-leaf of H − u− v1. By

Lemma 2.2, H − u − v1 − w1 is a fan. Now some 2-leaf of G has neighborhood {u,wi}, so all

ws must be adjacent, and k = 3 (A19).

Assume v1 = v2. Since v1 is a 2-leaf of H − u, its neighbors are (say) w1 and w2. Now v2

is adjacent to all other w’s, and k > 2. Now some 2-leaf of G has either v2 or wi as a neighbor,

so one of these vertices neighbors all w’s (excluding itself). Then H − u− v1 has a dominating

vertex, so by Lemma 2.2, it is a fan with 2-leaves w1 and w2. If v2 is the dominating vertex,

the fan has order at most 5, due to v1. Order 5 duplicates A14, but order 4 yields a new case

(A20). If (say) w3 is the dominating vertex, the fan has order 5 or 6 (A21, A22).

A19 A20 A21 A22

Case A.3 If eH (u) > 2 and vertex y is at least 3 from u, then {u, y} is the neighborhood

of a 2-leaf a of G. If dH (u, y) ≥ 4, there is a vertex z with dH (u, z) = 2 and dH (a, z) > 2, so

this is impossible. Thus eH (u) = 3. Let v1, ... vj be distance 1 from u, w1, ... wk be distance

2 from u, and x1, ... xl be distance 3 from u. Note j, k ≥ 2 since H has no cut-vertex [13].

Now all vertices in the stem set other than u must be adjacent to each wi and xi (else a

2-leaf has eccentricity more than 2). No vi is in the stem set, since it cannot be adjacent to an

xi. Since K4 is not 2-degenerate, there are at most 3 stems excluding u, and l ≤ 2. No wi is

a 2-leaf of H, since if there were, it would be adjacent to a vi, and all wi and xi. Now x1 is a

2-leaf only if there is no x2, so H has at most two 2-leaves.

Case A.3.1 Assume u and x1 are 2-leaves of H. Then j = k = 2, and there is no x2.

Thus H has order 6, and H − u− x1 = K4 − e. There are three ways it can be arranged, but

the case where w1 = w2 combines into the case where v1 = v2. In the third case, H = P 2
6

(A23, A24).

A23 A24
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Case A.3.2 Assume u is the only 2-leaf of H, and l = 1 (there is no x2). Then at least

one of v1 and v2 are 2-leaves of H − u. If both are 2-leaves, then 3 ≤ k ≤ 4 since each wi is

adjacent to some vi. If k = 3, then H−u−v1−v2 = K4−e by Lemma 2.2. Then v1 and v2 have

one common neighbor, and there are two choices (A25, A26). If k = 4, then H − u− v1 − v2 is

P4 +K1 or K1,3 +K1 by Lemma 2.2. If it is P4 +K1, there are three choices for the adjacencies

between the v’s and w’s, two of which produce valid inside graphs (A27, A28). If it is K1,3 +K1,

some v and w have distance more than 2.

A25 A26 A27 A28

Assume only v1 is a 2-leaf of H − u. If its neighbors are v2 and (say) w1, at least one of which

are 2-leaves of H − u − v1. If v2 is a 2-leaf of H − u − v1, k = 3, and its neighbors are either

adjacent or not (A29, A30). If v2 is a not 2-leaf of H − u − v1, w1 is, with neighbors x1 and

v2 or (say) w2. If w1 ↔ v2, x1 and v2 are adjacent to all remaining w’s. Thus w2 is the only

2-leaf of this graph, which is W−5 (A31). If w1 ↔ w2, x1 and v2 are adjacent to all w’s of

H − u− v1 − w1. Thus w2 is the only 2-leaf of this graph, which is W−5 (A32).

A29 A30 A31 A32

Suppose v1 is the only 2-leaf of H−u with neighbors (say) w1 and w2, and w1 is a 2-leaf of

H − u− v1. If w1 has neighbors x1 and v2, then H − u− v1 −w1 has order at least 4. Now w2

is adjacent to all other w’s (so v1 is distance 2 from them) and v2 is adjacent to all w’s, except

perhaps w2. Since x1 is adjacent to all w’s, H − u− v1 − w1 contains K3,k−2, so k ≤ 4. There

are two possibilities (A33, A34). If w1 has neighbors w3 and x1, then w3 neighbors v2 and x1.

As before, H − u − v1 − w1 − w3 contains K3,k−3, so k ≤ 5. There are two possibilities (A35,

A36).

A33 A34 A35 A36

Case A.3.3 Assume u is the only 2-leaf of H, and l = 2. Then 2 ≤ k ≤ 4. Now one

or both of v1 and v2 are 2-leaves of H − u. If k = 2, there are two cases, both leading to

valid graphs (A37, A38). If k = 3, there is one way to make both v1 and v2 2-leaves of H − u.

However, some v and w will have distance more than 2, so this is not to a valid graph. If only

v1 is a 2-leaf this leads to a valid graph (A39). If k = 4, there is one way to connect each w to

a v, but this does not lead to a valid graph.
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A37 A38 A39

Case A.3.4 Assume u is not a 2-leaf. Then x1 is the only 2-leaf of H, so there is no x2.

Then essentially the same argument as in Case A.3.2 repeats, with u and x1 switching roles,

and the same graphs are found.

Case B. The stem set is S = {u, v, w}, and there are 2-leaves with neighborhoods {u, v},
{u,w}, and {v, w}. Thus u, v, and w will be colored black.

Each 2-leaf of the inside graph H is in S, so H has at most three 2-leaves.

Case B.1 If H has three 2-leaves, it may be K3 (B1). If not, it has order at least 4, so

none of the 2-leaves of H are neighbors. Then each 2-leaf of G has distance more than 2 from

a 2-leaf of H, which is impossible.

Case B.2 If H has two 2-leaves, the third vertex in S must be in both of their neighbor-

hoods. Thus H has order at most 5. Thus H is K4 − e or P4 +K1 (B2, B3).

Case B.3 If H has one 2-leaf v, then u must be one of its neighbors. If u is a 2-leaf of

H − v, H has order 5, so it is W−5 . There are two distinct choices for which vertex is w (B4,

B5). If u is not a 2-leaf of H − v, v has another neighbor, x, that is. Then u is adjacent to

every vertex of H − v − x. If u is adjacent to x, then by Lemma 2.2, H is a 2-tree, so it has at

least two 2-leaves, a contradiction. If u is not adjacent to x, then by Lemma 2.2, H − v − x is

a 2-tree.

Now x is adjacent to all 2-leaves of H − v − x, so H − v − x is a fan. Now w must be one

of the 2-leaves of H − v − x , but it cannot neighbor all vertices of the fan unless the fan is K3

and H = W−5 , a previous case.

B1 B2 B3 B4 B5

This completes the proof. �

A structural characterization of maximal 2-degenerate graphs with diameter 2 allows us to

evaluate or bound parameters on this class, which would otherwise be difficult. Sharp bounds

have been proved for the maximum degree of maximal planar graphs with diameter 2 [18, 20].

We state sharp bounds on the maximum degree ∆ of maximal 2-degenerate graph with diameter

2. A maximal 2-degenerate graph with ∆ = n − 1 must have diameter at most 2. A maximal

2-degenerate graph with ∆ = n − 2 need not have diameter at most 2 (for example, add one

vertex to a fan with at least 5 vertices). Proposition 1.2 implies 2-trees with diameter 2 have

∆ ≥ 2
3n, and this bound is sharp.
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Corollary 2.6 A maximal 2-degenerate graph G with order n and diameter at most 2 has

∆ (G) ≥



n− 1 1 ≤ n ≤ 4

3 n = 5

4 6 ≤ n ≤ 8

n− 5 9 ≤ n ≤ 11

n− 6 12 ≤ n ≤ 16⌈
2
3 (n− 1)

⌉
n ≥ 16

,

and this bound is sharp for all n.

Proof For 1 ≤ n ≤ 4, there is only one maximal 2-degenerate graph, which has a dominating

vertex. For n = 5, there are three such graphs, one (W−5 ) of which has no dominating vertex.

The fact that maximal 2-degenerate graphs have size m = 2n−3 and minimum degree 2 implies

∆ ≥ 4 for n ≥ 6. For 6 ≤ n ≤ 8, this is attained by adding 2-leaves to A4 and A23.

Let G be a graph found under Case A, and H its inside graph. Then H has a stem that

is adjacent to all 2-leaves of G with at most 5 vertices not adjacent to it, and only A39 attains

this. Adding the 2-leaves of G to A39 as evenly as possible produces vertices with degree n− 6

and n− 4−
⌊
n−8

2

⌋
. Thus ∆ ≥ n− 6 for A39 when n ≥ 12. Otherwise, ∆ ≥ n− 5 for graphs in

Case A, and this is attained by graphs constructed from A37 when n ≥ 9.

Let G be a graph found under Case B, and H its inside graph with stem set {u, v, w}.
Consider summing the degrees of u, v, and w. There are n − 3 other vertices, each of which

is adjacent to at least two of u, v, and w. The graph induced by u, v, and w has at least two

edges. Thus 2n − 2 = 2 (n− 3) + 4 ≤ d (u) + d (v) + d (w) ≤ 3∆, so ∆ ≥
⌈

2
3 (n− 1)

⌉
. This is

attained by graphs constructed from B3. For n ≥ 16,
⌈

2
3 (n− 1)

⌉
≤ n − 6, so the bound is as

stated. �

We have seen that some maximal 2-degenerate graphs with diameter 3 are contained in a

maximal 2-degenerate graph with diameter 2 (graphs A23-A39 above). The smallest maximal

2-degenerate graphs not contained in a maximal 2-degenerate graph with diameter 2 have order

7. They are all those with order 7 and diameter 3, excluding those listed in Theorem 2.5 (A25,

A26, A29-A31, A33, A37, A38).

Proposition 2.7 Let G be a maximal 2-degenerate graph. Then G is contained in a maximal

2-degenerate graph with diameter at most 3.

Proof If G has diameter at most 3, we are done. If not, consider a vertex v with maximum

eccentricity. Let S be the set of all vertices with distance more than 2 from v. Add 2-leaves

adjacent to v and each vertex in S, and call the set vertices added S′. Now the distance between

v and any other vertex is at most 2. Vertices in S′ are all distance 2 from each other. A vertex

in S′ and a vertex in G have distance at most 3, since there is now a path through v. Thus

no new pairs with distance more than 3 are created. This process can be repeated with other

vertices until a graph is constructed that contains G and has diameter at most 3. �
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§3. Diameter 2 k-Trees

In this section, we prove a forbidden subgraph characterization of k-trees with diameter 2.

Definition 3.1 A k-path graph G is an alternating sequence of distinct k- and k + 1-cliques

e0, t1, e1, t2, · · · , tp, ep, starting and ending with a k-clique and such that ti contains exactly two

k-cliques ei−1 and ei.

Note that k-paths are also known a linear k-trees [1]. They are closely related to pathwidth

[17]; in particular, they are the maximal graphs with proper pathwidth k. I have have further

examined k-paths in two forthcoming papers [4, 5]. There is a simple characterization of k-

paths.

Theorem 3.2([15]) Let G be a k-tree with n > k+ 1 vertices. Then G is a k-path graph if and

only if G has exactly two k-leaves.

A k-path with a dominating vertex has nice structure.

Lemma 3.3 A k-path has diameter at most 2 if and only if it has a dominating vertex. When

k ≥ 2, a k-path with a dominating vertex can be represented as P +K1, where P is a k−1-path.

Proof Every k-path with order n ≤ k + 2 has diameter at most 2 and a dominating

vertex. Consider constructing the k-path from Kk + K2, which has k-leaves u and v1, and

N (u) = S1 = N (v1). Iteratively add vertex vi with neighborhood Si, so that Si replaces one

vertex of Si−1 with vi−1. As long as S1 and Si contain a common vertex, the graph has diameter

2 and a dominating vertex. Once S1 and Si do not contain a common vertex, the graph has

diameter more than 2 and no dominating vertex.

For the second claim, we use induction on order n. When n = k, G = Kk and the result

holds. Let G be a k-path with order n > k containing a dominating vertex u, and assume the

result holds for all graphs with order n−1. Then G has a k-leaf v, which is adjacent to u. Now

G − v is a k-path with a dominating vertex, so it can be represented as P ′ + K1, where P ′ is

a k − 1-path. Then the other neighbors of v induce a clique in P ′, so G can be represented as

P +K1. �

Note for k ≥ 2, a k-tree with diameter 2 need not have a dominating vertex.

Adding a k-leaf to a k-tree cannot change any existing distances. Thus when constructing

a k-tree, the diameter can increase, but it cannot decrease, as it can in a maximal k-degenerate

graph.

Definition 3.4 A k-tree is minimal with respect to diameter 3 if deleting any k-leaf results in

a k-tree with diameter 2.

We can characterize these graphs. A tree is minimal with respect to diameter 3 if and only

if it is P4. We have seen in Proposition 1.2 that a 2-tree is minimal with respect to diameter 3

if and only if it is P 2
6 . In general, P k2k+2 is the smallest k-tree with diameter 3, but for k ≥ 3 it
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is not the only one.

Algorithm 3.5 Let P be a k − 2-path, k ≥ 3, of order n − 4 with k-leaves w and x. Join

dominating vertices y and z to P , forming P +K2. Add u with neighborhood NP (w)∪{w, y},
and v with neighborhood NP (x) ∪ {x, z}. Let Gk be the class of all graphs formed this way.

P
w x

y

z

u

v

Theorem 3.6 A graph G is a k-tree minimal with respect to diameter 3 if and only if G ∈ Gk.

Proof (⇐) Let G be a graph in Gk constructed using the algorithm. Then G is a k-tree,

d (u, v) = 3, and u and v are the only pair with distance more than 2.

(⇒) Let G be as stated. A k-tree with diameter 3 must contain a pair of vertices distance

3 apart. Thus in a minimal k-tree with diameter 3, the vertices at distance 3 must be k-leaves,

and no other vertices are k-leaves. Thus G is a k-path with leaves (say) u and v. Since G is

minimal, G− u has diameter 2. By Lemma 3.3, it has a dominating vertex y, so G− u− y is a

k − 1-path. Similarly, G − v has a dominating vertex z. Thus G − {u, v, y, z} is a k − 2-path.

Then u and v must each neighbor one of y and z, and one of the k-leaves of the k − 2-path.

Thus G can be constructed using the algorithm, so G ∈ Gk. �

Equivalently, a k-tree has diameter at most 2 if and only if it does not contain any graph

in Gk. When k = 3 and n ≥ 8, the algorithm produces a unique 3-tree of order n minimal with

respect to diameter 3 (shown below for n = 8).
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§1. Introduction

Throughout this paper, all graphs we considered are simple and connected. For a vertex v ∈
V (G), deg(v) denotes the degree of v. For vertices u, v ∈ V (G), the distance d(u, v) is defined

as the length of the shortest path between u and v in G. The eccentricity ζ(v) of a vertex v is

the maximum among the distances from v to all the remaining vertices. The total eccentricity

of the graph G, denoted by ζ(G) is defined as the sum of eccentricities of all the vertices of the

graph G [3]. That is,

ζ(G) =
∑

v∈V (G)

ecc(v).

In 1984, Narumi-Katayama [7] proposed a definition of a simple topological index which is

defined as

NK(G) =
∏

v∈V (G)

deg(v).

On this graph invariant, several works [5,6,8-10] are reported and the name “Narumi-Katayama

index” is used.

In [8], I. Gutman et al. considered the problem of extremal Narumi-Katayama index

and offered a few results filling the gap. For graphs without isolated vertices, I. Gutman et
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al. [8] presented the minimal, second-minimal and third-minimal (maximal, second-maximal

and third-maximal, resp.) NK-values for extremal graphs. Moreover, the maximal (second-

maximal) Narumi-Katayama index of n-vertex tree (unicyclic graph) is determined [8] and the

maximal Narumi-Katayama index of n-vertex bicyclic graphs is given. For connected n-vertex

graphs, the minimal and second minimal Narumi-Katayama index are showed [8]. Consequently,

the second-minimal Narumi-Katayama index among n-vertex trees and the minimal Narumi-

Katayama index among n-vertex unicyclic graphs are presented [8].

KM. Kathiresan and S. Arockiaraj introduced some generalization of complementary prism-

s and studied the Wiener index of those generalized complementary prisms [9].

Let G and H be any two graphs on p1 and p2 vertices, respectively and let R and S be

subsets of V (G) = {u1, u2, · · · , up1} and V (H) = {v1, v2, · · · , vp2} respectively. The comple-

mentary product G(R)�H(S) has the vertex set {(ui, vj) : 1 ≤ i ≤ p1, 1 ≤ j ≤ p2} and (ui, vj)

and (uh, vk) are adjacent in G(R)�H(S) satisfying

(i) if i = h, ui ∈ R and vjvk ∈ E(H), or if i = h, ui /∈ R and vjvk /∈ E(H) or

(ii) if j = k, vj ∈ S and uiuh ∈ E(G), or if j = k, vj /∈ S and uiuh /∈ E(G).

In other words, G(R)�H(S) is the graph formed by replacing each vertex ui ∈ R of G

by a copy of H, each vertex ui /∈ R of G by a copy of H, each vertex vj ∈ S of H by a

copy of G and each vertex vj /∈ S of H by a copy of G. If R = V (G) (respectively, S =

V (H)), the complementary product can be written as G�H(S) (respectively, G(R)�H). The

complementary prism GG obtained from G is G�K2(S) with |S| = 1. That is, GG has a copy

of G and a copy of G with a matching between the corresponding vertices.

In GG, we have an edge vv for each vertex v in G. The authors consider this edge as K2 or

K1,1 or P2. By taking m copies of G and n copies of G, they generalize the complementary prism

as a graph G�H(S), where H = Km+n (or Km,n) and S is a subset of V (H) having m vertices

and H = C2m (or P2m) whose vertex set is {v1, v2, · · · , v2m} and S = {v1, v3, · · · , v2m−1}.

In [1,2], the eccentric connective index and first and second Zagreb indices have been bound

for the generalized complementary prisms.

Motivated by these works, the total eccentricity and the bounds for Narumi-Katayama

index for the generalized complementary prisms of graphs have been found in this paper.

§2. Main Results

Proposition 2.1 Let G be any graph with k number of full degree vertices and k′ number of

isolated vertices. Then for any m,n > 1,

ζ(Gm+n) = 3p(m+ n)−mk − nk′.
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Proof For any vertex v ∈ V (Gm+n),

ecc(v) =

 2, if eccG(v) = 1

3, otherwise

Hence,

ζ(Gm+n) =
∑

v∈V (Gm+n)

ecc(v)

=

m∑
i=1

∑
v∈ith copy of G

ecc(v) +

n∑
i=1

∑
v∈ith copy of G

ecc(v)

= 3mp−mk + 3np− nk′

= 3p(m+ n)−mk − nk′. �

Proposition 2.2 For any m,n > 1, ζ(Gm,n) = 3mn.

Proof For any vertex v ∈ V (Gm,n), its eccentricity is 3. Hence

ζ(Gm,n) =
∑

v∈V (Gm,n)

ecc(v) = 3mn. �

Proposition 2.3 For any m ≥ 2, ζ(Gcm,m) = 2mp(m+ 1).

Proof In Gcm,m, ecc(v) = m+ 1, for all v ∈ V (Gcm,m). Hence,

ζ(Gcm,m) =
∑

v∈V (Gcm,m)

ecc(v) = 2mp(m+ 1). �

Proposition 2.4 For any m > 1, ζ(GPm,m) = mp(3m+ 1).

Proof Let vi,j , vi,j , 1 ≤ j ≤ p be the vertices of the ith copy of G and G respectively in

GPm,m for 1 ≤ i ≤ m. Notice that for 1 ≤ i ≤
⌈
m
2

⌉
and 1 ≤ j ≤ p, ecc(vi,j) = 2m + 2 − 2i; for

1 ≤ i ≤
⌊
m
2

⌋
and 1 ≤ j ≤ p, ecc(vi,j) = 2m + 1 − 2i; for

⌈
m
2

⌉
+ 1 ≤ i ≤ m and 1 ≤ j ≤ p,

ecc(vi,j) = ecc(vm+1−i,j); for
⌊
m
2

⌋
+ 1 ≤ i ≤ m and 1 ≤ j ≤ p, ecc(vi,j) = ecc(vm+1−i,j).

From these,

ζ(GPm,m) =
∑

v∈V (GPm,m)

ecc(v)

= 2p[(m+ 1) + (m+ 2) + · · ·+ 2m]

= 2p[m2 + 1 + 2 + · · ·+m]

= 2p

[
m2 +

m(m+ 1)

2

]
= mp[3m+ 1]. �

Proposition 2.5 If G,G ∈ F22, then ζ(GG) = 4p.
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Proof If G and G are members of F22, then any two vertices with in G or with in G are

with in distance 2. If u and v are at distance 2 in G, then u v, uu ∈ E(GG) and hence u and v

are at a distance 2 in GG. Hence ecc(v) = 2 for all v ∈ V (GG). Therefore,

ζ(GG) =
∑

v∈V (GG)

ecc(v) = 4p. �

Proposition 2.6 If G ∈ F11, then ζ(GG) = 5p.

Proof If G ∈ F11, then G is a complete graph and G is a totally disconnected graph. So

GG is simply Kp ◦K1.

In GG, the vertices on the copy of G are of eccentricity 2 and vertices on the copy of G

are of eccentricity 3. Hence ζ(GG) = 5p. �

Proposition 2.7 If G ∈ F12, then ζ(GG) = 5p.

Proof Let u be the full degree vertex in G. If v is any vertex other than u in G, then

d(u, v) = 1 and d(u, v) = 2. So ecc(u) = 2 in GG. As u is an isolated vertex in G, by the edges

uu, uv and vv, any vertex v in the copy of G will be reached at a distance 3 from u and any

vertex v in the copy of G will be reached at a distance 2. So ecc(v) = 3 in GG for all v in the

copy of G.

Let v be a vertex of eccentricity 2 in G. Whenever x is a vertex of distance 2 from v in G,

the edges xx and x v give that d(v, x) = 2. Whenever x is an adjacent vertex to v, the edges

vx and xx give again that d(v, x) = 2. Hence ecc(v) = 2 in GG. So for any vertex v ∈ V (GG),

ecc(v) =

 2, if v is in the copy of G

3, if v is in the copy of G.

Hence,

ζ(GG) =
∑

v∈V (GG)

ecc(v) = 2p+ 3p = 5p. �

Proposition 2.8 If G ∈ F23, then ζ(GG) = 5p.

Proof If v is a vertex of eccentricity 2 (or 3) in G, then v is also of eccentricity 2 (or 3) in

GG. But in G, the vertex v corresponding to v in G is of eccentricity 3 (or 2) and hence v is

also of eccentricity 3 (or 2) in GG. That is,

ecc(v) =

 2, if eccG(v) = 2 or eccG(v) = 3

3, if eccG(v) = 3 or eccG(v) = 3.

So exactly p number of vertices are of eccentricity 2 in GG and the remaining p vertices are of

eccentricity 3 in GG. Hence ζ(GG) = 5p. �

Proposition 2.9 If G ∈ F24 with k number of vertices of eccentricity 2, then ζ(GG) = 6p− k.
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Proof When G ∈ F24, G ∈ F22 and hence ecc(v) = 2 in GG whenever u and v are at

distance more than 2 in G, by the edges u u, u v, vv in GG, d(u, v) = 3 in GG. Also if u is a

vertex of eccentricity 2 in G, then it is also u is a vertex of eccentricity 2 in GG. Thus exactly

k number of vertices are of eccentricity 2 in GG and the remaining vertices are of eccentricity

3 in GG. Hence ζ(GG) = 2k + 3(2p− k) = 6p− k. �

Proposition 2.10 If G ∈ F3, then ζ(GG) = 5p.

Proof If G ∈ F3, then G ∈ F22 and hence ecc(v) = 2 in GG whenever v is in the copy of

G. Also since eccG(v) ≥ 3, ecc(v) = 3 in GG. Hence ζ(GG) = 5p. �

Proposition 2.11 For any positive integers m and n,

NK(Gm+n) ≥ [2(m+ n− 1)](m+n)p[NK(G)]
m
2 [NK(G)]

n
2 .

Proof In the graph Gm+n,

deg(u) =

 degG(u) +m+ n− 1, when u is in a copy of G

degG(u) +m+ n− 1, when u is in a copy of G.

We know that A.M. ≥ G.M. and a+ b ≥ 2
√
ab. Therefore

NK(Gm+n) =
∏

u∈V (Gm+n)

deg(u)

=
∏

u∈ copies of G

deg(u).
∏

u∈ copies of G

deg(u)

=

m∏
i=1

 ∏
u∈ ith copy of G

deg(u)

 .

n∏
i=1

 ∏
u∈ ith copy of G

deg(u)


=

 ∏
u∈V (G)

(deg(u) +m+ n− 1)

m  ∏
u∈V (G)

(m+ n− 1 + degG(u))

n

≥

 ∏
u∈V (G)

2
√
degG(u)(m+ n− 1)

m  ∏
u∈V (G)

2
√

(m+ n− 1)degG(u)

n

=
(
2
√
m+ n− 1

)mp ∏
u∈V (G)

degG(u)

m
2 (

2
√
m+ n− 1

)np ∏
u∈V (G)

degG(u)

n
2

=
[
2
√
m+ n− 1

](m+n)p
[NK(G)]

m
2 [NK(G)]

n
2 . �

Proposition 2.12 For any positive integers m and n,

NK(Gm,n) ≥ 2(m+n)p
(
n
m
2 m

n
2

)p
(NK(G))

m
2
(
NK(G)

)n
2 .
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Proof In the graph Gm,n,

deg(u) =

 degG(u) + n, when u is in a copy of G

degG(u) +m, when u is in a copy of G.

Therefore,

NK(Gm,n) =
∏

u∈V (Gm,n)

deg(u)

=
∏

u∈ copies of G

deg(u).
∏

u∈ copies of G

deg(u)

=

 m∏
i=1

∏
u∈ ith copy of G

deg(u)

 .
 n∏
i=1

∏
u∈ ith copy of G

deg(u)


=

 ∏
u∈V (G)

(degG(u) + n)

m .
 ∏
u∈V (G)

(degG(u) +m)

n

≥

 ∏
u∈V (G)

(2
√
degG(u)n)

m .
 ∏
u∈V (G)

(2
√
degG(u)m)

n

=
(
2
√
n
)mp  ∏

u∈V (G)

degG(u)

m
2 (

2
√
m
)np  ∏

u∈V (G)

deg(u)

n
2

= 2(m+n)p
(
n
m
2 m

n
2

)p
NK(G)

m
2 NK(G)

n
2 . �

Proposition 2.13 For any positive integers m ≥ 2,

NK(Gcm,m) ≥ 8mp[NK(G)NK(G)]
m
2 .

Proof In the graph Gcm,m,

deg(u) =

 degG(u) + 2, when u is in a copy of G

degG(u) + 2, when u is in a copy of G

Therefore,

NK(Gcm,m) =
∏

u∈V (Gcm,m)

deg(u) =
∏

u∈ copies of G

deg(u).
∏

u∈ copies of G

deg(u)

=

m∏
i=1

 ∏
u∈ ith copy of G

deg(u)

 . m∏
i=1

 ∏
u∈ıth copy of G

deg(u)


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=

 ∏
u∈V (G)

(degG(u) + 2)

m .
 ∏
u∈V (G)

(degG(u) + 2)

m

≥

 ∏
u∈V (G)

(2
√

2degG(u))

m .
 ∏
u∈V (G)

(2
√

2degG(u))

m

=
(

2
√

2
)mp  ∏

u∈V (G)

degG(u)

m
2 (

2
√

2
)mp  ∏

u∈V (G)

degG(u)

m
2

= 8mp[NK(G)NK(G)]
m
2 .

This completes the proof. �

Proposition 2.14 For any positive integers m ≥ 2,

NK(GPm,m) ≥ 2
5m
2 [NK(G)NK(G)]

m
2 .

Proof In the graph GPm,m,

deg(u) =


degG(u) + 1, when u is in the first copy of G

degG(u) + 2, when u is in the remaining copies of G

degG(u) + 1, when u is in the last copy of G

degG(u) + 2, when u is in the remaining copies of G

Therefore,

NK(GPm,m) =
∏

u∈V (GPm,m)

deg(u)

=
∏

u∈ copies of G

deg(u).
∏

u∈ copies of G

deg(u)

=

 m∏
i=1

∏
u∈ ith copy of G

deg(u)

 .

 m∏
i=1

∏
u∈ ith copy of G

deg(u)


=

 ∏
u∈ first copy of G

deg(u)

 m∏
i=1

∏
u∈ ith copy ofG

deg(u)


m−1∏

i=1

∏
u∈ith copy ofG

deg(u)

 ∏
u∈ mth copy of G

deg(u)


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=

 ∏
u∈ first copy ofG

(degG(u) + 1)

 m∏
i=2

∏
u∈V (G)

(degG(u) + 2)


m−1∏

i=1

∏
u∈V (G)

(degG(u) + 2)

 .

 ∏
u∈ mth copy ofG

(degG(u) + 1)


≥

 ∏
u∈V (G)

2
√
degG(u)

 ∏
u∈V (G)

2
√

2degG(u)

m−1

 ∏
u∈V (G)

2
√

2degG(u)

m−1 ∏
u∈V (G)

2
√
degG(u)


= 23m−1

∏
u∈V (G)

(degG(u))
1
2

∏
u∈V (G)

(degG(u))
m−1

2

∏
u∈V (G)

(degG(u))
m−1

2

∏
u∈V (G)

(degG(u))
1
2

= 23m−1

 ∏
u∈V (G)

deg(u)

m
2
 ∏
u∈V (G)

deg(u)

m
2

= 23m−1
[
NK(G)NK(G)

]m
2 . �
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