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Abstract: In this paper three electric fields are described via Darboux triad components

in Euclidean 3-space. Later variations of three cases of electric field with respect to Darboux

triad are studied. Finally Lorentz force equations are presented via electromagnetic magnetic

curves with respect to Darboux triad in Euclidean 3-space.
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§1. Introduction

The geometric phase is described as the angle of rotation a light wave travelling in optic. The

phenomenon of a geometric phase have many applications in condensed-matter physics, optics,

particle physics, gravity, cosmology, chemical physics and mathematics [1-6]. The geometric

phase is connected with parallel transport of the polarization along curved light [7-9].

Berry studied adiabatic phase and Pancharatnam’s phase for polarized light [10]. Recently

numerous authors presented the the electric field variation of along an optical fiber [11-14].

Balakrishnan et al. presented anholonomy density via Frenet triad in Euclidean 3-space

E3 [15]. Three geometric phases and parallel transports for numerous frames have been investi-

gated by Gürbüz in [16-20]. Balakrishnan introduced geometric phase for first class associated

with some solitons for Darboux triad in E3 [21]. New classes associated with the nonlinear

Schrödinger NLS equation for Darboux triad in E3 have been given in [22].

The electric polarization theory contains the geometric phase phenomenon [23]. Mukunda

and Simon showed that the unit electric vector field E is written via the principal normal vector

field N and the binormal vector field B of the Frenet triad {T,N,B} in Euclidean 3-space [24].

In this paper we express three electric fields via Darboux triad apparatus. Later evolutions of

three electric fields are studied via Darboux triad in E3. Eventually Lorentz force equations are

obtained via electromagnetic curves with respect to Darboux triad in E3.
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§2. Preliminaries

Let Γ1 be a curve on a connected surface S with the arc length σ in E3. Apart from Frenet

triad, at every point of curve, there is a Darboux triad {t,g,n}. t is the tangent vector, n

is the normal of surface and g = t× n. The spatial evolution of the Darboux triad {t,g,n} is

given by [25] 
tσ

gσ

nσ

 =


0 κ

(ς)
g κ

(ς)
n

−κ(ς)
g 0 τ

(ς)
g

−κ(ς)
n −τ (ς)

g 0




t

g

n

 (1)

κ
(ς)
g is the geodesic curvature, the normal curvature is κ

(ς)
n and τ

(ς)
g is the geodesic torsion of

the curve Γ1. The time evolution of the Darboux triad {t,g,n} is given by
tu

gu

nu

 =


0 κ

(o)
g κ

(o)
n

−κ(o)
g 0 τ

(o)
g

−κ(o)
n −τ (o)

g 0




t

g

n

 (2)

where u denotes time and tu = ∂t
∂u .

A magnetic field is a closed 2-form F in E3. The Lorentz force Φ of a magnetic background

(E3, 〈, 〉) is a (1,1) type skew-symmetric tensor and it is described as

F(x, y) = 〈Φx, y〉

x, y ∈ χ(E3). A smooth curve Γ in (E3, 〈, 〉) is described as a magnetic curve of the dynamical

system connected with the magnetic field F if its velocity vector field satisfies the following

differential equation Γσσ = Φ(Γσ). Divergence free vector fields and magnetic fields are one to

one correspondence, the Lorentz force Φ concerned with the magnetic field M [26], [27]

Φ(x) = M ∧ x.

§3. Geometric Phase for First Case of Electric Field with Darboux Triad in E3

Balakrishan introduced first frame {P1,P2,P
∗
2} and first transformation ξ of curve evolution

concerned with the NLS equation with respect to Darboux triad in E3 as following [21] :

P1 = t, P2 =
g + in√

2
ei

∫ σ τ(ς)
g dσ

′

, P∗2 =
g − in√

2
e−i

∫ σ τ(ς)
g dσ

′

(3)

ξ =
κg + iκn√

2
ei

∫ σ τ(ς)
g dσ

′

. (4)

The spatial evolution of the first frame {P1,P2,P
∗
2} is given by

P1σ = ξ∗P2 + ξP∗2, P2σ = −ξP1, P∗2σ = −ξ∗P1 (5)
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where ξ∗ is the conjugate of ξ. Also temporal evolution of {P1,P2,P
∗
2} is

P1u = tu = −λ∗P2 − λP∗2 (6)

P2u = λP1 + iIP2 (7)

where I(σ, u) is a real function. From P2uσ = P2σu, it can be obtained:

Iσ = iλξ∗ − iλ∗ξ. (8)

where

AD1dσdu = (τ (o)
gu − τ (ς)

gs )dσdu

is first anholonomy density measure for polarization plane of linearized light wave travelling

along optic fiber in E3 [21].

λ = − (r + iw)√
2

ei
∫
τ(ς)
g dσ

′

(9)

satisfies Eqs.(6), (7) and (8). The time evolution of the Darboux triad is given by

tu = ς
(o)
1 × t = rg + wn (10)

gu = ς
(o)
1 × g = −rt + τ (o)

g n (11)

nu = ς
(o)
1 × n = −wt− τ (o)

g g (12)

where ς
(o)
1 = (τ

(o)
g t+B1g+C1n), r = C1, w = −B1. Using Eq.(4) and Eq.(9), Iσ = κ

(ς)
n r−κ(ς)

g w.

The time evolution of Darboux triad for first class can be written by

tu = rg + wn (13)

gu = −rt + (

∫ σ1

τ (ς)
gu dσ

′
− I)n (14)

nu = −wt− (

∫ σ1

τ (ς)
gu dσ

′
− I)g (15)

and anholonomy density

AD1(σ, u) = −Iσ = −rκ(ς)
n + wκ(ς)

g

for first class. Total phase P for first class with respect to Darboux triad in Euclidean 3-space

is given by

P = −
∫ u2

u1

∫ σ1

σ0

Iσdσdu =

∫ u2

u1

∫ σ1

σ0

〈t, tσ × tu〉 dσdu

=

∫ u2

u1

∫ σ1

σ0

(−rκ(ς)
n + wκ(ς)

g )dσdu
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Also [22]

P1u = −iξ∗σP2 + iξσP
∗
2

P2u = −iξσP1 + IP2,

P∗2u = iξ∗σ − IP∗2, I =iξξ∗.

From P1uσ = P1σu and P2uσ = P2σu, the NLS equation system

ξu = iξσσ + i |ξ|2 ξ

ξ∗u = −iξσσ − i |ξ|2 ξ.

is obtained.

A optical fiber can be described by the curve Γ1(σ) on any surface with respect to Darboux

triad in E3. The change of the electric field E1 can be written by

E1σ = ϕ1t + ϕ2g + ϕ3n. (16)

Case 1. Assume that

〈E1, t〉 = 0. (17)

Using Eq.(16) and Eq.(17), it can be obtained

ϕ1 = −κg 〈E1,g〉 − κn 〈E1,n〉 . (18)

When no various loss mechanism along the optic fiber,

〈E1,E1〉 = const. (19)

Using Eq.(16) and taking derivative with respect to σ of Eq.(19), it can be derived

ϕ2 〈E1,g〉 = −ϕ3 〈E1,n〉 . (20)

Via Eq.(20), it can be obtained

ϕ2 = $ 〈E1,n〉 , ϕ3 = −〈E1,g〉 (21)

The evolution for the polarization of light wave travelling from the point Γ1(σ0) to the point

Γ1(σ1) along the Γ1 = Γ1(σ) curve with respect to Darboux triad is given by the evolution of

the electric field E1.

Consider 〈E1,g〉 6= 0, 〈E1,n〉 6= 0. Substituting Eqs.(18) and (21) in Eq.(16), the change

of the electric field E1 is written by

E1σ = (−κg 〈E1,g〉 − κn 〈E1,n〉)t+$ 〈E1,n〉g−$ 〈E1,g〉n (22)
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where $ is a parameter. Using Eq.(20) for $ = 0, Eq.(22) is rewritten by

E1σ = (−κg 〈E1,g〉 − κn 〈E1,n〉)t (23)

The Fermi-Walker derivative of the electric field E1 with respect to Darboux triad in E3 is

given by
DFWE1σ = E1σ − 〈t,E1〉 tσ + 〈tσ,E1〉 t. (24)

The electric field E1 is the Fermi-Walker parallel transport if and only if

DFWE1σ = 0. (25)

Using Eqs.(17), (24) and (25) it can be obtained

E1σ = 〈tσ,E1〉n. (26)

The electric field vector E1 with aid of the Darboux triad apparatus g and n is expressed

by

E1σ(σ) = Ω(σ)
(g + in)√

2
+ Ω∗(σ)

g − in√
2

. (27)

where E1E
∗
1 = 1 and |Ω(σ)|2 + |Ω∗(σ)|2 = 1,E∗1 is complex conjugate of E1.

P =

∫ σ1

τ (ς)
g dσ

′

is the change phase of the polarization light injected into this fiber with respect to Darboux

triad in E3.

Ω(σ) = ei
∫ σ1 τ(ς)

g dσ
′

Ω(σ0)

Ω∗(σ) = e
−i ∫ σ1 τ(ς)

g dσ
′

Ω∗(σ0)

with the polarization coefficients are

Ω(σ0) =

(
g + in√

2

)∗
E1(σ0)

Ω∗(σ0) =

(
g − in√

2

)∗
E1(σ0).

Also via P2, P
∗
2, Ω(σ0) and Ω∗(σ0), the electric field E1(σ) is expressed as

E1(σ) = P2Ω(σ0) + P∗2Ω∗(σ0) (28)

Respectively, taking derivative with respect to σ and the time u of Eq.(28), the spatial and
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temporal evolutions of the electric field E1 for Darboux triad are derived as following:

E1σ = P2σΩ(σ0) + P∗2σΩ∗(σ0)

E1u = P2uΩ(σ0) + P∗2uΩ∗(σ0).

From compatibility condition E1σu = E1uσ, the nonlinear Schrödinger NLS equation

system.

The Lorentz force equation Φ(t) of the electric field vector E1 is given by

Φ(t)E1 = E1σ = M(t) ×E1 (29)

and 〈
Φ(t)E1, t

〉
= −

〈
E1,Φ

(t)t
〉
,
〈

Φ(t)E1,g
〉

= −
〈
E1,Φ

(t)g
〉

(30)〈
Φ(t)E1,n

〉
= −

〈
E1,Φ

(t)n
〉
. (31)

The trajectory of travelling particle along the magnetic field M(t) with respect to Darboux

triad in E3 is described as electromagnetic trajectory. If DEM(t) curve follows the magnetic

trajectory, it is described as the Darboux electromagnetic curve in E3. With the help of Eqs.

(30), (31) the Lorentz force Φt equations in the Darboux force equations of the DEM(t) curve

of the Γ1 are given by 
Φ(t)(t)

Φ(t)(g)

Φ(t)(n)

 =


0 −κ(ς)

g −κ(ς)
n

κ
(ς)
g 0 −$

κ
(ς)
n $ 0




t

g

n

 (32)

DEM(t) curve of the Γ1 is a magnetic trajectory of the magnetic field M(t) divergence free

field iff M(t) is given by in the following

M(t) = −$t + κng−κgn

§4. Geometric Phase for Second Case of Electric Field with Darboux Triad in E3

Respectively, the second frame {Q1,Q2,Q
∗
2} and second transformation φ associated with the

NLS equation via Darboux triad is given by [22]

Q1 = g, (33)

Q2 =
t + in√

2
ei

∫ σ1 κ(ς)
n dσ

′

, Q∗2 =
t− in√

2
e−i

∫ σ1 κ(ς)
n dσ

′

(34)

φ =
(−κ(ς)

g + iτ
(ς)
g )√

2
e
i
∫σ κ(ς)n dσ

′

(35)
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Using Eqs.(33) and (34) the spatial evolution of the frame {Q1,Q2,Q
∗
2} is given by

Q1σ = φ∗Q2 + φQ∗2

Q2σ = −φQ1

Q∗2σ = −φ∗Q1

where φ∗ =
(−κ(ς)

g −iτ
(ς)
g )

√
2

e
−i

∫σ κ(ς)n dσ

.

Consider

Q1u = gu = a2Q2 + b2Q
∗
2 + c2Q1 (36)

Q2u = h2Q2 + f2Q
∗
2 + ϑQ1. (37)

From 〈Q1u,Q1〉 = 0⇒ c2 = 0, 〈Q1u,Q2〉 = b2, 〈Q2u,Q1〉 = ϑ⇒ b2 = −ϑ,
〈Q2u,Q2〉 = f2 = 0, 〈Q∗2u,Q2〉 = −h2 ⇒ h2 = −f∗2 and a2 = −ϑ∗.
Eqs.(36) and (37) are rewritten by

Q1u = gu = −ϑ∗Q2 − ϑQ∗2 (38)

Q2u = ϑQ1 + iJQ2 (39)

with J (σ, u) a real function. From Q2uσ = Q2σu the followings are obtained

φu = −ϑσ + iJ φ

Jσ = iϑφ∗ − iϑ∗φ. (40)

When t and n rotates around g with κ
(ς)
n (σ), a geometric phase P =

σ1∫
σ0

κ
(ς)
n (σ)dσ

′
arises

between t, n and corresponding nonrotating Darboux triad in E3.

When the linearized light wave travelling moves from u1 to u2 along the curve in optic fiber,

a geometric phase P =
u2∫
u1

κ
(o)
n (u)du arises between natural Darboux triad and nonrotating

Darboux triad in Euclidean 3-space. The rotation angles of polarization plane can be given by

P1 = κ(ς)
n (σ, u)∆σ + κ(o)

n (σ + ∆σ, u)∆u

P2 = κ(o)
n (σ, u)∆u+ κ(ς)

n (σ, u+ ∆u)∆σ

The phase difference are given by δP = P1 − P2 = AD2(σ, u)∆σ∆u.

AD2 = (κ
(ς)
nσ − κ(o)

nu) is second anholonomy density measure for polarization plane of linearized

light wave travelling along optic fiber for second case in E3. Also

ϑ = − (l + iw)√
2

ei
∫ σ1 κ(ς)

n dσ
′

(41)

satisfies Eqs.(39) and (40). The time evolution of Darboux triad for second class is given by
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[22]

tu = ς
(o)
2 × t =− lg + κ(o)

n n (42)

gu = ς
(o)
2 × g = lt + wn (43)

nu = ς
(o)
2 × n = −κ(o)

n t− wg (44)

where ς
(o)
2 = A2t− κ(ς)

n g + C2n, l = −C2, w = −A2.

Using Eqs.(35), (40) and (41) it can be obtained

Jσ = −(τ (ς)
g l + κ(ς)

g w). (45)

From Eqs.(34), (39), (42), (43) and (44), the time evolution of Darboux triad for second

class with Eq.(43) is given by

tu = lg + (

∫ σ1

κ(ς)
nudσ

′
− J )n

nu = −(

∫ σ1

κ(ς)
nudσ

′
− J )t− wg

and the anholonomy density AD2(σ, u) = −Jσ = (τ
(ς)
g l + κ

(ς)
g w) for second class. Total phase

P for second class with respect to Darboux triad in E3 is given by

P = −
∫ u2

u1

∫ σ1

σ0

Jσdσdu =

∫ u2

u1

∫ σ1

σ0

(τ (ς)
g l + κ(ς)

g w)dσdu

=

∫ u2

u1

∫ σ1

σ0

〈g,gσ × gu〉 dσdu.

The quantum geometric phase for second class of curve evolution with respect to Darboux

triad in E3 is obtained

P = i

∫ σ1

σ0

dσ
∂

∂σ

∫ u2

u1

〈Q2u,Q
∗
2〉 du.

Also [22]

Q1u = −iφ∗σQ2 + iφσQ
∗
2, Q2u = −iφσQ1 + JQ2,

Q∗2u = iφ∗σQ1 − JQ∗2, J =iφφ∗

From φ1uσ = φ1σu and φ2uσ = φ2σu, the NLS equation

φu = iφσσ + i | φ |2 φ

is obtained.

A optical fiber can be described by a curve Γ2(σ) with respect to Darboux triad in E3. The

direction of electric field E2 is given by the direction of the state of the linearly polarized light

wave injected to the fiber with respect to Darboux triad in E3. The change of the electric field
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E2 with respect to Darboux frame in E3 can be given by

E2σ = ζ1t + ζ2g + ζ3n. (46)

Case 2. Assume that

〈E2,g〉 = 0. (47)

Using Eqs. (46) and (47), it can be written by

ζ2 = −κg 〈E2, t〉 − τg 〈E2,n〉 (48)

Consider

〈E2,E2〉 = const. (49)

Taking derivative with respect to σ of Eq.(49), the followings are obtained

ζ1 〈E2, t〉 = −ζ3 〈E2,n〉 (50)

ζ1 = χ 〈E2,n〉 , ζ3 = −χ 〈E2, t〉 (51)

where χ is a parameter.

Using Eq.(20) and 〈E2, t〉 6= 0, 〈E2,n〉 6= 0. Substituting Eqs. (48) and (51) in (46), the

evolution of the electric field vector E2 with respect to Darboux triad is given by

E2σ = χ 〈E2,n〉 t+(−κg 〈E2, t〉 − τg 〈E2,n〉)g − χ 〈E2, t〉n (52)

Via Eq.(52) for χ = 0,

E2σ = (−κg 〈E2, t〉 − τg 〈E2,n〉)g (53)

The modified Fermi-Walker derivative for the electric field vector E2 with respect to Dar-

boux triad for second class is described by

DmFWE2σ = E2σ − 〈g,E2〉gσ + 〈gσ,E2〉g (54)

The electric field E2 is the modified Fermi-Walker parallel if and only if

DmFWE2σ = 0. (55)

Via Eqs.(47), (54) and (55), one obtains E2σ = 〈gσ,E2〉n.

The electric field vector E2 with aid of the Darboux triad apparatus t and n can be

expressed by

E2(σ) = Υ(σ)
(t + in)√

2
+ Υ∗(σ)

t− in√
2
. (56)

where E2E
∗
2 = 1 and |Υ(σ)|2 + |Υ∗(σ)|2 = 1.
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Here Υ(σ) and Υ∗(σ) are

Υ(σ) = ei
∫ σ1 κ(ς)

n dσ
′

Υ(σ0), Υ∗(σ) = e
−i

∫σ1 κ(ς)n dσ
′

Υ∗(σ0) (57)

and the polarization coefficients are

Υ(σ0) =

(
t + in√

2

)∗
E2(σ0), Υ∗(σ0) =

(
t− in√

2

)∗
E2(σ0) (58)

Via Eqs.(34) and (57), Eq.(56) is re-expressed by

E2(σ) = Q2Υ(σ0) + Q∗2Υ∗(σ0). (59)

Respectively, the spatial and temporal evolutions of the electric field E2 for Darboux triad

are derived as following:

E2σ = Q2σΥ(σ0) + Q∗2σΥ∗(σ0)

E2u = Q2uΥ(σ0) + Q∗2uΥ∗(σ0).

From compatibility condition E2σu = E2uσ, the NLS equation system connected with the

electric field E2 is derived.

Geometric phase for polarized light injected into a fiber with respect to Darboux triad for

second case in E3 is given by

P =

∫ σ1

κ(ς)
n dσ

′
.

Consider the Lorentz force equation Φ(g) for second case of the electric field vector

Φ(g)E2 = E2σ = M(g) ×E2 (60)

and 〈
Φ(g)E2, t

〉
= −

〈
E2,Φ

(g)t
〉
,
〈

Φ(g)E2,g
〉

= −
〈
E2,Φ

(g)g
〉
, (61)〈

Φ(g)E2,n
〉

= −
〈
E2,Φ

(g)n
〉
. (62)

The trajectory of travelling particle along the magnetic field M(g) with respect to Darboux

triad is described as the electromagnetic trajectory. If DEM(g) curve follows the magnetic

trajectory, it is described as the Darboux electromagnetic curve. With the help of Eqs. (61)

and(62), the Lorentz force Φg in the Darboux triad of the DEM(g) curve of Γ2 are given by
Φ(g)(t)

Φ(g)(g)

Φ(g)(n)

 =


0 −κ(ς)

g −χ

κ
(ς)
g 0 τg

χ −τ (ς)
g 0




t

g

n

 (63)
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Via Eq. (63), the vector field divergence free M(g) is given by

M(g) = χg + τgt−κgn.

§5. Geometric Phase for Third Case of Electric Field with Darboux Triad

The third frame {R1,R2,R
∗
2} and the third transformation ψ for third class of curve evolution

concerned with the NLS equation with respect to Darboux triad in E3 are given by [22]

R1 = n, (64)

R2 =
t + ig√

2
ei

∫ σ1 κ(ς)
g dσ

′

, R∗2 =
t− ig√

2
e−i

∫ σ1 κ(ς)
g dσ

′

(65)

ψ =
(κ

(ς)
n + iτ

(ς)
g )√

2
e
i
∫σ κ(ς)g dσ

′

(66)

Using Eqs. (65) and (66), the spatial evolution of {R1,R2,R
∗
2} is given by [22]

R1σ = −ψ∗R2 − ψR∗2, R2σ = ψR1, R
∗
2σ = ψ∗R1 (67)

where ψ∗ =
(κ(ς)
n −iτ

(ς)
g )

√
2

e
−i

∫σ κ(ς)g dσ
′

.

Consider

R1u = nu = a3R2 + b3R
∗
2 + c3R1, (68)

R2u = h3R2 + f3R
∗
2 + ηR1. (69)

From 〈R1u,R1〉 = 0⇒ c3 = 0, 〈R1u,R2〉 = b3, 〈R2u,R1〉 = η ⇒ b3 = −η,
〈R2u,R2〉 = f3 = 0, 〈R1u,R

∗
2〉 = a3 ⇒ η∗ = a3, 〈R∗2u,R2〉 = −h3 ⇒ h3 = −f∗3 .

Eqs. (68) and (69) can be rewritten by

R1u = nu = −η∗R2 − ηV∗2, (70)

R2u = ηR1 + iLR2 (71)

with L(σ, u) is a real function. From R2uσ = R2σu the followings can be derived by

ψu = ησ + iLσψ, (72)

Lσ = iη∗ψ − iηψ∗. (73)

When t and g rotates around n with κ
(ς)
g (σ), a geometric phase P =

σ1∫
σ0

κ
(ς)
g dσ arises

between t, g and corresponding nonrotating Darboux triad in E3. When the linearized light

wave travelling moves from u1 to u2 along the curve in optic fiber, a geometric phase P =
u2∫
u1

κ
(o)
g du develops between natural Darboux triad and nonrotating Darboux triad in E3. The
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rotation angles of polarization plane can be given by

P1 = κ(ς)
g (σ, u)∆σ + κ(o)

g (σ + ∆σ, u)∆u

P2 = κ(o)
g (σ, u)∆u+ κ(ς)

g (σ, u+ ∆u)∆σ.

Phase difference are given as δP = P1 − P2 = AD3(σ, u)∆σ∆u, where AD3 = (κ
(ς)
gσ − κ(o)

gu )

is third anholonomy density measure for polarization plane of linearized light wave travelling

along optic fiber for third class in E3. Also

η = − (j + iz)√
2

ei
∫ σ1 κ(ς)

g dσ
′

(74)

satisfies Eqs.(70), (71) and (73). The time evolution of Darboux triad is given by [22]

tu = ς
(o)
3 × t =κ(o)

g g − jn, (75)

gu = ς
(o)
3 × g = −κ(o)

g t− zn, (76)

nu = ς
(o)
3 × n = jt + zg (77)

where ς
(o)
3 = A3t +B3g + κ

(o)
g n, z = −A3, j = B3. Using Eqs. (66), (74) it can be obtained

Lσ = jτ (ς)
g − κ(ς)

n z. (78)

The time evolution of Darboux triad for third class connected with the NLS equation is

given by

nu = jt + zg (79)

tu = −jn− (

∫ σ1

κ(ς)
gudσ

′
− L)g (80)

gu = (L−
∫ σ1

κ(ς)
gudσ

′
)t− zn. (81)

The anholonomy density AD3 for third class with respect to Darboux frame in Euclidean

3-space:

AD3(σ, u) = −Lσ = κ(ς)
n z − jτ (ς)

g . (82)

and the total phase P for third class with respect to Darboux triad in E3 is given by

P = −
∫ u2

u1

∫ σ1

σ0

Lσdσdu

=

∫ u2

u1

∫ σ1

σ0

(κ(ς)
n z − jτ (ς)

g )dσdu =

∫ u2

u1

∫ σ1

σ0

〈n,nσ × nu〉 dσdu.

The quantum geometric phase is given

P = i

∫ σ1

σ0

dσ
∂

∂σ

∫ u2

u1

〈R2u,R
∗
2〉 du.
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A optical fiber can be described by a curve Γ3(σ) with respect to Darboux frame in E3.

The direction of electric field E3 denotes the direction of the state of the linearly polarized light

wave injected to fiber with respect to Darboux frame in E3. The change of the electric field E3

with respect to Darboux triad can be written by

E3σ = π1t + π2g + π3n. (83)

Case 3. Assume that

〈E3,n〉 = 0. (84)

From Eq.(84)

〈E3σ,n〉 = 〈E3,κnt+τgg〉

π3 = κn 〈E3, t〉+ τg 〈E3,g〉 (85)

Also

〈E3,E3〉 = const. (86)

Using Eq.(83) and taking derivative with respect to σ of Eq.(86), it can be obtained

π1 〈E3, t〉 = −π2 〈E3,g〉 (87)

π1 = ε 〈E3,g〉 , π2 = −ε 〈E3, t〉 (88)

where ε is a parameter. The evolution in the polarization of light wave travelling from the point

Γ3(σ0) to Γ3(σ1) along curve with respect to Darboux triad is given by the evolution of the

electric field E3. 〈E3, t〉 6= 0, 〈E3,n〉 6= 0. Substituting Eqs. (85) and (88) in (83), the Eq.(83)

is rewritten by

E3σ = ε 〈E3,g〉 t− ε 〈E2, t〉g+(κn 〈E3, t〉+ τg 〈E3,g〉)n (89)

Via Eq.(89) for ε = 0,

E3σ = (κn 〈E3, t〉+ τg 〈E3,g〉)n (90)

The modified Fermi-Walker derivative for the electric field E3 with respect to Darboux

triad for third class is described by

DmFWE3σ = E3σ − 〈n,E2〉nσ + 〈nσ,E2〉n (91)

The electric field E3 is the Fermi-Walker parallel if and only if

DmFWE3σ = 0. (92)

Via (84), (91), (92), one obtains E3σ = 〈nσ,E2〉n.
The electric field vector E3 with respect to the Darboux triad apparatus t and g can be

written by

E3(σ) = Σ(σ)
(t + ig)√

2
+ Σ∗(σ)

t− ig√
2
. (93)
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where E3E
∗
3 = 1 and |Σ(σ)|2 + |Σ∗(σ)|2 = 1. Here

Σ(σ) = ei
∫ σ1 κ(ς)

g dσ
′

Σ(σ0), Σ∗(σ) = e
−i

∫σ1 κ(ς)g dσ
′

Σ∗(σ0). (94)

The polarization coefficients are

Σ(σ0) =

(
t + ig√

2

)∗
E3(σ0)

Σ∗(σ0) =

(
t− ig√

2

)∗
E3(σ0).

Eq.(93) is re-expressed as the following

E3(σ) = R2Σ(σ0) + R∗2Σ∗(σ0) (95)

When taking derivative with respect to σ and the time u of Eq. (95), the spatial and

temporal evolutions of the electric field E3 for Darboux triad are derived as follows

E3σ = R2σΣ(σ0) + R∗2σΣ∗(σ0)

E3u = R2uΣ(σ0) + R∗2uΣ∗(σ0)

From compatibility condition E3σu = E3uσ, the nonlinear Schrödinger equation NLS

system connected with the electric field E3 is obtained.

P =

∫ σ1

κ(ς)
g dσ

′

is the change phase of the polarization light injected into a fiber for third case of the electric

field with respect to Darboux frame in E3. Consider the Lorentz force equation Φ(n) for third

case of the electric field vector

Φ(n)E3 = E3σ = M(n) ×E3,〈
Φ(n)E3, t

〉
= −

〈
E3,Φ

(n)t
〉
,
〈

Φ(n)E3,g
〉

= −
〈
E3,Φ

(n)g
〉

〈
Φ(n)E3,n

〉
= −

〈
E3,Φ

(n)n
〉
.

The trajectory of travelling particle along the magnetic field M(n) with respect to Darboux

frame is described as the electromagnetic trajectory. If the curve DEM(n) follows the magnetic

trajectory, it is described as the Darboux electromagnetic curve. With the help of Eq. (61)

the Darboux Lorentz force equations along the optic fiber for third case the electric field are

obtained 
Φ(n)(t)

Φ(n)(g)

Φ(n)(n)

 =


0 −ε κ

(ς)
n

ε τ
(ς)
g 0

−κ(ς)
n −τ (ς)

g 0




t

g

n

 (96)
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DEM(n) curve of the Γ3 is the magnetic trajectory of the magnetic field M(n) iff the vector

field divergence free M(n) is given by

M(n) = −κ(ς)
n g − εn+τ (ς)

g t.
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[20] N.Gürbüz and Dae Won Yoon, Fermi-Walker parallel transport according to quasi frame

in three dimensional Minkowski space, JGSP 54 (2019) 1–12.

[21] R. Balakrishan, Space curve evolution, geometric phase and solitons, Theoretical and Math-

ematical Physics, 99 (1994) 501–504.
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