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Abstract: In this paper, we present the quadratic associative symmetry algebra of the 3D

nondegenerate maximally quantum superintegrable system. This is the complete symmetry

algebra of the system. It is demonstrated that the symmetry algebra contains suitable

quadratic subalgebras, each of which is generated by three generators with relevant structure

constants, which may depend on central elements. We construct corresponding Casimir

operators and present finite-dimensional unirreps and structure functions via the realizations

of these subalgebras in the context of deformed oscillators. By imposing constraints on

the structure functions, we obtain the spectrum of the 3D nondegenerate superintegrable

system. We also show that this model is multiseparable and admits separation of variables

in cylindrical polar and paraboloidal coordinates. We derive the physical spectrum by solving

the Schrödinger equation of the system and compare the result with those obtained from

algebraic derivations.

Key Words: Quantum superintegrable system, symmetry algebra, quadratic subalgebras,

Schrödinger equation

AMS(2010): 81Q60, 81T60.

§1. Introduction

Superintegrable Hamiltonian systems are a very exclusive family of physical systems as they

are exactly solvable systems and their symmetries are, in many cases, generated by a nonlinear

generalization of Lie algebras [1]. In a classical system, a d-dimensional dynamical system

with Hamiltonian H = 1
2g
jkpjpk + V (x) and constants of motion Al = fl(x, p), l = 1, . . . , d −

1The first author was supported by the National Science and Technology Fellowship, Bangladesh, the sec-
ond author was partially supported by the project grant CZ. 02.2.69/0.0/0.0/18 0016980, co-financed by the
European Union. The authors thank Ian Marquette (University of Queensland, Australia) and Libor Snobl
(Czech Technical University in Prague, Czech Republic) for constructive discussions and helpful comments on
the subject of this manuscript.

2Received July 26, 2022, Accepted September 8, 2022.
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1 is (Liouville) completely integrable if the system allows d integrals including H that are

functionally independent on the phase space, and are in involution {H,Al} = 0, {Al,Am} = 0,

l,m = 1, . . . , d − 1. The integrable system is known as superintegrable if it allows additional

well-defined constants of motion Bm on the phase space and they are in involution {H,Bm} =

0, m = 1, · · · , k. It is assumed that the set of integrals {H,A1, · · · ,Ad−1,B1, . . . ,Bk} are

functionally independent. The system will be maximally superintegrable if the integrals set has

(2d− 1) integrals and minimally superintegrable if the set has d+ 1 such integrals. There is a

remark that the additional integrals Bm need not be in involution with A1, · · · ,Ad−1 as well

as not with each other.

In quantum mechanics, similar definitions apply with the coordinates xi and momenta pk,

in which they represent as hermitian operators in the Hilbert space satisfying the Heisenberg

algebra. Thus, the quantum counterpart of the system is integrable, if there exist d − 1 well-

defined algebraically independent quantum integrals of motion A1, · · · , Ad−1 on the Hilbert

space that commute with the Hamiltonian operator H and pair-wise with each other, that is,

[H,Al] = 0 and [Al, Am] = 0 for 1 ≤ l,m ≤ d − 1. The system is superintegrable for the ex-

istence of the additional algebraically independent quantum integrals of motion Bm such that

[H,Bm] = 0 for m = 1, · · · , k. Moreover, the system is known as the quasi-maximally superin-

tegrable system which has 2d − 2 independent constants of motion including the Hamiltonian

H. The maximally superintegrable system is more special for the existence of a large num-

ber of symmetries and for arising many unique properties such as periodic motions and finite

closed trajectories or accidental degeneracies of the energy spectrum in classical/(or) quantum

mechanics. More exhaustive algebraic descriptions of superintegrable systems in classical and

quantum mechanics, symmetry algebras, and their connections to special functions can be found

in the review paper [1]. Famous examples of superintegrable systems are the Coulomb-Kepler

[2,3] and the harmonic oscillator [4,5].

A systematic algebraic investigation is performed for superintegrable Hamiltonian system-

s on 2D and 3D Euclidean spaces in [6C8]. The algebraic computations were more or less

completed for the constants of motion which are first- or second-order polynomials of the mo-

menta. Over the year, much work has been done on the complete classifications of second-order

classical and quantum superintegrable systems [9C14]. Nowadays, the search for arbitrary di-

mensional quantum superintegrable systems and their higher-order constants of motion is a

paramount research area (see for examples [15-24]). In the context of the algebraic perspective,

the higher-order polynomial algebras with structure constants of certain Casimir invariants

are constructed by using the integrals of the d-dimensional superintegrable systems [25-30].

However, the classification of 3D superintegrable Hamiltonian systems is still an active field of

research in particular for nondegenerate quantum superintegrable systems and their symmetry

algebras [31-34]. The four parameters depending potentials are classified as the nondegenerate

potentials, and less than four parameters depending potentials are classified as the degenerate

potentials of the 3D superintegrable systems. Such classifications have been explicitly studied

in [31,35]. The systems with degenerate and nondegenerate potentials were investigated in the

seminal paper [8]. It is established that any 3d nondegenerate classical superintegrable system

with five second-order constants of motion (including the Hamiltonian) allows an additional
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integral, which is linearly independent to others. All these integrals of the 3D nondegenerate

superintegrable system [32,32] close to form a parafermionic-like Poisson algebras [36]. The

energy spectra of the generalized Coulomb-Kepler system in Euclidean space have been studied

using the methods of separation of variables in [37]. The energy eigenvalues of the generalized

quantum Kepler-Coulomb system with nondegenerate potentials were calculated algebraically

in [38]. However, the superintegrable systems with nondegenerate potential, their correspond-

ing quadratic integrals and the symmetry algebras investigation are still interesting problems in

quantum mechanics [32]. We introduce the 3D nondegenerate quantum superintegrable system

depending on four parameters, which is known as the KKM Potential VIV [31] with quadrat-

ic integrals to present full symmetry quadratic algebra structure. We calculate the energy

eigenvalues of the system algebraically. We also show the multiseparability of the system in

cylindrical polar and paraboloidal coordinates and solve the Schrödinger equation of the system.

We compare the result with those obtained from algebraic calculations.

We present this paper in the following form. In section 2, we present a 3D nondegen-

erate quantum Hamiltonian system in a flat space, and its superintegrability for the set of

algebraically independent quadratic integrals. In section 3, we construct the quadratic ful-

l symmetry algebra structure generated by the quadratic constants of motion of the system.

Section 4 contains a brief discussion on the quadratic algebra Q(3) related to the symmetry

algebra. In section 5, we recall quadratic subalgebras which are generated by three generators

involving structure constants from symmetry algebra and present their corresponding Casimir

operators. In section 6, we present the algebraic realizations of the quadratic subalgebras in

the context of deformed oscillators of Daskaloyannis’s approach [39,40] and obtain the energy

spectrum of the 3D system. Section 7 contains the solutions of the Schrödinger equation of the

3D Hamiltonian system in cylindrical polar and paraboloidal coordinates. Section 8 contains

the concluding remarks.

§2. The 3D Nondegenerate Quantum Superintegrable System

The 3D superintegrable systems with the Hamiltonian

H =
1

2

(
p2
x1

+ p2
x2

+ p2
x3

)
+ V (x1, x2, x3) (2.1)

on the flat space have been initially studied in [8]. All these 3D systems with quadratic in-

tegrals have been classified in the complex Euclidean space and distinguished to the so-called

nondegenerate potentials [31]. These nondegenerate potentials are linear combinations of four

parameters, while degenerate potentials depend on less than four parameters. Kalnins, Kress

and Miller [31] also established a general result for the nondegenerate potentials: if V is a 3D

nondegenerate potential depending on four parameters considered on a conformally flat space

with the metric

ds2 = g(x1, x2, x3)(dx2
1 + dx2

2 + dx2
3), (2.2)

then the classical analog of the Hamiltonian associated with the above metric is maximally
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superintegrable with five functionally independent quadratic integrals L = {Sk : k = 1, · · · , 5}
(including S1 ≡ H) and there always exists an extra quadratic integral S6 which is linearly inde-

pendent to the others. These classical nondegenerate systems and their corresponding quadratic

integrals have been performed a parafermionic-like quadratic Poisson algebra on conformally

flat space [32]. However, the associative quadratic ternary symmetry algebras for the nondegen-

erate superintegrable systems in quantum mechanics and their degeneracy of the energy spectra

remain largely unknown. Their analytic solutions to the Schrödinger equations via separation

of variables would be of much interest. At the first attempt, we thus introduce a nondegenerate

quantum system, which is known as the KKM potential VIV , with the Hamiltonian operator in

real Euclidean space E3 [31],

H = p2
x1

+ p2
x2

+ p2
x3

+ c1(4x2
1 + x2

2 + x2
3) + c2x1 +

c3
x2

2

+
c4
x2

3

, (2.3)

where pxi = −i ∂
∂xi

and we set m = ~ = 1. It is remarked that c2 can be eliminated by a shift

of coordinates under the condition that c1 is not zero and it is possible to reduce the potential

to 3 parameters, in this case, the algebra must transform correspondingly. In this paper, we

present the full symmetry quadratic algebra of the 3D nondegenerate quantum superintegrable

system (2.3) and obtain the energy spectrum applying the Daskaloyannis deformed oscillator

algebra approach [39] on the symmetry algebras.

The quantum Hamiltonian system (2.3) has the following four algebraically independent

quadratic integrals,

A1 = p2
x1

+ 4c1x
2
1 + c2x1, A2 = p2

x2
+ c1x

2
2 +

c3
x2

2

,

B1 = J2px3
+ px3

J2 + 2c1x1x
2
3 +

c2x
2
3

2
− 2c4x1

x2
3

, B2 = J2
1 +

c3x
2
3

x2
2

+
c4x

2
2

x2
3

, (2.4)

and one additional quadratic integral,

F = px2J3 + J3px2 − 2c1x1x
2
2 −

c2x
2
2

2
+

2c3x1

x2
2

, (2.5)

where

J1 = x2px3
− x3px2

, J2 = x3px1
− x1px3

, J3 = x1px2
− x2px1

. (2.6)

All these integrals are linearly independent including the Hamiltonian H. The Hamiltonian

system is maximally superintegrable. It can be proved by the following commutation relations

[Ai, H] = 0, [Bi, H] = 0, i = 1, 2, [H,F ] = 0. (2.7)

We also found that

[A1, B2] = 0, [A1, A2] = 0, [A2, B1] = 0. (2.8)

The above commutativity relations can be expressed as the following diagram to easily under-
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stand,

where the dashed lines indicate that the commutator of the corresponding integrals is zero

and the absence of dashed lines among the integrals means the commutator is nonzero. The

presence of F ensures that the integrals generate a ternary type quadratic algebra involving six

generators including the Hamiltonian operator. We can also define

C1 = [A1, B1], C2 = [A2, B2], D = [B1, B2]. (2.10)

It is shown that the new integrals of motion C1 and C2 are cubic functions of momenta, which

can not be expressed as a polynomial function in terms of other integrals of motion that are

the second structure of momenta. We may also define

E1 = [A1, F ], E2 = [A2, F ], E3 = [B1, F ], E4 = [B2, F ]. (2.11)

§3. Quadratic Symmetry Algebra

We now derive the full quadratic symmetry algebra of the quantum superintegrable Hamiltonian

system (2.3). After a long direct computation and using different commutation relations and

Jacobi identities, the six integrals of motion including the Hamiltonian H close to form the

following quadratic symmetry algebra,

[A1, C1] = 4c2A1 + 16c1B1 + 4c2(A2 −H), (3.1)

[B1, C1] = 24A2
1 + 32(A2 −H)A1 − 4c2B1 + 8H2 − 16HA2

−8c1(4c4 − 3) + 8A2
2, (3.2)

[A2, C2] = 8A2
2 + 8(A1 −H)A2 + 8c1(2B2 + 1), (3.3)

[B2, C2] = −16(c3 + c4 − 1)A2 − 8{A2, B2} − 8(A1 −H)B2

−8(2c3 − 1)A1 + 8(2c3 − 1)H, (3.4)

[A1, D] = 8A2B1 − 8FA1 − 8A2F + 8HF, (3.5)

[C1, F ] = 8HA2 − 8A2A1 − 8A2
2 − 16c1B2 − 8c1, (3.6)

[C1, B2] = 8A2B1 − 8A1F − 8A2F + 8HF, (3.7)

[E1, A2] = 16c1F + 4c2A2, (3.8)
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[E1, B2] = 8HF − 8FA1 − 8A2F + 8B1A2, (3.9)

[E1, F ] = 16A2A1 − 4c2F − 8A2
2 + 8c1(4c3 − 3), (3.10)

[E1, A1] = −16c1F − 4c2A2, (3.11)

[C2, B1] = 4c2B2 − 8FA2 − 8A1F + 8HF + 2c2, (3.12)

[E2, A2] = −4c2A2 − 16c1F, (3.13)

[E2, B1] = 8A2
2 + 8(A1 −H)A2 + 16c1B2 + 8c1, (3.14)

[E2, B2] = 8A2F + 8A1F − 8HF − 8B1A2, (3.15)

[E2, F ] = 8A2
2 − 16A1A2 + 4c2F − 8c1(4c3 − 3), (3.16)

and

[B1, D] = 8FB1 − 8(A2 + 3A1 −H)B2 − 8(2c4 − 1)A2 − 12A1 + 4H, (3.17)

[D,B2] = 8(B1B2 +B2B1) + 8FB2 + 8(2c3 − 1)B1 + 8(2c4 − 1)F − 8B1B2, (3.18)

[E3, B1] = 8(A1 +A2 −H)F − 4c2B2 − 2c2, (3.19)

[E3, B2] = 8FB1 − 8(2c3 − 1)A1 − 16(c3 + c4 − 1)A2 + 8(2c3 − 1)H

−8A1B2 − 16A2B2 + 8B2 − 8B1F, (3.20)

[E3, F ] = 8A2B1 − 4c2B2 − 2c2, (3.21)

[E4, A1] = −8(A1 +A2 −H)F + 8B1A2, (3.22)

[E4, B2] = −8(B2F + FB2) + 8FB2 − 8(2c4 − 1)F − 8B1B2 − 8(2c3 − 1)B1, (3.23)

[E4, F ] = −8(2A1 −A2)B2 + 8B1F − 4(4c3 − 3)H + 4(4c3 − 5)A1 + 8(2c3 − 1)A2. (3.24)

We can also present a second algebra in terms of C1, C2 and D with coefficients in linear

combinations of integrals A1, A2, B1, B2, F,H as

[C1, C2] = 8A2C1 − 4c2C2 − 16c1D,

[C1, D] = 8FC1 − 8A2C2 − 24A1C2 + 8HC2 + 4c2D,

[C2, D] = −8B2C1 − 8FC2 + 8A2D − 8(2c3 − 1)C1. (3.25)

To the observation, the relations (3.1) - (3.2) and (3.3)- (3.4), respectively, involving the inte-

grals set {A1, B1, C1} and {A2, B2, C2}, defined by the subalgebras, Q1(3) and Q2(3), have a

connection to the quadratic algebra Q(3) of 2D superintegrable systems with quadratic integrals

of motion [39]. It is stimulating to see the subalgebras Qi(3), i = 1, 2 that are embedded in

the symmetry algebra of the 3D nondegenerate superintegrable system (2.3). In the following

section, we consider the subalgebras Qi(3), i = 1, 2 to calculate the spectrum of the system

(2.3) by using the Daskaloyannis approach and the deformed oscillator algebra realizations in

[39, 40].

§4. The Quadratic Algebra Q(3)

In the above section, we successfully obtain the symmetry algebra structures of the 3D su-
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perintegrable system (2.3) for nondegenerate potential. We now have to calculate the energy

spectrum of the system based on the symmetry algebra. In order to derive the spectrum alge-

braically, we demonstrate the existence of a set of subalgebra structures Qi(3), i = 1, 2, involving

three generators and compared them with the quadratic algebra Q(3) presented by Daskaloy-

annis in the context of 2D superintegrable systems [39]. We recall briefly this algebraic method

for two subalgebras Qi(3), i = 1, 2 which involves three operators {Ai,Bi, Ci} for i = 1, 2 and

[Ai,Aj ] = 0, for all i, j [30]. They are close to form the following quadratic algebras,

[Ai,Bi] = Ci,

[Ai, Ci] = αiA2
i + γi{Ai,Bi}+ δiAi + εiBi + ζi,

[Bi, Ci] = aiA2
i − γiB2

i − αi{Ai,Bi}+ diAi − δiBi + zi, (4.1)

where i = 1, 2. The coefficients αi, γi, ai are constants and di, δi, εi, ζi, zi are polynomials of

central elements: the Hamiltonian H and the generator Aj of the j-th subalgebra, which com-

mutes with the generators of the i-th subalgebra. The generators {Ai,Bi, Ci} of the subalgebras

Qi(3), i = 1, 2 form a Casimir invariant

Ki = C2
i − αi{A2

i ,Bi} − γi{Ai,B2
i }+ (αiγi − δi){Ai,Bi}+ (γ2

i − εi)B2
i

+ (γiδi − 2ζi)Bi +
2ai
3
A3
i +

(
di +

aiγi
3

+ α2
i

)
A2
i +

(aiεi
3

+ αiδi + 2zi

)
Ai. (4.2)

It is pointed out that this Casimir invariant is possible to reform in terms of only central

elements of the corresponding subalgebras. To determine the spectrum of the Hamiltonian

operator H, the algebra Qi(3) (4.1) i = 1, 2 needs to realize in terms of the deformed oscillator

algebras [39,40],

[ℵi, b†i ] = b†i , [ℵi, bi] = −bi, bib
†
i = φ(ℵi + 1), b†i bi = φ(ℵi), (4.3)

and the structure function φ for γi 6= 0 is given by

φi(ni) = γ8
i (3α2

i+4aiγi)[2(ni+ui)−3]2[2(ni+ui)−1]4[2(ni+ui)+1]2 − 3072γ6
iKi[2(ni+ui)−1]2

− 48γ6
i (α2

i εi−αiγiδi+aiγiεi−γ2
i di)[2(ni+ui)−1]4[2(ni+ui)+1]2[2(ni+ui)−3]

+ 32γ4
i

(
3α2

i ε
2
i+4αiγ

2
i ζi−6αiγiδiεi+2aiγiε

2
i+2γ2

i δ
2
i−4γ2

i diεi+8γ3
i zi
)
×

[2(ni+ui)−1]2[12(ni+ui)
2−12(ni+ui)−1] + 768(αiε

2
i + 4γ2

i ζi − 2γiδiεi)
2

− 256γ2
i [2(ni+ui)−1]2(3α2

i ε
3
i+4αiγ

4
i ζi+12αiγ

2
i ζiεi−9αiγiδiε

2
i+aiγiε

3
i+2γ4

i δ
2
i

− 12γ3
i δiζi+6γ2

i δ
2
i εi+2γ4

i diεi−3γ2
i diε

2
i−4γ5

i zi+12γ3
i ziεi) (4.4)

and the eigenvalues of the operator Ai,

e(Ai) = Ai(qi) =
√
εi(qi + ui), γi = 0, εi 6= 0; (4.5)
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and for the case γi = 0, εi 6= 0, the structure function is given by

Φi(ni) =
1

4

[
−Ki
εi
− zi√

εi
− δi√

εi

ζi
εi

+

(
ζi
εi

)2
]

− 1

12

[
3di−ai

√
εi−3αi

δi√
εi

+3
δ2
i

εi
−6

zi√
εi

+6αi
ζi
εi
− 6

δi√
εi

ζi
εi

]
(ni+ui)

+
1

4

[
α2
i+di−ai

√
εi−3αi

δi√
εi

+
δ2
i

εi
+2αi

ζi
εi

]
(ni+ui)

2

− 1

6

[
3α2

i−ai
√
εi−3αi

δi√
εi

]
(ni+ui)

3+
1

4
α2(ni+ui)

4 (4.6)

and the eigenvalues of the operator Ai,

e(Ai) = Ai(qi) =
γi
2

(
(qi + ui)

2 − εi
γ2
i

− 1

4

)
, γi 6= 0. (4.7)

§5. The Subalgebras Qi(3), i = 1, 2

The relations (3.1) - (3.2) and (3.3)- (3.4) of the quadratic symmetry algebras formed similar

quadratic structure Q(3) (4.1) involving three generators sets {A1, B1, C1} and {A2, B2, C2}.
The subalgebras Qi(3), i = 1, 2 can be presented in the following diagrams,

¸

The left figure shows that A2 and H are central elements and the right figure shows that

A1 and H are central elements of the corresponding subalgebra structures. It is seen as a fact

that one integral plays a role as a generator in a subalgebra structure while it plays a role

as a central element in another subalgebra structure. In account to obtain the spectrum, we

manipulate the subalgebras Qi(3), i = 1, 2 and it is clear that each of these subalgebras has a

relationship with the quadratic algebra (4.1) and Casimir operator (4.2) presented in [39] for

the 2D superintegrable system. We rewrite the relations (3.1) - (3.2) as the subalgebra structure

Q1(3),

[A1, B1] = C1,

[A1, C1] = 4c2A1 + 16c1B1 + 4c2(A2 −H), (5.2)

[B1, C1] = 24A2
1 + 32(A2 −H)A1 − 4c2B1 + 8H2 − 16HA2

−8c1(4c4 − 3) + 8A2
2,
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and the relations (3.3)- (3.4) as the subalgebra structure Q2(3),

[A2, B2] = C2,

[A2, C2] = 8A2
2 + 8(A1 −H)A2 + 16c1B2 + 8c1, (5.3)

[B2, C2] = −8{A2, B2} − 16(c3 + c4 − 1)A2 − 8(A1 −H)B2

+8(2c3 − 1)(H −A1).

There are Casimir operators K1 of Q1(3) and K2 of Q2(3) satisfying [K1, A1] = 0 = [K1, B1]

and [K2, A2] = 0 = [K2, B2], respectively,

K1 = C2
1 − 4c2{A1, B1} − 16c1B

2
1 − 8c2(A2 −H)B1 + 16A3

1

+32(A2 −H)A2
1 + [128c1 + 16H2 − 32HA2 − 16c1(4c4 − 3) + 16A2

2]A1, (5.4)

and

K2 = C2
2 − 8{A2

2, B2} − 8(A1 −H){A2, B2} − 16c1B
2
2 − 16c1B2

−16(c3 + c4 − 5)A2
2 − 16(2c2 − 5)(A1 −H)A2. (5.5)

Moreover, the quadratic subalgebras Q1(3) and Q2(3) possess corresponding Casimir invariants

in terms of only central elements in the following forms, respectively,

K ′1 = 128c1H − 128c1A2 − 3c22 + 4c22c4, (5.6)

and

K ′2 = 4(4c3 − 3)(H −A1)2 − 16(2c1 − 3c1c3 − 3c1c4 + 4c1c3c4). (5.7)

It is seen that the Casimir operator K ′1 depends on only central elements H and A2 for the

subalgebra Q1(3), and the Casimir operator K ′2 depends on only central elements H and A1 of

the subalgebra Q2(3). These two forms of the Casimir invariants will be used to realize these

subalgebras in terms of the deformed oscillator algebras (4.3).

§6. Deformed Oscillators Realizations and Energy Spectrum

In order to obtain the energy spectrum of the superintegrable system (2.3), we realize the

subalgebra structures Q1(3) and Q2(3) in terms of deformed oscillator algebra [39,40] {ℵi, b†i , bi}
of (4.3) with satisfying the real-valued function,

φ(0) = 0, φ(ni) > 0, ∀ni > 0. (6.1)

The φ(ni) is known as structure function. We first investigate the realization of the quadratic

subalgebra structure Q1(3) (5.2). The realization of Q1(3) is of the form A1 = A1(ℵ1), B1 =

b1(ℵ1) + b†1ρ1(ℵ1) + ρ1(ℵ1)b1, where A1(x), b1(x) and ρ1(x) are functions to lead the following
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forms [30],

A1(ℵ1) =
√

16c1(ℵ1 + u1), (6.2)

b1(ℵ1) = − c2√
c1

(ℵ1 + u1)− c2(A2 −H)

4c1
, (6.3)

ρ1(ℵ1) = 1, (6.4)

where u1 is an arbitrary constant to be determined later. The following structure function

φ(n1, u1, H) of the subalgebra (5.2) is constructed by using the deformed oscillators (4.3) and

the Casimir invariants (5.4) and (5.6),

φ1(n1, u1, H) =
1

1024m5
1

[
(A2 −H)−m1 (2 +m4 − 4 (n1 + u1))

]
[

(A2 −H) +m1 (−2 +m4 + 4 (n1 + u1))

]
[
m2

2 + 32m3
1 (−1 + 2 (n1 + u1))

]
, (6.5)

where m2
1 = c1, m2 = c2, m2

4 = 4c4 + 1. To obtain the eigenvalues of the central element A2

of this subalgebra and the values of parameter u1 by requiring that the unitary representations

(unirreps) to be a finite, we should impose the following constraints on the structure function:

φ(p1 + 1;u1, E) = 0; φ(0;u1, E) = 0; φ(x) > 0, ∀x > 0, (6.6)

where p1 is a positive integer. We also replace the eigenvalue E of H in φ1(n1, u1, H). The

constraints guarantee the structure functions are finite (p1 + 1)-dimensional unirreps. We solve

the constraints (6.6), which give information of the eigenvalues e(A2) of A2 and the values of

the constant u1. Imposing the condition (6.6) to the structure functions (6.5) for unirreps of

finite-dimensional (p1 +1) and positive values of the structure function, we obtain the solutions

with ε1 = +1, ε2 = ±1, ε3 = ±1,

u1 =
1

2
− m2

2

64m3
1

, or u1 =
1

4m1
[E + 2m1 + ε1m1m4 − e(A2)] , (6.7)

e(A2) = 4ε2m1(p1 + 1) + E + ε3m1m4 +
m2

2

16m2
1

. (6.8)

It is remarked that the subalgebra Q1(3) is the algebra of the superintegrable two-dimensional

subsystem, depending on the variables x1, x3. The above computation shows that the energy of

the subsystem equal to E−e(A2) and the quadratic algebra depends on H−A2, it is thus clearly

understandable the existence of the Casimir invariant (5.6). A similar reason is applicable for

the subalgebra Q2(3) and the Casimir invariant (5.7). We now obtain the eigenvalues of A1

from the relations (6.2) and (6.7) as follows,

e(A1) = 2m1(2n1 + 1)− m2
2

16m2
1

, or e(A1) = 2m1(2n1 + 1) + E + ε1m1m4 − e(A2). (6.9)
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We now turn to the quadratic subalgebra structure Q2(3) (5.3). Similar to Q1(3), the realiza-

tions of Q2(3) present the functions

A2(ℵ2) =
√

16c1(ℵ2 + u2), (6.10)

b2(ℵ2) = −8(ℵ2 + u2)2 − 2(A1 −H)
√
c1

(ℵ2 + u2)− 1

2
, (6.11)

ρ2(ℵ2) = 1 (6.12)

and the structure function

φ(n2, u2, H) =
1

256m4
1

[−2−m3 + 4(n2 + u2)][−2 +m3 + 4(n2 + u2)]

[A1m1 −m1H −m2
1m4 +m2

1(−2 + 4(n2 + u2)]

[A1m1 −m1H +m2
1m4 +m2

1(−2 + 4(n2 + u2)], (6.13)

where m2
3 = 4c3 + 1. We now impose the constraints (6.6) on the structure function (6.13) for

unirreps of finite-dimensional (p2 + 1) and positive values of the structure function, giving the

following solutions,

u2 =
1

2
+
ε1m3

4
, or u2 =

1

4m1
[E + 2m1 + ε1m1m4 − e(A1)] , (6.14)

e(A1) = 4ε1m1(p2 + 1) + E + ε2m1m3 + ε3m1m4, (6.15)

where ε1 = +1, ε2 = ±1 and ε3 = ±1. Similar, from the relations (6.10) and (6.14), we obtain

the eigenvalues e(A2) of A2 as

e(A2) = 2m1(2n2 + 1) + ε1m1m3, e(A2) = 2m1(2n2 + 1) + E + ε1m1m4 − e(A1). (6.16)

The energy eigenvalues of the superintegrable system (2.3) are calculated using the relations

(6.9), (6.15) and (6.8), (6.16), and choosing the suitable sign of εi, i = 1, 2, 3 for positive energy

levels,

E = 4(p2 + 1)m1 + 2(2n1 + 1)m1 +m1m3 +m1m4 −
m2

2

16m2
1

, (6.17)

E = 4(p1 + 1)m1 + 2(2n2 + 1)m1 +m1m3 +m1m4 −
m2

2

16m2
1

. (6.18)

It is a fact that the elimination of the energy E from the above relations (6.17) and (6.18) leads

to a relation,

p1 − p2 = n1 − n2, (6.19)

which is valid, because the two deformed oscillators are treated as independent ones,

n1 = 0, 1, 2, · · · , p1, and n2 = 0, 1, 2, · · · , p2. (6.20)

The mean value of the relations (6.17) and (6.18) reduce to the energy eigenvalues of the
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superintegrable Hamiltonian system (2.3),

E = 2(p1 + p2 + 2)m1 + 2(n1 + n2 + 1)m1 +m1m3 +m1m4 −
m2

2

16m2
1

. (6.21)

It is a fact that the quadratic subalgebra structures of the symmetry algebra provide us the

energy spectrum for the 3D nondegenerate potential of the maximally quantum superintegrable

system (2.3) purely algebraic computations. It is shown that the energy spectrum of the system

in the algebraic investigation depends only on differential operators and their corresponding

operator algebra in symmetry forms without knowledge of wave functions and calculus.

§7. Separation of Variables

We now demonstrate analytic calculations of the 3D superintegrable system (2.3) via separation

of variables in the cylindrical polar and paraboloidal coordinates. The results will be compared

with those obtained from algebraic derivations.

7.1 Cylindrical Polar Coordinates

The cylindrical polar coordinates are given by

x1 = z, x2 = ρ sin2 θ, x3 = ρ cos2 θ, (7.1)

where ρ > 0, −∞ < z < ∞ and θ ∈ [0, 2π] [37]. The Schrodinger equation Hψ = Eψ of the

system (2.3) in the coordinates can be expressed as[
−
(
∂2

∂z2
+

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

)
+ c1(4z2 + ρ2) + c2z +

c3

ρ2 sin2 θ

+
c4

ρ2 cos2 θ
− E

]
ψ(ρ, z, θ) = 0. (7.2)

The separation of variables of (7.2)

ψ(ρ, z, θ) = R(ρ, z)Y (θ) (7.3)

gives rise to the angular and radial parts with separation constant A,[
− ∂2

∂θ2
+

c3

sin2 θ
+

c4
cos2 θ

−A
]
Y (θ) = 0, (7.4)

[
−
(
∂2

∂z2
+

∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
+ c1(4z2 + ρ2) + c2z − E +

A

ρ2

]
R(ρ, z) = 0. (7.5)

We now take the equation (7.5) to separate the variables

R(ρ, z) = G(ρ)F (z) (7.6)
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and obtain, [
− ∂2

∂z2
+ c14z2 + c2z − E −A1

]
F (z) = 0, (7.7)[

− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ c1ρ

2 +
A

ρ2
+A1

]
G(ρ) = 0, (7.8)

where A1 is a separation constant.

We now turn to (7.4), which converts to, by setting υ = sin2 θ and g(υ) = υ
1
4 (1+2γ3)(1 −

υ)
1
4 (1+2γ4)g1(υ),

υ(1− υ)g1
′′
(υ) +

[
(1± γ3)− (1 + 1± γ3 ± γ4) υ

]
g1
′
(υ)−[(

1

4
± γ3

2
+

1

4
± γ4

2

)2

− A

4

]
g1(υ) = 0, (7.9)

where γ3 = ± 1
2

√
1 + 4c3 and γ4 = ± 1

2

√
1 + 4c4. By comparing with the Jacobi differential

equation [41]

z (1− z) y
′′

+ [γ − (α+ 1) z] y
′
+ n (α+ n) y = 0, (7.10)

we find the separation constant

A = (2n± γ3 ± γ4 + 1)
2
, (7.11)

where n is positive integers. Hence we have the solutions of (7.9) as follows

Y (θ) = (sin2 θ)
1
4±

γ3
2 (1− sin2 θ)

1
4±

γ4
2

×
[
C12F1

(
−n, n+ 1± γ3 ± γ4, 1± γ3, sin

2 θ
)
− (−1)

−(1±γ3) (
sin2 θ

)±γ3
×C22F1

[
(±γ3 − n), 1 + n± 2γ3 ± γ4, (1± γ3), sin2 θ

]]
. (7.12)

Let us now turn to the equation (7.8). Putting the separation constant A = (2n ± γ3 ±
γ4 + 1)2 into (7.8), we have[

− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ c1ρ

2 +
1

ρ2
(2n± γ3 ± γ4 + 1)

2
+A1

]
G(ρ) = 0. (7.13)

By setting ξ = ερ2 , G(ξ) = ξαG1(ξ) and G1(ξ) = e−
1
2 ξG2(ξ), (7.13) can be converted to

the form

ξG2

′′
(ξ) +

[
(2α+ 1)− ξ

]
G
′

2(ξ)−
[

1

2
(2α+ 1) +

A1

4ε

]
G2 (ξ) = 0, (7.14)

where α = 1
2 (1± γ3 ± γ4 + 2n) and ε2 = c1. Comparing (7.14) with the confluent hypergeo-

metric differential equation [41],

zf
′′
(z) + (c− z) f

′
(z)− af(z) = 0, (7.15)
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we obtain the separation constant,

A1 = 4εa− 2ε(2n± γ3 ± γ4 + 1) (7.16)

and the solution of (7.13) can be written as

G (ρ) =

[ (
ερ2
) 1

2 (1±γ3±γ4+2n)
e−

1
2 ερ

2

C1φ

(
a+

1

2
; (2± γ3 ± γ4 + 2n) ; ερ2

)]
+

[
C2

(
ερ2
)1−(2±γ3±γ4+2n)

φ
(
a+ 1; (2± γ3 ± γ4 + 2n) ; ερ2

) ]
. (7.17)

Putting (7.16) into (7.7), we can be reformed as follows[
∂2

∂z2
− 4c1z

2 − c2z + E + 4εa− 2ε (2n± γ3 ± γ4 + 1)

]
F (z) = 0, (7.18)

which is one linear differential equation. Such linear differential equation

f
′′

(z) +
(
−q2z2 − 2qsz + t

)
f (z) = 0, (7.19)

solved in [42] with the condition q−1
(
s2 + t

)
is an odd integer. Let us consider

q−1
(
s2 + t

)
= 2τ + 1, τ is an integer. (7.20)

The elementary solution of (7.19) is given [42] as

F1 (z) = h (z) .e
− q2

((
z+( sq )

2
))
, (7.21)

F2 (z) = F1 (z) .

∫
h (ξ)

−2
eq(ξ+

s
q )

2

dξ, (7.22)

where

h (z) =

(
z +

s

q

)j
+
∑

16l6 j
2

j!

l! (j − 2l)!z2l (−q)l

(
z +

s

q

)j−2l

, j = 0, 1, 2, · · · . (7.23)

Hence we obtain the solution of (7.18) as follows

F1 (z) = h (z) . e
−√c1

((
z+

c2
4c1

)2
)
, (7.24)

F2 (z) = F1 (z) .

∫
h (ξ)

−2
e

2
√
c1

(
ξ+

c2
4c1

)2

dξ, (7.25)

h (z) =

(
z +

c2
4c1

)j
+
∑

16i6 j
2

j!

i! (j − 2i)!z2i
(
−2
√
c1
)i (z +

c2
4c1

)j−2i

. (7.26)

Comparing (7.18) with (7.19), (7.20) and substituting c1 = γ2
1 , c2 = γ2, we can obtain the

eigenvalues of the nondegenerate system (2.3) in terms of quantum numbers involving the four
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parameters as follows,

E = 2(2τ + 1)γ1 + 2(2n− 2a± γ3 ± γ4 + 1)γ1 −
γ2

2

16γ2
1

. (7.27)

Making identification 2τ = p1 + p2 + 1, 2(n− a) = n1 + n1, 2γ3 = m3 and 2γ4 = m4, the

energy spectrum (7.27) becomes (6.21).

7.2 Paraboloidal Coordinates

The paraboloidal coordinates are considered by

x1 =
1

2
(u2 − v2), x2 = uv sinφ, x3 = uv cosφ, (7.28)

where 0 6 φ < 2π, u > 0 and v > 0. Now the Schrödinger eigenvalue equation Hψ = Eψ of

the system (??) in these coordinates leads to the following structure,[
−
[
∂2

∂φ2
+

u2v2

u2 + v2

(
∂2

∂u2
+

∂2

∂v2

)
+

u2v2

u2 + v2

(
1

u

∂

∂u
+

1

v

∂

∂v

)]
+
c2
2
u2v2

(
u2 − v2

)
+c1u

2v2
(
u4 + v4 − u2v2

)
+

c3

sin2 φ
+

c4
cos2 φ

]
ψ(u, v, φ) = 0. (7.29)

To separate the Schrödinger equation (7.29), the ansatz

ψ(u, v, φ) = R(u, v)Y (φ) (7.30)

gives rise to the following differential equations,[
− ∂2

∂φ2
+

c3

sin2 φ
+

c4
cos2 φ

−A
]
Y (φ) = 0, (7.31)[

− u2v2

u2 + v2

(
∂2

∂u2
+

∂2

∂v2

)
− u2v2

u2 + v2

(
1

u

∂

∂u
+

1

v

∂

∂v

)
+c1u

2v2
(
u4 + v4 − u2v2

)
+
c2
2
u2v2

(
u2 − v2

)
− Eu2v2 +A

]
R(u, v) = 0, (7.32)

where A is a separation constant. Again taking the ansatz

R(u, v) = R1(u)R2(v) (7.33)

for the separation of (7.32), it leads to[
− ∂2

∂u2
− 1

u

∂

∂u
+ c1u

6 +
c2
2
u4 − Eu2 +

A

u2
−A1

]
R1(u) = 0, (7.34)[

− ∂2

∂v2
− 1

v

∂

∂v
+ c1v

6 +
c2
2
v4 − Ev2 +

A

v2
+A1

]
R2(v) = 0. (7.35)

We now first change to (7.31) by setting w = sin2 φ and g(w) = wα1(1−w)α2g1(w), which can
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be reduced to the following form

w(1− w)g1
′′

+

[
(1± γ3)− (2± γ3 ± γ4)w

]
g1
′
−
[(

1

2
± γ3

2
± γ4

2

)2

− A

4

]
g1(w) = 0, (7.36)

where γ3 = ± 1
2

√
1 + 4c3 and γ4 = ± 1

2

√
1 + 4c4 , α1 = 1

4 ±
γ3
2 and α2 = 1

4 ±
γ4
2 . Comparing

(7.36) in terms of the Jacobi differential equation [41],

X (1−X )Y
′′

+ [γ − (α+ 1)X ]Y
′
+ η (α+ η)Y = 0 (7.37)

and its solution,

y = C12F1 (−η, η + α, γ,X )

− (−1)X 1−γC22F1 (1− η − γ, 1 + η + α− γ, 2− γ,X ) , (7.38)

we obtain the separation constant

A = (2η ± γ3 ± γ4 + 1)
2
, (7.39)

and the solution of (7.31),

Y (φ) = (sin2 φ)
1
4±

γ3
2 (1− sin2 φ)

1
4±

γ4
2

[
C1 2F1

(
−η, η + 1± γ3 ± γ4, 1± γ3, sin

2 φ
)

− (−1)
−(1±γ3) (

sin2 φ
)±γ3

C2 2F1

[
(±γ3 − η), 1 + η ± 2γ3 ± γ4, (1± γ3), sin2 φ

]]
. (7.40)

To solve the differential equations (7.34) and (7.35), let us set z1 = u2 in (7.34) and z2 = v2

in (7.35), the the couple equations become[
z2
i

∂2

∂z2
i

+ zi
∂

∂zi
+

(
−c1

4
z4
i −

c2
8
z3
i +

E

4
z2
i −

A

4
+
Ai
4
zi

)]
Ri (zi) = 0, (7.41)

where A1 = −A2 and i = 1, 2. The equation (7.41) can be transformed into a Bi-Confluent

Heun differential equation [43,44] of type

X F
′′

+
(
1 + p− qX − 2X 2

)
F
′
+

[
(r − p− 2)X − 1

2
(s+ q (1 + p))

]
F (X ) = 0, (7.42)

which has a solution in terms of Hermite functions,

F =

∞∑
n=0

cnHn+1+p+ 1
2 (r−p−2)

(
X +

q

2

)
, (7.43)

where cn satisfies the three terms recurrence formulas,

cnLn + cn−1Qn−1 + cn−2Pn−2 = 0 (7.44)
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with the relations

Ln = 2n

(
p+ n+

(r − p− 2)

2
+ 1

)
, Pn = p+ n+ 1,

Qn = −1

2
(s+ q (p+ 1)) + q (p+ n+ 1) . (7.45)

By setting Ri (zi) = zρi e
azi+

b
2 z

2
i fi (y) and zi = kyi into (7.41), it leads to

y2
i fi
′′
(yi) + yi

(
1 + 2ρ+ 2akyi + 2bk2y2

i

)
fi
′
(yi) +

[(
ρ2 − A

4

)
+

(
2aρ+ a+

A1

4

)
kyi

+

(
2bρ+ 2b+ a2 +

E

4

)
k2y2

i +
(

2ab− c2
8

)
k3y3

i +
(
b2 − c1

4

)
k4y4

i

]
fi (yi) = 0. (7.46)

To compare (7.46) and (7.42) with the suitable choice of signs, we have the following

conditions,

ρ =

√
A

4
, b = −

√
c1
2
, a = − c2

8
√
c1
, k2 =

2
√
c1
, (7.47)

Using the above conditions, we can rewrite (7.46) as follows

yifi
′′
(yi) +

(
1 + 2

√
A

4
− c2

2c1
yi − 2y2

i

)
fi
′
(yi) +

[(
− c2A

16
√
c1
− c2

8
√
c1

+
A1

4

)(√
2
√
c1

)

+

(
−
√
c1A

4
−
√
c1 +

c22
64c1

+
E

4

)(
2
√
c1

)
yi

]
fi (yi) = 0. (7.48)

Again by comparing (7.48) and (7.42), we obtain

r − p− 2 =

(
−
√
c1A

4
−
√
c1 +

c22
64c1

+
E

4

)(
2
√
c1

)
. (7.49)

One can shown that the solution of a Bi-Confluent Heun equation [43,44] is the n degree

polynomial, then it allows the condition r − p− 2 = 2µ, µ is an integer. Using this condition,

the solution of (7.34) is given as

fi (yi) = y
√
A

i e

(
c2

8
√
c1
y2i+

√
c1
4 y4i

) ∞∑
n=0

cnHn+1+p+ 1
2 (r−p−2)

(
y2
i +

q

2

)
, (7.50)

where

p =
√
A, r =

c22

32c
3
2
1

+
E

2
√
c1
, q =

c2
2c1

, A = (2η ± γ3 ± γ4 + 1)
2
. (7.51)

Then we can present the spectrum explicit relation,

E =
√
c1 (4 + 4µ) + 2

√
c1A−

c22
16c1

. (7.52)

Substituting c1 = γ2
1 , c2 = γ2 and A = (2η ± γ3 ± γ4 + 1)

2
into (7.52), we have the required
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eigenvalue of the system (2.3),

E = 4(µ+ 1)γ1 + 2(2η ± γ3 ± γ4 + 1)γ1 −
γ2

2

16γ2
1

. (7.53)

Making identification 2µ = p1 + p2 + 1, and 2η = n1 + n1, the energy spectrum (7.53) becomes

(6.21).

§8. Conclusions

We constructed the quadratic full symmetry algebra for the 3D nondegenerate quantum superin-

tegrable system generated by six linearly independent integrals of motion including the Hamil-

tonian. The symmetry algebra contains quadratic subalgebra structures generated by three

generators with structure constants connected to the quadratic algebra of the two-dimensional

quantum superintegrable system [39]. The algebraic calculations of the symmetry algebra to the

quantum superintegrable system enable us to obtain the energy spectrum. We have presented

corresponding Casimir invariants and derived the structure functions of the quadratic subalge-

bras of the symmetry algebra in the realizations of deformed oscillators. The finite-dimensional

unirreps of these structure functions yield the energy spectrum of the model algebraically. We

also showed that the system is multiseparable in cylindrical polar and paraboloidal coordinates.

We solved the Schrödinger equation of the system and expressed the wave functions in terms

of special functions, and obtained the physical spectrum. The results are compared with those

spectrum obtained from the algebraic computation.
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Abstract: In this work, we prove some common fixed point theorems on S-metric spaces

via C-class functions and give some consequences of the main result. We also give some

examples in support of the results. The results obtained in this article generalize, extend

and improve several results from the existing literature regarding S-metric spaces.
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§1. Introduction

The fixed point theory one of the most important research fields in nonlinear analysis. In

the last decades, many number of authors have published papers and battened continuously.

The application potential is the main cause for this involvement. Fixed point theory has an

application in many areas such as chemistry, physics, biology, computer science and many

branches of mathematics. The Banach contraction mapping principle ([3]) or the Banach fixed

point theorem is the most celebrated and pioneer result in a complete metric space. The famous

Banach contraction mapping principle states that every self mapping Q defined on a complete

metric space (X, d) satisfying the condition:

d(Q(x),Q(y)) ≤ r d(x, y) (1.1)

for all x, y ∈ X, where r ∈ (0, 1) is a constant, has a unique fixed point and for every x0 ∈ X a

sequence {Qnx0}n≥1 is convergent to the fixed point.

Most of the works after this were basically generalizations of the work of Banach. These

generalizations include more general metric spaces, or more general contractions etc. One of

the generalizations of the metric space is the S-metric space.

In 2012, Sedghi et al. [28] introduced the concept of a S-metric space which is different

from other spaces and proved fixed point theorems in such spaces. They also give some examples

of a S-metric space which shows that the S-metric space is different from other spaces. They

built up some topological properties in such spaces and proved some fixed point theorems in

1Received August 9, 2022, Accepted September 12, 2022.
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the framework of S-metric spaces. After this grateful beginning work of Sedghi et al. [28] many

authors attracted to study the problems of the fixed point, common fixed point, coupled fixed

point and common coupled fixed point by using various contractive conditions for mappings

(see, for examples, [5, 6, 8, 13, 18, 29, 30, 31]).

Recently, a large number of authors have published many papers on S-metric spaces in

different directions (see, e.g.,g.,[9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27,

32, 33] and many others).

In 2014, Ansari [1] introduced the notion of C-class function that is pivotal result in fixed

point theory.

In this work, we prove some common fixed point theorems on S-metric spaces via C-

class functions and give some consequences of the main result. We also give some examples

to demonstrate the validity of the result. Our results generalize, extend and improve several

results from the existing literature.

§2. Preliminaries

In this section, we recall some basic definitions, lemmas and auxiliary results to prove our main

results.

Definition 2.1([28]) Let X be a nonempty set and let S : X3 → [0,∞) be a function satisfying

the following conditions for all u, v, w, t ∈ X hold with

(S1) S(u, v, w) = 0 if and only if u = v = w;

(S2) S(u, v, w) ≤ S(u, u, t) + S(v, v, t) + S(w,w, t).

Then, the function S is called an S-metric on X and the pair (X,S) is called an S-metric

space or simply SMS.

Example 2.2([28]) Let X = Rn and ‖.‖ a norm on X, then S(u, v, w) = ‖v+w−2u‖+‖v−w‖
is an S-metric on X.

Example 2.3([28]) Let X be a nonempty set and d be an ordinary metric on X. Then

S(u, v, w) = d(u,w) + d(v, w) for all u, v, w ∈ X is an S-metric on X.

Example 2.4([28]) Let X = R be the real line. Then S(u, v, w) = |u − w| + |v − w| for all

u, v, w ∈ R is an S-metric on X. This S-metric on X is called the usual S-metric on X.

Definition 2.5 Let (X,S) be an S-metric space. For ε > 0 and u ∈ X we define respectively

the open ball BS(u, ε) and closed ball BS [u, ε] with center u and radius ε as follows:

BS(u, ε) = {v ∈ X : S(v, v, u) < ε},

BS [u, ε] = {v ∈ X : S(v, v, u) ≤ ε}.

Example 2.6([29]) Let X = R. Denote S(u, v, w) = |v + w − 2u|+ |v − w| for all u, v, w ∈ R.
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Then

BS(1, 2) = {v ∈ R : S(v, v, 1) < 2} = {v ∈ R : |v − 1| < 1}

= {v ∈ R : 0 < v < 2} = (0, 2),

and

BS [2, 4] = {v ∈ R : S(v, v, 2) ≤ 4} = {v ∈ R : |v − 2| ≤ 2}

= {v ∈ R : 0 ≤ v ≤ 4} = [0, 4].

Definition 2.7([28],[29]) Let (X,S) be an S-metric space and A ⊂ X.

(Υ1) The subset A is said to be an open subset of X, if for every x ∈ A there exists c > 0

such that BS(x, c) ⊂ A.

(Υ2) A sequence {rn} in X converges to r ∈ X if S(rn, rn, r)→ 0 as n→∞, that is, for

each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have S(rn, rn, r) < ε. We denote

this by limn→∞ rn = r or rn → r as n→∞.

(Υ3) A sequence {rn} in X is called a Cauchy sequence if S(rn, rn, rm)→ 0 as n,m→∞,

that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0 we have S(rn, rn, rm) < ε.

(Υ4) The S-metric space (X,S) is called complete if every Cauchy sequence in X is con-

vergent.

(Υ5) Let τ be the set of all A ⊂ X having the property that for every x ∈ A, A contains

an open ball centered in x. Then τ is a topology on X (induced by the S-metric space).

(Υ6) A nonempty subset A of X is S-closed if closure of A is equal to A.

Definition 2.8 Let X be a non-empty set and let A,B : X → X be two self mappings of X.

Then a point u ∈ X is called a (Ω1) fixed point of operator A if A(u) = u and a (Ω2) common

fixed point of A and B if A(u) = B(u) = u.

Definition 2.9([28]) Let (X,S) be an S-metric space. A mapping A : X → X is said to be a

contraction if there exists a constant 0 ≤ k < 1 such that

S(Au,Av,Aw) ≤ k S(u, v, w) (2.1)

for all u, v, w ∈ X.

Remark 2.10([28]) If the S-metric space (X,S) is complete and A : X → X is a contraction

mapping, then A has a unique fixed point in X.

Definition 2.11([28]) Let (X,S) and (X ′, S′) be two S-metric spaces. A function R : X → X ′

is said to be continuous at a point x0 ∈ X if for every sequence {rn} in X with S(rn, rn, x0)→ 0,

S′(R(rn), R(rn), R(x0))→ 0 as n→∞. We say that R is continuous on X if R is continuous

at every point x0 ∈ X.

Definition 2.12([1]) A mapping F : [0,∞) × [0,∞) → R is called a C-class function if it is

continuous and satisfies the following axioms:
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(i) F (s, t) ≤ s;
(ii) F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

Note that for some F , we have that F (0, 0) = 0. The letter C denotes the set of all C-class

functions. The following example shows that C is nonempty.

Example 2.13([1]) Each of the functions F : [0,∞)× [0,∞) → R defined below are elements

of C.
(i) F (s, t) = s− t;
(ii) F (s, t) = ms, 0 < m < 1;

(iii) F (s, t) = s
(1+t)r , r ∈ (0,∞);

(iv) F (s, t) = log(t+as)
1+t , a > 1;

(v) F (s, t) = ln(1+as)
2 , a > e;

(vi) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞);

(vii) F (s, t) = s logt+a a, a > 1;

(viii) F (s, t) = s−
(

1+s
2+s

)(
t

1+t

)
;

(ix) F (s, t) = sβ(s), where β : [0,∞)→ [0,∞) and is continuous;

(x) F (s, t) = s−
(

t
k+t

)
;

(xi) F (s, t) = s
(1+s)r , r ∈ (0,∞).

Remark 2.14 The items (i), (ii) and (ix) in Example 2.13 are pivotal results in fixed point

theory ([1]). Also see [2] and [7].

Definition 2.15([1]) A function ψ : [0,∞) → [0,∞) is called an altering distance function if

the following properties are satisfied:

(ψ1) ψ is non-decreasing and continuous function;

(ψ2) ψ(t) = 0 if and only if t = 0.

Remark 2.16 We denote Ψ the class of all altering distance functions.

Definition 2.17([1]) A function ϕ : [0,∞) → [0,∞) is said to be an ultra altering distance

function, if it is continuous, non-decreasing such that ϕ(t) > 0 for t > 0.

We denote by Φu the class of all ultra altering distance functions.

Lemma 2.18([28], Lemma 2.5) Let (X,S) be an S-metric space. Then, S(u, u, v) = S(v, v, u)

for all u, v ∈ X.

Lemma 2.19([28], Lemma 2.12) Let (X,S) be an S-metric space. If rn → r and pn → p as

n→∞ then S(rn, rn, pn)→ S(r, r, p) as n→∞.

Lemma 2.20([6], Lemma 8) Let (X,S) be an S-metric space and A be a nonempty subset of

X. Then A is S-closed if and only if for any sequence {rn} in A such that rn → r as n→∞,

then r ∈ A.

Lemma 2.21([28]) Let (X,S) be an S-metric space. If c > 0 and x ∈ X, then the ball BS(x, c)

is a subset of X.
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Lemma 2.22([29]) The limit of a convergent sequence in a S-metric space (X,S) is unique.

Lemma 2.23([28]) In a S-metric space (X,S), any convergent sequence is Cauchy.

§3. Main Results

In this section, we shall prove some common fixed point theorems on S-metric spaces via C-class

functions.

Theorem 3.1 Let (X,S) be a complete S-metric space and f, g : X → X be two self-mappings

satisfying the inequality:

ψ(S(fx, fy, gz)) ≤ F
(
ψ(Θ(x, y, z)), ϕ(Θ(x, y, z))

)
, (3.1)

where

Θ(x, y, z) = a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, gz)

+a4[S(z, z, fx) + S(x, x, gz)] + a5

( S(z, z, gz)

[1 + S(x, y, z)]

)
for all x, y, z ∈ X, where a1, a2, a3, a4, a5 > 0 are nonnegative reals with a1 +a2 +a3 +3a4 +a5 <

1, ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C. Then f and g have a unique common fixed point in X.

Proof For each x0 ∈ X. Let x2n+1 = fx2n and x2n+2 = gx2n+1 for n = 0, 1, 2, . . . . We

prove that {xn} is a Cauchy sequence in (X,S). It follows from (3.1) for x = y = x2n, z = x2n−1

and using (S1), (S2) and Lemma 2.18, we have

ψ(S(x2n+1, x2n+1, x2n)) = ψ(S(fx2n, fx2n, gx2n−1))

≤ F
(
ψ(Θ(x2n, x2n, x2n−1)), ϕ(Θ(x2n, x2n, x2n−1))

)
, (3.2)

where

Θ(x2n, x2n, x2n−1) = a1 S(x2n, x2n, x2n−1) + a2 S(x2n, x2n, fx2n)

+a3 S(x2n−1, x2n−1, gx2n−1)

+a4 [S(x2n−1, x2n−1, fx2n) + S(x2n, x2n, gx2n−1)]

+a5

(S(x2n−1, x2n−1, gx2n−1)

[1 + S(x2n, x2n, x2n−1)]

)
= a1 S(x2n, x2n, x2n−1) + a2 S(x2n, x2n, x2n+1)

+a3 S(x2n−1, x2n−1, x2n)
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+a4 [S(x2n−1, x2n−1, x2n+1) + S(x2n, x2n, x2n)]

+a5

( S(x2n−1, x2n−1, x2n)

[1 + S(x2n, x2n, x2n−1)]

)
≤ a1 S(x2n, x2n, x2n−1) + a2 S(x2n+1, x2n+1, x2n)

+a3 S(x2n, x2n, x2n−1)

+a4 [2S(x2n−1, x2n−1, x2n) + S(x2n+1, x2n+1, x2n)]

+a5

( S(x2n, x2n, x2n−1)

[1 + S(x2n, x2n, x2n−1)]

)
≤ a1 S(x2n, x2n, x2n−1) + a2 S(x2n+1, x2n+1, x2n)

+a3 S(x2n, x2n, x2n−1)

+a4 [2S(x2n−1, x2n−1, x2n) + S(x2n+1, x2n+1, x2n)]

+a5 S(x2n, x2n, x2n−1)
)

= (a1 + a3 + 2a4 + a5)S(x2n, x2n, x2n−1)

+(a2 + a4)S(x2n+1, x2n+1, x2n). (3.3)

Using equation (3.3) in equation (3.2) and using the property of F , we get

ψ(S(x2n+1, x2n+1, x2n)) ≤ F
(
ψ
(

(a1 + a3 + 2a4 + a5)S(x2n, x2n, x2n−1)

+(a2 + a4)S(x2n+1, x2n+1, x2n)
)
,

ϕ
(

(a1 + a3 + 2a4 + a5)S(x2n, x2n, x2n−1)

+(a2 + a4)S(x2n+1, x2n+1, x2n)
))

≤ ψ
(

(a1 + a3 + 2a4 + a5)S(x2n, x2n, x2n−1)

+(a2 + a4)S(x2n+1, x2n+1, x2n)
)
. (3.4)

Since ψ ∈ Ψ, so using the property of ψ, we deduce that

S(x2n+1, x2n+1, x2n) ≤ (a1 + a3 + a4 + a5)S(x2n, x2n, x2n−1)

+(a2 + a4)S(x2n+1, x2n+1, x2n),

or

S(x2n+1, x2n+1, x2n) ≤
(a1 + a3 + 2a4 + a5

1− a2 − a4

)
S(x2n, x2n, x2n−1)

= t S(x2n, x2n, x2n−1), (3.5)

where

t =
(a1 + a3 + 2a4 + a5

1− a2 − a4

)
< 1,

since a1 + a2 + a3 + 3a4 + a5 < 1. This implies that

S(xn+1, xn+1, xn) ≤ t S(xn, xn, xn−1) (3.6)
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for n = 0, 1, 2, · · · .

Let Dn = S(xn+1, xn+1, xn) and Dn−1 = S(xn, xn, xn−1). Then from equation (3.6), we

conclude that

Dn ≤ tDn−1 ≤ t2Dn−2 ≤ · · · ≤ tnD0. (3.7)

Therefore, since 0 ≤ t < 1, taking the limit as n→∞, we have

lim
n→∞

S(xn+1, xn+1, xn) = 0. (3.8)

Now, we shall show that {xn} is a Cauchy sequence in (X,S).

Thus for any n,m ∈ N with m > n and using Lemma 2.18, then we have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

≤ 2S(xn, xn, xn+1) + 2S(xn+1, xn+1, x2)

+S(xn+2, xn+2, xm)

≤ 2S(xn, xn, xn+1) + 2S(xn+1, xn+1, x2)

+2S(xn+2, xn+2, xn+3) + · · ·+ S(xm−1, xm−1, xm)

≤ 2
(
tn + tn+1 + tn+2 + · · ·+ tm−1

)
S(x0, x0, x1)

= 2
(
tn + tn+1 + tn+2 + · · ·+ tm−1

)
D0

≤
( 2tn

1− t

)
D0 → 0 as n,m→∞

since 0 ≤ t < 1. Thus, the sequence {xn} is a Cauchy sequence in the space (X,S). By the

completeness of the space, there exists u ∈ X such that limn→∞ xn = u.

Now, we shall show that u is a fixed point of g. For this, using the given inequality (3.1)

for x = y = x2n and z = u, we have

ψ(S(x2n+1, x2n+1, gu)) = ψ(S(fx2n, fx2n, gu))

≤ F
(
ψ(Θ(x2n, x2n, u)), ϕ(Θ(x2n, x2n, u))

)
, (3.9)

where

Θ(x2n, x2n, u) = a1 S(x2n, x2n, u) + a2 S(x2n, x2n, fx2n) + a3 S(u, u, gu)

+a4[S(u, u, fx2n) + S(x2n, x2n, gu)]

+a5

( S(u, u, gu)

[1 + S(x2n, x2n, u)]

)
= a1 S(x2n, x2n, u) + a2 S(x2n, x2n, x2n+1) + a3 S(u, u, gu)

+a4[S(u, u, x2n+1) + S(x2n, x2n, gu)]

+a5

( S(u, u, gu)

[1 + S(x2n, x2n, u)]

)
.
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Letting n→∞ in the above inequality and using (S1), we get

Θ(x2n, x2n, u) = (a3 + a4 + a5)S(u, u, gu). (3.10)

Using equation (3.10) in equation (3.9) and using the property of F , we have

ψ(S(x2n+1, x2n+1, gu)) ≤ F
(
ψ((a3 + a4 + a5)S(u, u, gu))), ϕ((a3 + a4 + a5)S(u, u, gu))

)
≤ ψ((a3 + a4 + a5)S(u, u, gu)). (3.11)

Letting n→∞ in equation (3.11), we obtain

ψ(S(u, u, gu)) ≤ ψ((a3 + a4 + a5)S(u, u, gu)). (3.12)

Since ψ ∈ Ψ, so using the property of ψ in equation (3.12), we deduce that

S(u, u, gu) ≤ (a3 + a4 + a5)S(u, u, gu)

≤ (a1 + a2 + a3 + 3a4 + a5)S(u, u, gu)

< S(u, u, gu), since a1 + a2 + a3 + 2a4 + a5 < 1,

which is a contradiction. Hence S(u, u, gu) = 0, that is, gu = u. This shows that u is a fixed

point of g. By similar fashion, we can show that fu = u. Consequently, u is a common fixed

point of f and g.

Now, we shall show the uniqueness. Let u1 be another common fixed point of f and g

such that fu1 = u1 = gu1 with u1 6= u. Using given contractive condition (3.1) for x = y = u,

z = u1 and using (S1) and Lemma 2.18, we obtain

ψ(S(u, u, u1)) = ψ(S(fu, fu, gu1))

≤ F
(
ψ(Θ(u, u, u1)), ϕ(Θ(u, u, u1))

)
, (3.13)

where

Θ(u, u, u1) = a1 S(u, u, u1) + a2 S(u, u, fu) + a3 S(u1, u1, gu1)

+a4[S(u1, u1, fu) + S(u, u, gu1)] + a5

( S(u1, u1, gu1)

[1 + S(u, u, u1)]

)
= a1 S(u, u, u1) + a2 S(u, u, u) + a3 S(u1, u1, u1)

+a4[S(u1, u1, u) + S(u, u, u1)] + a5

( S(u1, u1, u1)

[1 + S(u, u, u1)]

)
= (a1 + 2a4)S(u, u, u1).

Substituting in equation (3.13) and using the property of F , we have

ψ(S(u, u, u1)) ≤ F
(
ψ((a1 + 2a4)S(u, u, u1)), ϕ((a1 + 2a4)S(u, u, u1))

)
≤ ψ((a1 + 2a4)S(u, u, u1)). (3.14)
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Since ψ ∈ Ψ, so using the property of ψ in equation (3.14), we deduce that

S(u, u, u1) ≤ (a1 + 2a4)S(u, u, u1)

≤ (a1 + a2 + a3 + 3a4 + a5)S(u, u, u1)

< S(u, u, u1), since a1 + a2 + a3 + 2a4 + a5 < 1, (3.15)

which is a contradiction. Hence S(u, u, u1) = 0, that is, u = u1. This shows the uniqueness of

the common fixed point of f and g. This completes the proof. �

If we take F (s, t) = ms for some m ∈ [0, 1) and ψ(t) = t for all t ≥ 0 in Theorem 3.1, then

we have the following result (with ma1 → a1, ma2 → a2, ma3 → a3, ma4 → a4, ma5 → a5).

Corollary 3.2 Let (X,S) be a complete S-metric space and f, g : X → X be two self-mappings

satisfying the inequality:

S(fx, fy, gz) ≤ a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, gz)

+a4[S(z, z, fx) + S(x, x, gz)] + a5

( S(z, z, gz)

[1 + S(x, y, z)]

)
(3.16)

for all x, y, z ∈ X, where a1, a2, a3, a4, a5 > 0 are nonnegative reals with a1 +a2 +a3 +3a4 +a5 <

1. Then f and g have a unique common fixed point in X.

Proof Follows from Theorem 3.1 by taking F (s, t) = ms for some m ∈ [0, 1) and ψ(t) = t

for all t ≥ 0 with ma1 → a1, ma2 → a2, ma3 → a3, ma4 → a4, ma5 → a5. �

Putting g = f in Theorem 3.1, then we obtain the following result.

Corollary 3.3 Let (X,S) be a complete S-metric space and f : X → X be a self-mapping

satisfying the following inequality:

ψ(S(fx, fy, fz)) ≤ F
(
ψ(Λ(x, y, z)), ϕ(Λ(x, y, z))

)
, (3.17)

where

Λ(x, y, z) = a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, fz)

+a4[S(z, z, fx) + S(x, x, fz)] + a5

( S(z, z, fz)

[1 + S(x, y, z)]

)
for all x, y, z ∈ X, where a1, a2, a3, a4, a5 > 0 are nonnegative reals with a1 +a2 +a3 +3a4 +a5 <

1, ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C. Then f has a unique fixed point in X.

Proof This result immediately follows from Theorem 3.1 by taking g = f . �

Corollary 3.4 Let (X,S) be a complete S-metric space such that for some positive integer n,

fn satisfies the contraction condition (3.17) for all x, y, z ∈ X, where Λ(x, y, z), ψ ∈ Ψ, ϕ ∈ Φu

and F ∈ C are as in Corollary 3.3. Then f has a unique fixed point in X.
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Proof From Corollary 3.3, let z0 be the unique fixed point of fn, that is, fn(z0) = z0.

Then

f(fnz0) = fz0 or fn(fz0) = fz0.

This gives fz0 = z0. This shows that z0 is a unique fixed point of f and completes the proof.�

If we take F (s, t) = ms for some m ∈ [0, 1), ψ(t) = t for all t ≥ 0 and putting a1 = k,

where k ∈ [0, 1) and a2 = a3 = a4 = a5 = 0 in Corollary 3.3, then we have the following result

(with mk → k).

Corollary 3.5 Let (X,S) be a complete S-metric space and f : X → X be a self-mapping

satisfying the inequality:

S(fx, fy, fz)) ≤ k S(x, y, z) (3.18)

for all x, y, z ∈ X, where k ∈ [0, 1) is a constant. Then f has a unique fixed point in X.

Remark 3.6 Corollary 3.5 extends the well-known Banach fixed point theorem [3] from complete

metric space to the setting of complete S-metric space.

If we take F (s, t) = s− t in Theorem 3.1, then we obtain the following result.

Corollary 3.7 Let (X,S) be a complete S-metric space and f, g : X → X be two self-mappings

of X satisfying the inequality:

ψ(S(fx, fy, gz)) ≤ ψ(Θ(x, y, z))− ϕ(Θ(x, y, z)) (3.19)

for all x, y, z ∈ X, where Θ(x, y, z), ψ, ϕ and a1, a2, a3, a4, a5 > 0 are as in Theorem 3.1. Then

f and g have a unique common fixed point in X.

Proof This result follows from Theorem 3.1. �

If we take F (s, t) = s in Theorem 3.1, then we obtain the following result.

Corollary 3.8 Let (X,S) be a complete S-metric space and f, g : X → X be two self-mappings

of X satisfying the inequality:

ψ(S(fx, fy, gz)) ≤ ψ(Θ(x, y, z)) (3.20)

for all x, y, z ∈ X, where Θ(x, y, z), ψ and a1, a2, a3, a4, a5 > 0 are as in Theorem ??. Then f

and g have a unique common fixed point in X.

Proof This result follows from Theorem 3.1. �

If we take ψ(t) = t for all t ≥ 0 in Corollary 3.8, then we obtain the following result.

Corollary 3.9 Let (X,S) be a complete S-metric space and f, g : X → X be two self-mappings

of X satisfying the inequality:

S(fx, fy, gz) ≤ Θ(x, y, z) (3.21)
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for all x, y, z ∈ X, where Θ(x, y, z) and a1, a2, a3, a4, a5 > 0 are as in Theorem 3.1. Then f

and g have a unique common fixed point in X.

Proof It follows from Theorem 3.1. �

If we take g = f in Corollary 3.2, then we have the following result.

Corollary 3.10 Let (X,S) be a complete S-metric space and f : X → X be a self-mapping

satisfying the inequality:

S(fx, fy, fz)) ≤ a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, fz)

+a4[S(z, z, fx) + S(x, x, fz)] + a5

( S(z, z, fz)

[1 + S(x, y, z)]

)
(3.22)

for all x, y, z ∈ X, where a1, a2, a3, a4, a5 > 0 are nonnegative reals with a1 +a2 +a3 +3a4 +a5 <

1. Then f has a unique fixed point in X.

Other consequences of our results are the following.

Denote Γ the set of functions ϕ : [0,∞)→ [0,∞) satisfying the following hypothesis:

(h1) ϕ is a Lebesgue-integrable mapping on each compact subset of [0,∞);

(h2) for any ε > 0 we have
∫ ε

0
ϕ(t)dt > 0.

Then, we get the result following.

Theorem 3.11 Let (X,S) be a complete S-metric space. Suppose that the mappings f, g : X →
X satisfy the following inequality:∫ ψ(S(fx,fy,gz))

0

φ(t)dt ≤ F
(
ψ
( ∫ Θ(x,y,z)

0

φ(t)dt
)
, ϕ
( ∫ Θ(x,y,z)

0

φ(t)dt
))

for all x, y, z ∈ X, where ϕ, ψ, F , Θ(x, y, z), a1, a2, a3, a4, a5 > 0 are as in Theorem 3.1 and

φ ∈ Γ. Then, f and g have a unique common fixed point in X.

If we take F (s, t) = ms for some m ∈ [0, 1), g = f and ψ(t) = t for all t ≥ 0 in Theorem

3.11, then we have the following result (with ma1 → a1, ma2 → a2, ma3 → a3, ma4 → a4,

ma5 → a5).

Corollary 3.12 Let (X,S) be a complete S-metric space. Suppose that the mapping f : X → X

satisfying the following inequality:∫ S(fx,fy,fz)

0

φ(t)dt ≤ a1

∫ S(x,y,z)

0

φ(t)dt+ a2

∫ S(x,x,fx)

0

φ(t)dt

+a3

∫ S(z,z,fz)

0

φ(t)dt+ a4

∫ [S(z,z,fx)+S(x,x,fz)]

0

φ(t)dt

+a5

∫ ( S(z,z,fz)
[1+S(x,y,z)]

)
0

φ(t)dt
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for all x, y, z ∈ X, where a1, a2, a3, a4, a5 > 0 are as in Theorem 3.1 and φ ∈ Γ. Then f has

a unique fixed point in X.

If we take a1 = k and a2 = a3 = a4 = a5 = 0 in Corollary 3.12, then we have the following

result.

Corollary 3.13 Let (X,S) be a complete S-metric space. Suppose that the mapping f : X → X

satisfying the following inequality:∫ S(fx,fy,fz)

0

φ(t)dt ≤ k
∫ S(x,y,z)

0

φ(t)dt

for all x, y, z ∈ X, where k ∈ [0, 1) is a constant and φ ∈ Γ. Then f has a unique fixed point

in X.

Remark 3.14 Corollary 3.13 extends Theorem 2.1 of Branciari [4] from complete metric space

to that setting of complete S-metric space.

Remark 3.15 Corollary 3.13 also extends Banach contraction mapping principle [3] from

complete metric space to that setting of complete S-metric space for integral type contraction.

Now, we give some examples in support of our results.

Example 3.16 Let X = [0, 1] and f, g : X → X be given by f(x) = x
2 and g(x) = x

4 for all

x ∈ X. Define the function S : X3 → [0,∞) by S(x, y, z) = max{x, y, z} for all x, y, z ∈ X,

then S is an S-metric on X. Let x, y, z ∈ X such that x ≥ y ≥ z.

(1) We have

S(fx, fy, gz) = max
{x

2
,
y

2
,
z

4

}
=
x

2
,

S(x, y, z) = max{x, y, z} = x,

S(x, x, fx) = max{x, x, x
2
} = x,

S(z, z, gz) = max{z, z, z
4
} = z,

S(z, z, fx) = max{z, z, x
2
} =

x

2
,

S(x, x, gz) = max{x, x, z
4
} = x,

S(x, x, fz) = max{x, x, z
2
} = x,

S(z, z, fz) = max{z, z, z
2
} = z.

Consider the inequality (3.16) of Corollary 3.2,we have

x

2
≤ a1.x+ a2.x+ a3.z +

3a4

2
.x+ a5.

z

1 + x
,
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Putting x = 1, y = 1
2 and z = 1

3 , then we have

1

2
≤ a1 + a2 + a3.

1

3
+ a4.

1

2
+ a5.

1

6
or 3 ≤ 6a1 + 6a2 + 2a3 + 9a4 + a5.

The above inequality is satisfied for: (1) a1 = 1
3 , a2 = 1

4 and a3 = a4 = a5 = 0; (2)

a1 = 1
3 , a3 = 1

4 , a4 = 1
8 and a2 = a5 = 0; (3) a2 = 1

3 , a3 = 1
2 and a1 = a4 = a5 = 0 with

a1 + a2 + a3 + 3a4 + a5 < 1. Thus all the conditions of Corollary 3.2 are satisfied. Hence by

applying Corollary 3.2, f and g have a unique common fixed point in X. Indeed, 0 ∈ X is the

unique common fixed point of f and g in this case.

(2) Now, consider the inequality (3.18) of Corollary 3.5, we have

x

2
≤ k x, or k ≥ 1

2
.

If we take 0 < k < 1, then all the conditions of Corollary 3.5 are satisfied and 0 ∈ X is the

unique fixed point of f .

Example 3.17 Let X = [0, 1] and S : X3 → R+ be given by

S(x, y, z) =

 |x− z|+ |y − z|, if x, y, z ∈ [0, 1),

1, if x = 1 or y = 1 or z = 1,

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space.

Let the mapping f : X → X be given by

f(x) =


1
2 , if x, y, z ∈ [0, 1),

1
6 , if x = y = z = 1.

Now, we consider the following cases for verification of inequality (3.22) of Corollary 3.10.

Case 1. If x, y ∈ [0, 1
2 ], z ∈ [ 1

2 , 1) or z ∈ [0, 1
2 ], x, y ∈ [ 1

2 , 1). Then

S(fx, fy, fz) = S
(1

2
,

1

2
,

1

2

)
= 0

≤ a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, fz)

+a4[S(z, z, fx) + S(x, x, fz)] + a5

( S(z, z, fz)

[1 + S(x, y, z)]

)
.

Thus, the inequality (3.22) of Corollary 3.10 is trivially satisfied.

Case 2. If x, y ∈ [0, 1
2 ] and z = 1. Then,

S(fx, fy, fz) = S
(1

2
,

1

2
,

1

6

)
=

2

3
.



34 G. S. Saluja

Taking x = y = 1
2 ,

S(x, y, z) = 1, S(x, x, fx) = 0, S(z, z, fz) =
5

3
,

S(z, z, fx) = 1, S(x, x, fz) =
2

3
.

Now

2

3
≤ a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, fz)

+a4[S(z, z, fx) + S(x, x, fz)]

+a5

( S(z, z, fz)

[1 + S(x, y, z)]

)
= a1.1 + a2.0 + a3.

5

3
+ a4.

5

3
+ a5.

5

6
,

or

4 ≤ 6a1 + 10a3 + 10a4 + 5a5.

The above inequality is satisfied for: (1) a1 = 1
3 , a3 = 1

5 and a2 = a4 = a5 = 0, (2) a1 = 1
3 ,

a4 = 1
5 and a2 = a3 = a5 = 0 and (3) a3 = 1

10 , a4 = 1
5 ; a5 = 1

5 and a1 = a2 = 0 with

a1 + a2 + a3 + 3a4 + a5 < 1. Thus all the conditions of Corollary 3.10 are satisfied. Hence by

applying Corollary 3.10, f has a unique fixed point in X. Indeed, 1
2 ∈ X is the unique fixed

point of f in this case.

Case 3. If x, z ∈ [0, 1
2 ] and y = 1. Then

S(fx, fy, fz) = S
(1

2
,

1

6
,

1

2

)
=

1

3
.

Taking x = z = 1
2 ,

S(x, y, z) =
1

2
, S(x, x, fx) = 0, S(z, z, fz) = 0, S(z, z, fx) = 0,

S(x, x, fz) = 0.

Now

1

3
≤ a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, fz)

+a4[S(z, z, fx) + S(x, x, fz)] + a5

( S(z, z, fz)

[1 + S(x, y, z)]

)
=

a1

2
+ a2.0 + a3.0 + a4.0 + a5.0

=
a1

2
or

2

3
≤ a1.
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The above inequality is satisfied for a1 = 2
3 and a2 = a3 = a4 = a5 = 0 with a1 + a2 +

a3 + 3a4 + a5 < 1. Thus all the conditions of Corollary 3.10 are satisfied. Hence by applying

Corollary 3.10, f has a unique fixed point in X. Indeed, 1
2 ∈ X is the unique fixed point of f

in this case.

Case 4. If y, z ∈ [0, 1
2 ] and x = 1. Then

S(fx, fy, fz) = S
(1

6
,

1

2
,

1

2

)
=

1

3
.

Taking y = z = 1
2 ,

S(x, y, z) =
1

2
, S(x, x, fx) =

5

3
, S(z, z, fz) = 0,

S(z, z, fx) =
2

3
, S(x, x, fz) = 1.

Now

1

3
≤ a1 S(x, y, z) + a2 S(x, x, fx) + a3 S(z, z, fz)

+a4[S(z, z, fx) + S(x, x, fz)] + a5

( S(z, z, fz)

[1 + S(x, y, z)]

)
=

a1

2
+ a2.

5

3
+ a3.0 + a4.

5

3
+ a5.0

=
a1

2
+

5a2

3
+

5a4

3

or

2 ≤ 3a1 + 10a2 + 10a4.

The above inequality is satisfied for: (1) a1 = 1
3 , a2 = 1

10 , a3 = a4 = a5 = 0; (2)

a1 = 1
3 , a4 = 1

10 , a2 = a3 = a5 = 0 and (3) a2 = a4 = 1
10 and a1 = a3 = a5 = 0 with

a1 + a2 + a3 + 3a4 + a5 < 1. Thus all the conditions of Corollary 3.10 are satisfied. Hence by

applying Corollary 3.10, f has a unique fixed point in X. Indeed, 1
2 ∈ X is the unique fixed

point of f in this case.

Considering all the above cases, we conclude that the inequality used in Corollary 3.10

remains valid for mapping f constructed in the above example and consequently by applying

Corollary 3.10, f has a unique fixed point. One can easily see that u = 1
2 ∈ X is the unique

fixed point of f .

§4. Conclusion

In this paper, we prove some common fixed point theorems in the setting of complete S-metric

spaces via C-class functions and we give some examples in support of our results. Also, we give

some consequences as corollaries of the established results. The results obtained in this paper



36 G. S. Saluja

extend, generalize and enrich several results from the existing literature regarding complete

S-metric spaces.
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§1. Introduction

In 2003, Shaikh [14] has first developed and studied the structure of Lorentzian concircular

structure manifolds (briefly (LCS)n-manifolds) with several examples, which generalizes the

concept of LP-Sasakian manifolds given by Matsumoto [9] and by Mihai and Rosca [10]. Later

on Shaikh et al., [16] proved the existence of φ-recurrent (LCS)n-manifolds. Recently the same

author studied invariant submanifolds of (LCS)n-manifolds. The notion of (LCS)n-manifolds

have been intensively studied by several geometers such as Hui and Atceken [7], Prakasha [13],

Venkatesha et. al., [28] and many others.

A transformation of an n-dimensional Riemannian manifold M , which transforms every

geodesic circle of M into a geodesic circle is called a concircular transformation [31]. A con-

circular transformation is always a conformal transformation [8]. An invariant of a concircular

transformation is the concircular curvature tensor C given by [31]

C(X,Y )U = R(X,Y )U − r

n(n− 1)
[g(Y, U)X − g(X,U)Y ]. (1.1)

1*Correspondent Author. This joint work is dedicated to the memory of Shree K. Jagan Mohan Reddy,
father-in-law of the second author.

2Received August 8, 2022, Accepted September 14, 2022.
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Now we can easily obtained From (1.1) that

(∇WC)(X,Y )U = (∇WR)(X,Y )U − dr(W )

n(n− 1)
[g(Y,U)X − g(X,U)Y ]. (1.2)

The study of torseforming vector field has a long history starting in 1925 by the work of

Brinkmann [6], Shirokov [17] and Yano [30, 31]. Torseforming vector field in a Riemannian

manifold has been introduced by Yano in 1944 [30] and the complex analogue of a torseforming

vector field was introduced by Yamaguchi [29] in 1979. The geometry of torseforming vector

field in a Riemannian manifold with different structures have been studied extensively by many

geometers such as Bagewadi et. al., [5].

The paper is organized in the following way: In Section 2, we recall the basic definitions

and formulas of (LCS)n-manifold needed throughout the paper. The next Section is devoted

to the study of (LCS)n-manifold admitting unit torseforming vector field. Here we have shown

that an (LCS)n-manifold admits a concircular vector field. In Section 4, we consider globally

φ-Concircularly symmetric (LCS)n-manifold. Thus, we have obtain that the manifold is of

constant scalar curvature provided 2αρ = β.

For readers who are unfamiliar with terminology, notations, recent overviews and intro-

ductions, we suggest the auhthors to refer the papers [1, 2, 3, 4, 11, 12, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27].

§2. Preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff man-

ifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type

(0, 2) such that for each point p ∈ M , the tensor gp : TpM × TpM → R is a non-degenerate

inner product of signature (−,+, · · · ,+), where TpM denotes the tangent vector space of M

at p and R is the real number space.

A Lorentzian manifold endowed with a unit timelike concircular vector field ξ, called the

characteristic vector field of the manifold, gives

g(ξ, ξ) = −1. (2.1)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that

g(V, ξ) = η(X), (2.2)

from which the following equation holds

(∇Uη)(V ) = α[g(U, V ) + η(U)η(V )], (α 6= 0) (2.3)

for all vector fields U, V , where ∇ denotes the operator of covariant differentiation with respect
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to Lorentzian metric g and α is a non-zero scalar function satisfying

∇V α = (V α) = dα(V ) = ρη(V ), (2.4)

ρ being a certain scalar function given by ρ = −(ξα). If we put

φV =
1

α
∇V ξ, (2.5)

then from (2.3) and (2.4), we have

φV = V + η(V )ξ, (2.6)

from which it follows that φ is a symmetric (1, 1) tensor field. Thus the Lorentzian manifold M

together with the unit timelike concircular vector field ξ, its associated 1-form η and (1, 1) tensor

field φ is said to be a Lorentzian concircular structure manifold (briefly (LCS)n-manifold) [14].

In a (LCS)n-manifold, the following relations hold ([14, 15]):

η(ξ) = −1, φξ = 0, η(φV ) = 0, (2.7)

g(φU, φV ) = g(U, V ) + η(U)η(V ), (2.8)

R(U, V )W = (α2 − ρ)[g(V,W )U − g(U,W )V ], (2.9)

S(U, ξ) = (n− 1)(α2 − ρ)η(U), (2.10)

S(φU, φV ) = S(U, V ) + (n− 1)(α2 − ρ)η(U)η(V ), (2.11)

Qξ = (n− 1)(α2 − ρ)ξ. (2.12)

for any vector fields U, V,W, where R,S denote respectively the curvature tensor and the Ricci

tensor of the manifold.

§3. Torseforming Vector Field in a (LCS)n-Manifold

Definition 3.1 A vector field γ on a Riemannian manifold is said to be torseforming vector

field if the 1-form ω(V ) = g(V, γ) satisfies the equation of the form

(∇Uω)(V ) = βg(U, V ) + π(U)ω(V ), (3.1)

where β is a non-vanishing scalar and π is a non zero 1-form given by π(V ) = g(V, P ).

Let us consider an (LCS)n manifold admitting a unit torseforming vector field γ̃ corre-

sponding to the torseforming vector field γ. Suppose g(V, γ̃) = T (V ), then we have

T (V ) =
ω(V )√
ω(γ)

. (3.2)
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Now by considering the relation (3.1), we have

(∇Uω)(V )√
ω(γ)

=
β√
ω(γ)

g(U, V ) +
π(U)√
ω(γ)

ω(V ).

Using (3.2) in the above equation, we obtain

(∇UT )(V ) = ag(U, V ) + π(U)T (V ), (3.3)

where a = β√
ω(γ)

.

Plugging Y = γ̃ in (3.3) and using T (γ̃) = g(γ̃, γ̃) = 1, we get

π(U) = −aT (U), (3.4)

and hence relation (3.3) can be written in the form

(∇UT )(V ) = a[g(U, V )− T (U)T (V )], (3.5)

which implies that T is closed.

Taking covariant differential of (3.5) with respect to W and using Ricci identity, we get

−T (R(U, V )W ) = (Ua)[g(V,W )− T (V )T (W )]

−(V a)[g(U,W )− T (U)T (W )]

+a2[g(V,W )T (U)− g(U,W )T (V )]. (3.6)

Replacing W = ξ in (3.6) and then by considering (2.5), we obtain

−(α2 − ρ)T (η(V )U − η(U)V ) = (Ua)[η(V )− T (V )T (ξ)]

−(V a)[η(U)− T (U)T (ξ)]

+a2[η(V )T (U)− η(U)T (V )]. (3.7)

Again, replacing U = γ̃ in (3.7) and since T (γ̃) = g(γ̃, γ̃) = 1, we have

(α2 − ρ+ a2 + γ̃a)[η(V )− η(γ̃)T (V )] = 0. (3.8)

Thus, we can state the following result.

Theorem 3.1 If a (LCS)n-manifold endowed with a unit torseforming vector field γ̃, then the

following conditions are occur:

η(V )− η(γ̃)T (V ) = 0, (I)

(α2 − ρ+ a2 + γ̃a) = 0. (II)
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We first begin with the case where the condition (I) holds true, from which it follows that

η(V ) = η(γ̃)T (V ).

Plugging V = ξ in above equation, gives

η(ξ) = η(γ̃)
2
,

and thus η(γ̃) = ±
√
−1, since η(ξ) = −1, we get

η(V ) = ±
√
−1T (V ). (3.9)

Using (3.9) in (2.3) and by virtue of (3.5), we have

α[g(U, V )− T (U)T (V )] = ±
√
−1a(g(U, V )− T (U)T (V )).

This implies that a = ±
√
−1α and hence the expression (3.4) reduces to

π(V ) = ±
√
−1αT (V ). (3.10)

If we consider α = 1, above equation yields

π(V ) = ±
√
−1T (V ). (3.11)

Since T is closed, π is also closed. Hence we can state the following result.

Lemma 3.1 In an (LCS)n-manifold satisfying condition (I), the unit torseforming vector field

γ̃ reduces to cocircular vector field provided the manifold becomes LP Sasakian Structure.

Next, we claim that the case where the condition (II) holds true, then the case (I) does

not occur. That is, it follows that

η(V )− η(γ̃)T (V ) 6= 0. (3.12)

Now it can be easily obtained from (3.6) that

−(α2 − ρ)T (QU) = (n− 1)aU − (aU) + (γ̃a)T (U) + a2(n− 1)T (U). (3.13)

By considering U = ξ in (3.13) and making use of (2.10), we obtain

aξ = −(α2 − ρ+ a2)η(γ̃). (3.14)

Plugging V = ξ in (3.7) and in the view of (3.14) and T (ξ) = η(γ̃), we get

aU = −(α2 − ρ+ a2)T (U). (3.15)
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Now it can be seen from (3.4) that

V π(U) = −[(V a)T (U) + a(V T (U))].

By considering the equation (3.15), we follows that

V π(U) = −[−(α2 − ρ+ a2)T (V )T (U) + a(V T (U))], (3.16)

Uπ(V ) = −[−(α2 − ρ+ a2)T (U)T (V ) + a(UT (V ))] (3.17)

from which we can easily obtained that

π([U, V ]) = −aT ([U, V ]). (3.18)

Now by using (3.16), (3.17) and (3.18), we have

(dπ)(U, V ) = −a[(dT )(U, V )].

Since T is closed, π is also closed. Hence we can state that

Lemma 3.2 In an (LCS)n-manifold satisfying condition (II), the unit torseforming vector

field γ̃ reduces to cocircular vector field.

§4. Globally φ-Concircularly Symmetric (LCS)n-Manifold

Definition 4.1 An (LCS)n-manifold M is said to be globally φ-concirularly symmetric if the

concircular curvature tensor C satisfies

φ2((∇XC)(U, V )W ) = 0,

for all vector fields X,U, V,W ∈ χ(M).

IfX,U, V andW are horizontal vector fields then the manifold is called locally φ-concircularly

symmetric.

Let us consider an globally φ-concircularly symmetric (LCS)n-manifold, then we have

φ2((∇XC)(U, V )W ) = 0. (4.1)

Using (2.6) in equation (4.1), gives

(∇XC)(U, V )W + η((∇XC)(U, V )W )ξ = 0,
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from which it follows that

g((∇XR)(U, V )W,Y )− drX

n(n− 1)
[g(V,W )g(U, Y )− g(U,W )g(V, Y )]

+η((∇XR)(U, V )W )η(Y )− drX

n(n− 1)
[g(V,W )η(U)− g(U,W )η(V )]η(Y ) = 0. (4.2)

Plugging U = Y = ei, where ei is an orthonormal basis and taking summation over i, we

get

(∇XS)(V,W ) − drX

n
g(V,W ) + η((∇XR)(ei, V )W )η(ei)

+
drX

n(n− 1)
[g(V,W ) + η(V )η(W )] = 0.

Considering W = ξ in the above equation, gives

(∇XS)(V, ξ)− drX

n
η(V ) + η((∇XR)(ei, V )ξ)η(ei) = 0. (4.3)

By considering the expression

η((∇XR)(ei, V )ξ)η(ei) = g((∇XR)(ei, V )ξ, ξ)g(ei, ξ). (4.4)

Now above equation takes the form

g((∇XR)(ei, V )ξ, ξ) = g(∇XR(ei, V )ξ, ξ)− g(R(∇Xei, V )ξ, ξ)

−g(R(ei,∇XV )ξ, ξ)− g(R(ei, V )∇Xξ, ξ). (4.5)

Since ei is an orthonormal basis and by virtue of (2.9), we find that

g((∇XR)(ei, V )ξ, ξ) = g(∇XR(ei, V )ξ, ξ)− g(R(ei, V )∇Xξ, ξ), (4.6)

g(∇XR(ei, V )ξ, ξ) + g(R(ei, V )ξ,∇Xξ) = 0. (4.7)

By employing (4.7) in (4.6), gives

g((∇XR)(ei, V )ξ, ξ) = 0. (4.8)

Taking an account of (4.4) and (4.8) in (4.3), turns into

(∇XS)(V, ξ) =
drX

n
η(V ). (4.9)

If we take V = ξ in (4.9), we found that dr(X) = 0. Then, from (4.9), we have∇XS(V, ξ) =

0. This implies that

dr(X) = n(n− 1)(2αρ− β). (4.10)

Next claim that if 2αρ = β, we get dr(X) = 0 and hence the scalar curvature r is constant.



(LCS)n-Manifold Endowed With Torseforming Vector Field and Concircular Curvature Tensor 45

This leads to the result following.

Theorem 4.2 A globally φ-concircularly symmetric (LCS)n-manifold is of constant scalar

curvature provided 2αρ = β.
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Abstract: In this study, the concept of L-fuzzy real numbers which is given in [14] is

extended by presenting the definition from both-sided. For each side, different functions

are defined and it is proved that these functions are metrics. For that, it is shown that

for a complete lattice L, given conditions in [14] for an equivalence relation ∼ on mdR (L)

are equivalent. So condition is weakened in our work. A metric which is consistent with

the Euclidean metric is defined by using two-sided metrics. Also, an example is given for

L-Fuzzy metric.
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§1. Introduction

Firstly, we give the concepts of L-fuzzy real number and equivalence relation.

Definition 1.1([11]) Let (L,≤) be a complete lattice. Then, λ ∈ LR is called L-fuzzy real

number ⇔
(i) ∃x0 ∈ R such that λ (x0) = 1;

(ii) For all a ∈ L, λ[a] level subset is closed interval.

Definition 1.2([9]) Let (L,≤) be a complete lattice and

mdR (L) =

{
λ ∈ LR :

∨
t∈R

λ (t) = 1,
∧
t∈R

λ (t) = 0, λ monotonous decreasing

}
.

For ∀λ ∈ mdR (L) and all t ∈ R, let

λ (t−) :=
∧
s<t

λ (s) and λ (t+) :=
∨
s>t

λ (s).

Then, an equivalence relation “ ∼ ” on mdR (L) is defined as follow:

1Received August 5, 2022, Accepted September 15, 2022.
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for λ, µ ∈ mdR (L),

λ ∼ µ :⇔ ∀t ∈ R, λ (t−) = µ (t−) , λ (t+) = µ (t+) .

The set of equivalence classes containing λ is denoted by

[λ] := {µ ∈ mdR (L) : µ ∼ λ} .

Let R [L]right :=
{

[λ] : λ ∈ mdR (L)right

}
be set of all equivalence classes with respect to

” ∼ ” equivalence relation on mdR (L). R [L]right is called L-fuzzy real line.

Figure 1. [λ] ∈ R [L]right

The concepts of L-fuzzy unit interval and L-fuzzy real line have an important place in

L-fuzzy topoligical spaces. The metrics are very essential tools in various fields of sciences that

measure the distance or difference between two points. Firstly, the concept of the L-fuzzy unit

interval was given in 1975 by Hutton [7]. In 1982, Rodabaugh defined the fuzzy addition process

on the fuzzy real line taking L-complete lattice instead of [0, 1] [11].

In 1983, Lowen examined the algebraic structure of the L-fuzzy real line [10]. Wang gave the

necessary and sufficient condition on the convergence of infinite sums by giving infinite additive

concepts on the fuzzy real line [12]. S. Göhler ve Werner Göhler examined the topological

properties of the fuzzy real line by defining two special fuzzy metrics on the fuzzy real line [4].

Diamond [2] defined a metric for the triangular fuzzy numbers. Kaufmann et al. considered a

distance of two fuzzy numbers combined by the interval of a-cuts of fuzzy numbers [8]. Heilpern

proposed three definitions of the distance between two fuzzy numbers [5].

In 2007, Han-Liang Huang and Fu-Gui Shi gave the concepts of L-fuzzy numbers and

L-fuzzy convex sets on L completely distributive lattice [6]. Recently, Jian-zhong Xiao and

Xing-hua Zhu have studied the metric structure of the fuzzy real line by giving the semi-metric

concept on the fuzzy real towards the L completely distributive lattice [13]. Allahviranloo et

al. gave a metric based on modified Euclidean metric on interval numbers, for L − R fuzzy

numbers with fixed L(.) and R(.) is introduced [1]. Garćıa, J.G. and Kubiak showed how the

Hutton’s concept evolved [3].
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§2. Main Results for Metric on the L-Fuzzy Real Line

In this section, some new concepts and some theorems and results related to these concepts are

given as parallel to the concepts given in Definition 1.2. In addition, using theorems and the

results in this section, a metric on the L-fuzzy real line was created for complete lattice (L,≤).

Theorem 2.1 Let (L,≤) be a complete lattice, λ, µ ∈ mdR (L) and for t0 ∈ R, λ (t0−) 6=
µ (t0−) . Then,

(i) For ∀ε > 0, ∃s0 ∈ (t0 − ε, t0) : λ (t0−) � µ (s0) or µ (t0−) � λ (s0);

(ii) For ∀ε > 0, ∃s0 ∈ (t0 − ε, t0) : λ (s0+) 6= µ (s0+) .

Proof (i) Let λ (t0−) 6= µ (t0−) for t0 ∈ R. Let’s assume that

For ∃ε > 0 : ∀s ∈ (t0 − ε, t0) , λ (t0−) ≤ µ (s) and µ (t0−) ≤ λ (s) .

Then,

λ (t0−) ≤
∧

t0−ε<s<t0

µ (s) and µ (t0−) ≤
∧

t0−ε<s<t0

λ (s).

Since λ and µ are decreasing,

λ (t0−) ≤
∧

t0−ε<s<t0

µ (s) =
∧
s<t0

µ (s) = µ (t0−)⇒ λ (t0−) ≤ µ (t0−) (2.1)

and

µ (t0−) ≤
∧

t0−ε<s<t0

λ (s) =
∧
s<t0

λ (s) = λ (t0−)⇒ µ (t0−) ≤ λ (t0−) . (2.2)

From (2.1) and (2.2), λ (t0−) = µ (t0−). This contradicts the hypothesis of the theorem.

So,

∀ε > 0, ∃s0 ∈ (t0 − ε, t0) : λ (t0−) � µ (s0) or µ (t0−) � λ (s0) .

(ii) Let λ (t0−) 6= µ (t0−) for t0 ∈ R and ε > 0. From (i),

∃s0 ∈ (t0 − ε, t0) : λ (t0−) � µ (s0) or µ (t0−) � λ (s0) .

Without loss of generality, let λ (t0−) � µ (s0) . Since µ is decreasing, µ (s0+) ≤ µ (s0).

Hence,

λ (t0−) � µ (s0+) . (2.3)

On the other hand,

{λ (s) : s0 < s < t0} ⊂ {λ (s) : s < t0} .
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Therefore, ∨
s0<s<t0

λ (s) ≥
∧
s<t0

λ (s) = λ (t0−)

is obtained. So,

λ (t0−) ≤
∨

s0<s<t0

λ (s).

Since λ is decreasing,

λ (t0−) ≤
∨

s0<s<t0

λ (s) =
∨
s0<s

λ (s) = λ (s0+) .

From (2.3), since λ (t0−) � µ (s0+), λ (s0+) � µ (s0+). So, λ (s0+) 6= µ (s0+). �

Theorem 2.2 Let (L,≤) be a complete lattice, λ, µ ∈ mdR (L) and λ (t0+) 6= µ (t0+) for

t0 ∈ R. Then,

(i) For ∀ε > 0, ∃s0 ∈ (t0, t0 + ε) : µ (s0) � λ (t0+) or λ (s0) � µ (t0+);

(ii) For ∀ε > 0, ∃s0 ∈ (t0, t0 + ε) : λ (s0−) 6= µ (s0−) .

Proof (i) Let λ (t0+) 6= µ (t0+) for t0 ∈ R. Let’s assume that

For ∃ε > 0 : ∀s ∈ (t0, t0 + ε) , µ (s) ≤ λ (t0+) and λ (s) ≤ µ (t0+) .

Then, ∨
t0<s<t0+ε

µ (s) ≤ λ (t0+) and
∨

t0<s<t0+ε

λ (s) ≤ µ (t0+) .

Since λ and µ are decreasing,

λ (t0+) =
∨
t0<s

λ (s)=
∨

t0<s<t0+ε

λ (s) ≤ µ (t0+)⇒ λ (t0+) ≤ µ (t0+) (2.4)

and

µ (t0+) =
∨
t0<s

µ (s) =
∨

t0<s<t0+ε

µ (s) ≤ λ (t0+)⇒ µ (t0+) ≤ λ (t0+) . (2.5)

From (2.4) and (2.5), λ (t0+) = µ (t0+) is obtained. This contradicts the hypothesis of the

theorem. So,

∀ε > 0, ∃s0 ∈ (t0, t0 + ε) : µ (s0) � λ (t0+) or λ (s0) � µ (t0+) .

(ii) Let λ (t0+) 6= µ (t0+) for t0 ∈ R and ε > 0. From (i),

∃s0 ∈ (t0, t0 + ε) : µ (s0) � λ (t0+) or λ (s0) � µ (t0+) .
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Without loss of generality, let λ (s0) � µ (t0+) . Since λ is decreasing, λ (s0) ≤ λ (s0−).

Hence,

λ (s0−) � µ (t0+) . (2.6)

On the other hand,

{µ (s) : t0 < s < s0} ⊂ {µ (s) : t0 < s} .

Therefore, ∧
t0<s<s0

µ (s) ≤
∨
t0<s

µ (s) = µ (t0+)

is obtained. So,
∧

t0<s<s0

µ (s) ≤ µ (t0+). Since µ is decreasing,

µ (s0−) =
∧
s<s0

µ (s) =
∧

t0<s<s0

µ (s) ≤ µ (t0+) .

Hence µ (s0−) ≤ µ (t0+).

From (2.6), since λ (s0−) � µ (t0+), λ (s0−) � µ (s0−). So, λ (s0−) 6= µ (s0−). �

The following result is obtained from Theorem 2.1(ii) and Theorem 2.2(ii).

Corollary 2.1 Let (L,≤) be a complete lattice, λ, µ ∈ mdR (L). Then

λ (t0−) 6= µ (t0−) for a t0 ∈ R ⇔ λ (s0+) 6= µ (s0+) for a s0 ∈ R.

Theorem 2.3 Defined as maping dright : R [L]right × R [L]right → [0,+∞) is a metric on set

R [L]right.

dright ([λ] , [µ]) := sup
{∣∣∣∨ {t : λ(t) ≥ k} −

∨
{t : µ(t) ≥ k}

∣∣∣ : k ∈ L\ {0}
}
.

Figure 2. R[L]right; dright

Proof (i) Let’s show that [λ] = [µ]⇒ dright ([λ] , [µ]) = 0. Let k ∈ L\ {0} be an arbitrary
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and constant. Let’s define as

t1 :=
∨

λ(t)≥k

t, t2 :=
∨

µ(t)≥k

t

and

A := {t : λ(t) ≥ k} , B := {t : µ(t) ≥ k} .

Then, ∃t′ ∈ B : t2− ε < t′ for arbitrary and constant ε > 0. So, µ(t′) ≥ k and t2− ε < t′. Since

[λ] = [µ], λ (t′−) = µ (t′−).

On the other hand, since µ is decreasing, µ (t′) ≤ µ (t′−). Hence,

k ≤ µ (t′) ≤ µ (t′−) = λ (t′−) .

That is, k ≤ λ (t′−). On the other hand,

∃t∗ ∈ R : t2 − ε < t∗ < t′ for ε > 0.

Since k ≤ λ (t′−) and λ is decreasing, k ≤ λ (t′−) =
∧
s<t′

λ(s) ≤ λ (t∗). So, t2 − ε < t∗ and

t∗ ∈ A are obtained. Since ε > 0 is arbitrary, t2 ≤
∨
A = t1. Hence,

t2 ≤ t1. (2.7)

Now, let’s show that t1 ≤ t2 and ∃t′ ∈ A : t1 − ε < t′ for arbitrary and constant ε > 0.

So λ (t′) ≥ k and t1 − ε < t′. Since [λ] = [µ], λ (t′−) = µ (t′−). On the other hand, since λ is

decreasing, λ (t′) ≤ λ (t′−). So k ≤ λ (t′) ≤ λ (t′−) = µ (t′−). That is, k ≤ µ (t′−).

On the other hand,

∃t∗ ∈ R : t1 − ε < t∗ < t′ for ε > 0.

Since, k ≤ µ (t′−) and µ is decreasing k ≤ µ (t′−) =
∧
s<t′

µ(s) ≤ µ (t∗) is obtained. Hence,

t1 − ε < t∗ and t∗ ∈ B is obtained. Since ε > 0 is arbitrary, t1 ≤
∨
B = t2. So

t1 ≤ t2. (2.8)

From (2.7) and (2.8), t1 = t2 is obtained. Since k ∈ L\ {0} is arbitrary,

dright ([λ] , [µ]) = 0.

Conversely, let’s show that dright ([λ] , [µ]) = 0 ⇒ [λ] = [µ]. In fact, let’s assume that

[λ] 6= [µ]. In this case,

∃t0 ∈ R : λ (t0−) 6= µ (t0−) or λ (t0+) 6= µ (t0+) .
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From Corollary 2.1, λ (t0−) 6= µ (t0−). Then, for a := µ (t0−) =
∧
s<t0

µ(s),

a �
∧
s<t0

λ(s) or a �
∧
s<t0

λ(s)

is written. Without loss of generality, let’s assume that a �
∧
s<t0

λ(s). Then,

∃s0 ∈ R : s0 < t0 and a � λ (s0) . (2.9)

Let A := {t : λ (t) ≥ a} and B := {t : µ (t) ≥ a}. Then, there is the assertion
∨
B ≥ t0.

Notice that ∃s′ ∈ R : t0 − ε < s′ < t0 for all ε > 0, µ (s′) ≥
∧
s<t0

µ(s) = a. Hence µ(s′) ≥ a. So

s′ ∈ B. Since ε > 0 is arbitrary, t0 ≤
∨
B.

According to hypothesis, since

dright ([λ] , [µ]) = sup
{∣∣∣∨ {t : λ(t) ≥ k} −

∨
{t : µ(t) ≥ k}

∣∣∣ : k ∈ L\ {0}
}

= 0,

and
∨

µ(t)≥a
t =

∨
λ(t)≥a

t. Hence,

t0 ≤
∨
B =

∨
µ(t)≥a

t =
∨
A⇒ t0 ≤

∨
A.

So, ∃t′ ∈ A : t0 − ε < t′ for ε := t0 − s0 > 0. From here a ≤ λ(t′) and s0 < t′. Since λ is

decreasing, a ≤ λ(t′) and λ(t′) ≤ λ(s0). So a ≤ λ(s0). This contradicts (2.9). So [λ] = [µ] is

obtained.

(ii) It is clearly that dright ([λ] , [µ]) = dright ([µ] , [λ]).

(iii) Let’s show that dright ([λ] , [η]) ≤ dright ([λ] , [µ]) + dright ([µ] , [η]) as follows:

Let’s define

tλ (k0) :=
∨

λ(t)≥k0

t, tµ (k0) :=
∨

µ(t)≥k0

t, tη (k0) :=
∨

η(t)≥k0

t

for arbitrary k0 ∈ L (k0 6= 0). Then,

|tλ (k0)− tη (k0)| ≤ |tλ (k0)− tµ (k0)|+ |tµ (k0)− tη (k0)| .

Here,

sup
k∈L,k>0

|tλ (k)− tη (k)| ≤ sup
k∈L,k>0

|tλ (k)− tµ (k)|+ sup
k∈L,k>0

|tµ (k)− tη (k)| .

As a result,

dright ([λ] , [η]) ≤ dright ([λ] , [µ]) + dright ([µ] , [η])

is obtained. �
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Definition 2.3 Let (L,≤) be a complete lattice, λ ∈ LR and

miR (L) :=

{
λ ∈ LR :

∨
t∈R

λ (t) = 1,
∧
t∈R

λ (t) = 0, λ is monotonous increasing

}
.

For all λ ∈ miR (L) and all ∀t ∈ R let,

λ (t−) :=
∨
s<t

λ (s) and λ (t+) :=
∧
s>t

λ (s),

Then, an equivalence relation “ ∼ ” on miR (L) is defined as following:

for λ, µ ∈ miR (L) ,

λ ∼ µ :⇔ ∀t ∈ R, λ (t−) = µ (t−) , λ (t+) = µ (t+)

and the set of equivalence classes containing λ is defined as

[λ] := {µ ∈ miR (L) : µ ∼ λ} ,

the set of all equivalence classes with respect to “ ∼ ” equivalence relation on miR (L) is defined

as

R [L]left := {[λ] : λ ∈ miR (L)} .

Figure 3. [λ] ∈ R [L]left

Theorem 2.4 Let (L,≤) be a complete lattice, λ, µ ∈ miR (L) and for t0 ∈ R, λ (t0+) 6=
µ (t0+) . Then,

(i) For ∀ε > 0, ∃s0 ∈ (t0, t0 + ε) : λ (t0+) � µ (s0) or µ (t0+) � λ (s0);

(ii) For ∀ε > 0, ∃s0 ∈ (t0, t0 + ε) : λ (s0−) 6= µ (s0−) .

Proof The proof of this theorem is similar to Theorem 2.1. �

Theorem 2.5 Let (L,≤) be a complete lattice, λ, µ ∈ miR (L)left and for t0 ∈ R, λ (t0−) 6=
µ (t0−) . Then,

(i) For ∀ε > 0, ∃s0 ∈ (t0 − ε, t0) : µ (s0) � λ (t0−) or λ (s0) � µ (t0−);
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(ii) For ∀ε > 0, ∃s0 ∈ (t0 − ε, t0) : µ (s0+) 6= λ (s0+) .

Proof The proof is similar to Theorem 2.2. �

The following result can be obtained from the Theorem 2.4(ii) and Theorem 2.5(ii).

Corollary 2.2 Let (L,≤) be a complete lattice, λ, µ ∈ miR (L). Then

λ (t0−) 6= µ (t0−) for a t0 ∈ R⇔ λ (s0+) 6= µ (s0+) for a s0 ∈ R.

Theorem 2.6 Defined as the mapping dleft : R [L]left×R [L]left → [0,+∞) is a metric on the

set R [L]left.

dleft ([λ] , [µ]) := sup
{∣∣∣∧ {t : λ(t) ≥ k} −

∧
{t : µ(t) ≥ k}

∣∣∣ : k ∈ L\ {0}
}
.

Figure 4.
(
R [L]left , dleft

)
Definition 2.4 λ ∈ LR is called L-fuzzy number if the following conditions satisfy:

(1) ∃x0 ∈ R : λ (x0) = 1;

(2) ∀s < s′ ≤ x0, λ (s) ≤ λ (s′) and
∧
t≤x0

λ (t) = 0;

(3) ∀x0 ≤ s < s′, λ (s) ≥ λ (s′) and
∧
x0≤t

λ (t) = 0.

The set of L-fuzzy numbers given this definition is denoted by FR [L].

Figure 5. [λ] ∈ FR [L]

Example 2.1 A real number r0 ∈ R given in the classical sense is expressed as follows on the
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set FR [L] :

λ (x) =

 1, x = r0

0, x 6= r0

.

Figure 6. r0 ∈ FR [L]

After that, for ease of typing, we shall use λ instead of [λ].

Definition 2.5 Let λ ∈ FR [L]. Then, mappings λ−, λ
− : R→ L is defined as follows:

λ− (x) :=


1, x < x0

λ (x) , x0 ≤ x
, λ− (x) :=


λ (x) , x ≤ x0

1, x0 < x
.

Theorem 2.7 Let λ, µ ∈ FR [L]. Then

λ = µ⇔ λ− = µ− and λ− = µ−.

Proof The “⇒” part is evident.

The “⇐” part should be ∃x1, x2 ∈ R such that λ (x1) = 1 and µ (x2) = 1. Now, let

λ− (x) =

 1, x < x1

λ (x) , x1 ≤ x
, λ− (x) =

 λ (x) , x ≤ x1

1, x1 < x

µ− (x) =

 1, x < x2

µ (x) , x2 ≤ x
, µ− (x) =

 µ (x) , x ≤ x2

1, x2 < x
.

Then

λ− (x) = µ− (x)⇒ λ (x) = µ (x) for all x ∈ R satisfied x1 < x, (2.10)

λ− (x) = µ− (x)⇒ λ (x) = µ (x) for all x ∈ R satisfied x < x1. (2.11)

This completes the proof. �
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Theorem 2.8 Let λ, µ ∈ FR [L] and

dright (λ−, µ−) = sup
{∣∣∣∨ {t : λ− (t) ≥ k} −

∨
{t : µ− (t) ≥ k}

∣∣∣ : k ∈ L\ {0}
}
,

dleft
(
λ−, µ−

)
= sup

{∣∣∣∧{
t : λ− (t) ≥ k

}
−
∧{

t : µ− (t) ≥ k
}∣∣∣ : k ∈ L\ {0}

}
,

where dright and dleft are the metrics on the sets R [L]right and R [L]left respectively and d

defined by

d (λ, µ) := max
{
dright (λ−, µ−) , dleft

(
λ−, µ−

)}
,

is a metric on FR [L].

Figure 7. (FR [L] , d)

Proof (i) Let’s show that d (λ, µ) = 0⇔ λ = µ.

First, the assertion “⇒”. Let d (λ, µ) = 0. From definition,

dright (λ−, µ−) = 0 and dleft
(
λ−, µ−

)
= 0.

Since dright and dleft are metrics, λ− = µ− and λ− = µ−. From Theorem 2.7, λ = µ.

Second, the assertion “⇐”. Let λ = µ. From Theorem 2.7, λ− = µ− and λ− = µ−. Since

dright and dleft are the metrics

dright (λ−, µ−) = 0 and dleft
(
λ−, µ−

)
= 0.

Hence,

d (λ, µ) = max
{
dright (λ−, µ−) , dleft

(
λ−, µ−

)}
.

That is,

d (λ, µ) = 0.

(ii) d (λ, µ) = d (µ, λ) .

(iii) Let’s show that d (λ, η) ≤ d (λ, µ) + d (µ, η). Let

d (λ, η) = max
{
dright (λ−, η−) , dleft

(
λ−, η−

)}
.

Without loss of generality, we can take

dright (λ−, η−) ≥ dleft
(
λ−, η−

)
.



Metric on L-Fuzzy Real Line 59

Since dright is a metric and

d (λ, η) = dright (λ−, η−) ≤ dright (λ−, µ−) + dright (µ−, η−) ≤ d (λ, µ) + d (µ, η) ,

following inequality is obtained:

d (λ, η) ≤ d (λ, µ) + d (µ, η) .

This completes the proof. �

Example 2.2 The real numbers 3, 7 ∈ R given in the classical sense is expressed as follows on

the set FR [L] :

λ3 (x) :=

 1, x = 3

0, x 6= 3
and λ7 (x) :=

 1, x = 7

0, x 6= 7

λ3,λ7 ∈ FR [L] .

d (λ3, λ7) = max
{
dright ((λ−)3 , (λ−)7) , dleft

((
λ−
)

3
,
(
λ−
)

7

)}
= max {4, 4} = 4,

where

(λ−)3 (x) :=

 1, x ≤ 3

0, x > 3
,

(
λ−
)

3
(x) :=

 1, x ≥ 3

0, x < 3

and

(λ−)7 (x) :=

 1, x ≤ 7

0, x > 7

(
λ−
)

7
(x) :=

 1, x ≥ 7

0, x < 7

are defined. Specially, since I = [0, 1] is complete, I = [0, 1] can be taken instead of L-complete

lattice. In this case, dright defined in Theorem 2.3, dleft defined in Theorem 2.6 and d defined

in Theorem 2.8 satisfy the metric conditions.
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functions of Xand X∗.
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§1. Introduction

Codes are an essential tool in information theory, and the theory of variable length codes is

firmly related to combinatorics on words. The object of the theory is to study factorisation

of words into sequences of words taken from a given set X. In a free monoid X∗ generated

by a code X there does not exist two distinct factorisations in X for any word. It is not

always easy to verify a given set of words is a code. Some examples of the variable length

codes are the Huffman coding, Limpel-Zev-Welch code and Arithmetic coding. The thoery

of variable length codes takes its origin in the framework of the theory of information, since

Shannon’s early works in the 1950’s. An algebraic theory of codes was subsequently initiated

by M. P. Schutzenberger (see [17]). Variable-length codes occur frequently in the domain of

data compression. Statistical data compression methods employ variable-length codes, with the

short codes assigned to symbols or groups of symbols that appear more often in the data (have

a higher probability of occurrence).

In this paper, we are interested in a particular type of variable lengths codes, called group

codes, more precisely we describe in terms of different parameters the generating functions of

the group codes and their stars.

The remainder of this paper is organized as follows. In Section 2, we introduce the notations

for the rest of the paper and give basic definition of terms that will be helpful as we proceed.

In Section 3, we show several formulas for the generating functions of the group codes and its

1Received August 14, 2022, Accepted September 16, 2022.
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stars. Finally, we draw our conclusions in Section 4.

§2. Preliminaries

There is an extremely powerful tool in discrete mathematics used to manipulate sequences

called generating function. A generating function is just a different way of writing a sequence

of numbers. Generating functions transform problems about sequence into problems about

functions. This is great because we’ve got piles of mathematical machinery for manipulating

functions. Let (gn)n≥0 be a sequence of numbers. The generating function associated to this

sequence is the series G (x) =
∑
n≥0

gnx
n. The correspondence between a sequence and its

generating function with a double-sided arrow as follows:

〈g0, g1, g2, g3, · · · 〉 ←→ G (x) = g0 + g1x+ g2x
2 + g3x

3 · · · .

The magic of generating functions is that we can carry out all sorts of manipulations

on sequences by performing mathematical operations on their associated generating functions.

Let’s experiment with various operations and characterize their effects in terms of sequences.

Notice that,

1. If 〈g0, g1, g2, g3, · · · 〉 ←→ G (x) and a ∈ R then,

〈g0, g1, g2, g3, · · · 〉 ←→ G (x) .

2. If 〈g0, g1, g2, g3, · · · 〉 ←→ G (x) then

〈 ︷ ︸︸ ︷
k zeroes

0, 0, · · · , 0, g0, g1, g2, g3, · · · ,

〉
←→ xkG (x) .

3. If 〈g0, g1, g2, g3, · · · , 〉 ←→ G (x) then 〈g1, 2g2, 3g3, · · · , 〉 ←→ G
′
(x).

4. If 〈g0, g1, g2, g3, · · · 〉 ←→ G (x) and 〈f0, f1, f2, f3, · · · 〉 ←→ F (x) then

〈g0 + f0, g1 + f1, g2 + f2, g3 + f3, · · · 〉 ←→ G (x) + F (x) .

5. If 〈g0, g1, g2, g3, · · · 〉 ←→ G (x) and 〈k0, k1, k2, k3, · · · 〉 ←→ K (x) then

〈m0,m1,m2,m3, · · · 〉 ←→ G (x)K (x) ,

where

mn = g0kn + g1kn−1 + g2kn−2 + · · ·+ gnk0.
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Now, le us recall the power series expansion of (1 + x)
α

, valid for α ∈ R,

(1 + x)
α

= 1 + αx+ · · ·+

 α

k

+ · · · ,

where, by convention,

 α

k

 =
α (α− 1) · · · (α− k + 1)

k!
.

A semigroup is a pair (S, ◦), where S is a set and ◦ an associative binary operation on S.

If the set S contains an element 1S such that 1S ◦ s = s ◦ 1S = s for all s ∈ S we call (S, ◦, 1S)

a monoid and refer to the element 1S as the one ore the identity.

A semigroup morphism from a semigroup (S, ◦) into a semigroup (T,4) is a mapping

h : S −→ T such that h (u ◦ v) = h (u)4h (u).

Let X and Y be two subsets of a semigroup (S, ◦). The product of X and Y is the set

X ◦ Y = {x ◦ y : x ∈ X, y ∈ Y }. We denote by X+ the subsemigroup generated by X, that is

X+ = {x1 ◦ · · · ◦ xn : n ≥ 1, x1 ∈ X}. If S is a monoid, we also define X∗ = X+ ∪ {1S} which

is the submonoid of S generated by X.

Let A denote a finite set of symbols. The elements of A are called letters and the set A is

called an alphabet. A finite word over A is a finite sequence of letters u = (a1, a2, · · · , an) of

elements of A denoted by the concatenation w = a1a2 · · · an. The integer n = |w| is the length

of the word w. For example, the finite sequences 00110 and 110 are two words over the binary

alphabet {0, 1} with |00110| = 5 and |110| = 3. The empty sequence () of length 0 is called the

empty word and is denoted by ε. The set A∗ of all words over A equipped with the operation of

concatenation has a structure of a monoid with the empty word ε as a neutral element, called

the free monoid on A. We denote by A+ = A∗ − {ε} the free semigroup over A.

For example, {0, 1, 2}∗ = {ε, 0, 1, 2, 00, 01, 02, 11, 12, 20, 21, · · · }. If a is a letter of the alpha-

bet A, for any word w = a1a2 · · · ak of A∗, we denote by |u|a = Card {i = 1, 2, · · · , k : ai = a},
the number of the occurrences of a in the word u. For example, we have |00110|0 = 3 and

|00110|1 = 2 [8].

For X ⊂ A∗, we define X0 = {ε} , Xn+1 = XnX (n ≥ 0) and X∗ =
⋃
n≥0

Xn. Note that,

any submonoid M of A∗ has a unique minimal generating set (M − ε)− (M − ε)2
.

Given two words u,w ∈ A∗, we say that u is factor (prefix, suffix) of w if and only if we have

w ∈ A∗uA∗ (w ∈ uA∗, w ∈ A∗u). Given a subset L of A∗, we denote by F (L) (P (L) , S (L)),

the set of the words are factor (prefix, suffix) of some word in L.

A homomorphism between the free monoids A∗ and Γ∗ is an application h : A∗ −→ B∗

satisfying h(uv) = h(u)h(v) for all u, v ∈ A∗. Note that, the homomorphism h is completely

determined by the images of letters of A in B∗, i.e, h(a) for any a belong to A.

For x, y ∈ A∗, we define

x−1y = {z ∈ A∗ : xz = y} and xy−1 = {z ∈ A∗ : x = zy} .
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For subsets X,Y of A∗, this notation is extended to

X−1Y =
⋃
x∈X

⋃
y∈Y

x−1y and XY −1 =
⋃
x∈X

⋃
y∈Y

xy−1.

A set X ⊂ A∗ is a code if any word in X+ can be written uniquely as a product of

words in X, that is, has a unique factorisation in words in X, i.e., if for all m,n ≥ 1 and

(xi)i=1,··· ,n , (yi)i=1,··· ,m the condition

x1x2 · · ·xn = y1y2 · · · ym impliesn = m and xi = yi for i = 1, · · · , n.

Any code X satisfy the Kraft inequality∑
x∈X

(Card (A))
−|x| ≤ 1

and for any sequence l1, · · · , ln of positive integers such that

i=n∑
i=1

(Card (A))
−li ≤ 1,

there exists a prefix code X = {x1, · · · , xn} over A such that |xi| = li for all i ∈ {1, · · · , n}.The

basic question to be asked is “When is a given subset X of A∗ a variable length code?”.

This was answered by Sardinas and Patterson [3]. Define recursively subsets Un of A∗ as

follows:  U0 = X−1X − {ε}

Un+1 = U−1
n X ∪X−1Un for n ≥ 0,

where ε denotes the identity of A∗ and X−1X =
⋃
x∈X

x−1X. We have

• If ε ∈ Un, then X is not a variable length code;

• If Un+1 = Un, then X is a variable length code [1, 3].

We say that, a code X is maximal if and only if for any word z /∈ X the set X ∪{z} cannot

be a code.

A subset X of A∗ is called prefix (suffix) if X ∩XA+ = ∅ (resp. X ∩XA+ = ∅). A subset

X of A∗ is bi-prefix if it is both suffix and prefix. A code X is complete if and only if any word

of A∗ is a factor of some word in X∗.

For any set X ⊂ A∗, the generating function of X is

GX (z) =
∑
n≥0

gnz
n,

where

gn = Card (X ∩An) .
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Notice that if X is a code, then [4]

GX∗ =
1

1−GX
.

The sequence (gn)n≥0 is called the length distribution of X.

Let X,Y ⊂ A∗. If X and y are disjoint, then GX∪Y = GX +GY . Similarly, if the product

of X and Y is unambiguous, that is whenever xy = x′y′ with x, x′ ∈ X, y, y′ ∈ Y imply

x = x′, y = y′, then GXY = GXGY .

§3. Group Codes and Their Generating Functions

The following propositions from [2] gives a methods to construct the group codes.

Proposition 3.1 Let G be a group and H a subgroup of G. Let Ψ : A∗ −→ G be a morphism.

Let X∗ = Ψ−1(H) with X the minimal generator the set X∗. We have,

(1) The submoinoi X∗ is unitary on the right and on the left, that is whenever xy ∈ X∗, x ∈
X∗ then y ∈ X∗ and that is whenever xy ∈ X∗, y ∈ X∗ then x ∈ X∗;

(2) The set X is bi-prefix code;

(3) If Ψ is surjective, then X is a maximal bi-prefix code;

(4) If X is a code, then GX = 1− 1
GX∗

.

Proof (1) Suppose that xy ∈ X∗, y ∈ X∗, i.e, Ψ (xy) ∈ H and Ψ (x) ∈ H, from where

Ψ (y) = (Ψ (x))
−1

Ψ (xy) is in H then y ∈ X∗, so X∗ is unitary on the right. On the same way,

we prove that X∗ is unitary on the left.

(2) As X∗ is unitary on the right and on the left, then the set X is bi-prefix code.

(3) Suppose now that Ψ is surjective. If X∗ = A∗, then X = A, and hence (3) is proved.

Otherwise let w be any word in A∗, w /∈ X∗. Since Ψ is surjective (Ψ (A∗) = G), Ψ (w) is an

element of the group G, so there exists v ∈ A∗ such that Ψ (v) = (Ψ (w))
−1

. The words vw and

wv are in X∗ since Ψ (vw) = Ψ (wv) = 1G. Naturally wvw ∈ (X ∪ {w})∗, but the word wvw

admits two distinct factorizations in words of X ∪ {w}, that is wvw = w (vw) = (wv)w. The

set X ∪ {w} cannot be a code, for all w /∈ Z. Finally X is a maximal code.

(4) As GX∗ = 1
1−GX , then GX = 1− 1

GX∗
(GX∗ 6= 0). �

Notation 3.2 In the last case the set X is called a group code denoted by X (G,H)Ψ

Example 3.3 Consider the morphism of monoids Ψ : {a, b}∗ −→ (Z,+) defined by

Ψ(a) = 1,Ψ(b) = −1,Ψ(ε) = 0.

And then, ∀w ∈ {a, b}∗ we have Ψ(w) = |w|a − |w|b.
The mapping Ψ is surjective because ∀m ∈ Z,∃w ∈ {a, b}∗ such that Ψ(w) = m.

In fact, we have

(1) If m = 0 then w = ε;
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(2) If m > 0 then w = am;

(3) If m < 0 then w = b−m.

Let H = {0} the trivial subgroup of (Z,+). Then

X∗ = Ψ−1({0}) =
{
w ∈ {a, b}∗ : |w|a = |w|b

}
.

The set X∗ are the words over {a, b} having an equal number of occurrences of a and b

is a submonoid of {a, b}∗ generated by a bi-prefix code. Since any word of X∗ of length 2n is

obtained by choosing n positions among 2n, we have

GX∗ (z) =
∑
n≥0

 2n

n

 zn.

Then, the sequence


 2n

n


n≥0

is the length distribution of X∗.

We show that

GX∗ (z) =
∑
n≥0

 2n

n

 zn =
(
1− 4z2

)− 1
2 .

In fact, we have

(
1− 4z2

)− 1
2 =

∑
n≥0

 − 1
2

n

(−4z2
)n

=
∑
n≥0

(
− 1

2

) (
− 3

2

) (
− 5

2

)
· · ·
(
− 1

2 − n+ 1
)

n!
× (−1)

n × (4)
n ×

(
z2
)n

=
∑
n≥0

(−1)
n × 1× 3× 5 · · · (2n− 1)

2n × n!× n!
× (−1)

n × (2)
n × (2)

n × n!×
(
z2
)n

=
∑
n≥0

(2n)!

n!× n!

(
z2
)n

(note that (2)
n × n! = 2× 4× 6 · · · × 2n)

=
∑
n≥0

 2n

n

 z2n.

As

GX∗ =
(
1− 4z2

)− 1
2 ,

then

GX (z) =

(
1− 1

GX∗

)
(z) = 1−

(
1− 4z2

) 1
2 .
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We get that

GX (z) = 1−
(
1− 4z2

) 1
2 = 1−

∑
n≥0

 1
2

n

(−4z2
)n

= 1−

1 +
∑
n≥1

 1
2

n

(−4z2
)n = −

∑
n≥1

 1
2

n

(−4z2
)n

= −
∑
n≥1

(
1
2

) (−1
2

) (−3
2

) (−5
2

)
· · ·
(−1

2 − n+ 1
)

n!
× (−1)

n × (4)
n ×

(
z2
)n

= −
∑
n≥1

(
1
2

) (−1
2

) (−3
2

) (−5
2

)
· · ·
(
−(2n−3)

2

)
n!

× (−1)
n × (2)

n × (2)
n × z2n

= −
∑
n≥1

(−1)
n ( 1

2

) (
1
2

) (
3
2

) (
5
2

)
· · ·
(

(2n−3)
2

)
n!

× (−1)
n × (2)

n × (2)
n × z2n

=
∑
n≥1

(1) (3) (5) · · · (2n− 3)

n!× n!
× n!× (2)

n × z2n

=
∑
n≥1

(2n)!

(2n− 1)n!× n!
z2n =

∑
n≥1

2

n

 2n− 2

n− 1

 z2n.

Finally the generating function of X is

GX (z) =
∑
n≥1

2

n

 2n− 2

n− 1

 z2n.

Example 3.4 Let Ψ : A∗ −→ (Z/nZ,⊕) the morphism of monoids defined by

Ψ(a) = 1 for all a ∈ A, and Ψ(ε) = 0. And consequently, ∀w ∈ A∗ : Ψ(w) = |w|mod(n).

We have the mapping Ψ is surjective because ∀m ∈ Z/nZ, the word w = σm ∈ A∗, for all

σ ∈ A, satisfies the condition Ψ(σm) = m. And ifX∗ = Ψ−1(
{

0
}

) = {w ∈ A∗ : |w| ≡ 0mod (n)}
then, X = An. We have

GX (z) =
∑
n≥0

gnz
n,

where gn = Card (An) = (Card (A))
n
, then

GX (z) =
∑
n≥0

(Card (A))
n
zn =

1

1− (Card (A))
n
z
.

The generating series of X∗ is

GX∗ =
1

1−GX
=

1

1− 1
1−(Card(A))nz

=
(Card (A))

n
z − 1

(Card (A))
n
z

.
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Proposition 3.5 Let X (G,H)Ψ be an arbitrary group code. If the morphism Ψ is surjective,

then X (G,H)Ψ is complete.

Proof We show that any word of A∗ is a factor of some word in X∗. Let w ∈ A∗, the word

w is a factor of uwv ∈ X∗, where Ψ (u) = (Ψ (w))
−1

and Ψ (v) = Ψ (ε) = 1G. Consequently we

obtain A∗ = F (X∗). �

Example 3.6 Let Ψ : {a, b}∗ −→ (Z,+) defined by: Ψ(a) = 1,Ψ(b) = −1,Ψ(ε) = 0. And

then, ∀w ∈ {a, b}∗ we have Ψ(w) = |w|a − |w|b.
The morphism Ψ is surjective. In fact, let X∗ = Ψ−1({0}) =

{
w ∈ {a, b}∗ : |w|a = |w|b

}
.

Any word w of {a, b}∗ is a factor of uwv ∈ X∗, where Ψ (u) = (Ψ (w))
−1

= − (|w|a − |w|b) =

|w|b − |w|a and Ψ (v) = Ψ (ε) = 1G. otherwise the word is the factor of uwv ∈ X∗, where

|v|a = |w|b , |v|b = |w|a and for example v = ab. In this case, we have Ψ (uwv) = 0.

Example 3.7 Let Ψ : A∗ −→ (Z/nZ,⊕) the morphism of monoids defined by Ψ(a) = 1 for all

a ∈ A and Ψ(ε) = 0. Consequently, ∀w ∈ A∗ : Ψ(w) = |w|mod(n). In fact, the morphism Ψ

is surjective. Let X∗ = Ψ−1(
{

0
}

) = {w ∈ A∗ : |w| ≡ 0mod (n)}. Any word w of A∗ is a factor

of uwv ∈ X∗, where Ψ (u) = (Ψ (w))
−1

= − (|w|mod(n)) and v = ε.

§4. Conclusion

In this work, we have calculated the generating functions of some group codes and its stars.
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§1. Introduction

In differential geometry, Invariant submanifolds (I.S.M.) of a contact manifold have been a

major area of research for long time since the concept was borrowed from complex geometry.

A submanifold of a contact manifold is said to be totally geodesic if every geodesic in that

submanifold is also geodesic in the ambient manifold. The generalised Sasakian space forms

(G.S.S.F.) have been investigated by numerous researchers like Alegre and Carriazo [1], [2],

[3]. Thereafter, (G.S.S.F.) have been study by many authors [4], [9], [10], [14], [16], [19].

The conception of a semi-symmetric metric connection(S.S.M.C.) on a Riemannian manifold

is introduced by H. A. Hayden [15] and studied by various authors [17], [18], [33] and [34].

Submanifolds of a Riemannian manifold with S.S.M.C. was studied by Z. Nakao [22] and I.S.M.

which was established by B. Y. Chen [11], [12] and [13].

In this paper, we procure essential and competent condition for an I.S.M. of G.S.S.F with

S.S.M.C.to be totally geodesic. We have considered many geometrical conditions by using

1*Correspondent Author. This joint work is dedicated to the memory of Shree K. Jagan Mohan Reddy,
father-in-law of the fourth author.

2Received August 16, 2022, Accepted September 17, 2022.
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different curvature tensors such as concircular, Weyl and Conformal curvature tensor on I.S.M.

of G.S.S.F. with S.S.M.C.

An almost contact metric manifold M is called G.S.S.F if

R(X,Y )Z =f1{g(Y,Z)X − g(X,Z)Y }+ f2{g(X,φZ)φY

− g(Y, φZ)φX + 2g(X,φY )φZ}+ f3{η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ} (1.1)

for all vector fields X,Y, Z on M , where R is the curvature tensor of M of dimension (2n+ 1).

It is indicated as

M
2n+1

(f1, f2, f3), f1 =
c+ 3

4
, f2 = f3 =

c− 1

4
.

For readers who are unfamiliar with terminology, notations, recent overviews and intro-

ductions, we suggest the auhthors to refer the papers [5, 6, 7, 8, 20, 21, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32].

§2. Preliminaries

Let (M) be a (2n + 1) dimensional manifold equipped with almost contact metric structure

(φ, ξ, η, g) consisting of a (1,1) tensor field φ, a vector field ξ, a 1-form η and a Riemannian

metric g satisfying

η(ξ) = 1, η(X) = g(X, ξ), φ2X = −X + η(X)ξ, φξ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.2)

g(φX, Y ) + g(X,φY ) = 0, η(φX) = 0, (2.3)

for all vector fields X,Y .

In a G.S.S.F M
2n+1

(f11, f2, f3), the following hold:

(∇Xφ)Y = (f1 − f3)[g(X,Y )ξ − η(Y )X], (2.4)

∇Xξ = −(f1 − f3)φX, (2.5)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− {3f2 + (2n− 1)f3}η(X)η(Y ) (2.6)

for all X,Y, Z on M
2n+1

and ∇ is the Levi-Civita connection on M and S is the Ricci tensor

and r is the scalar curvature of M .

Let M be a submanifold immersed in a (2n + 1) dimensional contact metric manifold M

induced with metric g. TM is the tangent bundle of the manifold M and T⊥M is the set of

vector fields normal to M .

Gauss and Weingarten formula are given by,

∇XY = ∇XY + h(X,Y ), ∇XN = ∇⊥XN −ANX, (2.7)



Generalised Sasakian-Space-Form in Submanifolds 71

for any X,Y ∈ TM and N ∈ T⊥M , where ∇⊥ is the connection in the normal bundle. The

second fundamental form h and AN are related by

g(ANX,Y ) = g(h(X,Y ), N) (2.8)

for any X,Y ∈ Γ(TM), N ∈ T⊥M .

If h = 0, then the submanifold is said to be totally geodesic , which implies that the

geodesics in M are also geodesics in M . Also, we indicate Q(E, T ) a (0, k+ 2)-type tensor field

interpret as follows

Q(E, T )(X1, X2, . . . , Xk;X,Y ) = −T ((X ∧E Y )X1, X2, . . . , Xk)

− T (X1, (X ∧E Y )X2, · · · , Xk)− · · · − T (X1, X2, · · · , Xk−1, (X ∧E Y )Xk), (2.9)

where (X ∧E Y )Z = E(Y,Z)X − E(X,Z)Y .

A submanifold is said to be pseudo-parallel if

R(X,Y ) · h = fQ(g, h). (2.10)

In an (I.S.M.) of a (G.S.S.F.) N is identically zero. We have

h(X, ξ) = 0 (2.11)

for any vector field X tangent to M . In a (2n + 1) dimensional Riemannian manifold, The

concircular curvature tensor C, Weyl curvature tensor W and Conformal curvature tensor V

are given by,

C(X,Y )Z = R(X,Y )Z −
(

r

2n(2n+ 1)

)
[g(Y, Z)X − g(X,Z)Y ], (2.12)

W (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y,Z)X − S(X,Z)Y ], (2.13)

V (X,Y )Z =R(X,Y )Z − 1

2n− 1
[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX

− g(X,Z)QY ] +
r

2n(2n− 1)
[g(Y,Z)X − g(X,Z)Y ]. (2.14)

A semi-symmetric connection ∇̃ is called S.S.M.C. if it satisfies ∇̃g = 0.

The connection among the S.S.M.C. ∇̃ and the Riemannian connection ∇ of a G.S.S.F.

M
2n+1

(f1, f2, f3) is given by

∇̃XY = ∇XY + η(Y )X − g(X,Y )ξ. (2.15)

If R and R̃ are the Riemannian Curvature tensor of G.S.S.F. M
2n+1

(f1, f2, f3) with respect
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to Levi-civita connection and S.S.M.C. , then

R̃(X,Y )Z =R(X,Y )Z − α(Y,Z)X + α(X,Z)Y

+ g(Y,Z)JX + g(X,Z)JY, (2.16)

where α is a (0, 2) tensor field given by,

α(X,Y ) = (∇̃Xη)Y +
1

2
g(X,Y ), (2.17)

g(JX, Y ) = g(∇̃Xξ, Y ) +
1

2
g(X,Y ) = α(X,Y ), (2.18)

S̃(X,Y ) = S(X,Y )− (2n− 1)α(X,Y )− cg(X,Y ), (2.19)

where c = trace(α), S̃, r̃ and S,r are the Ricci tensor and scalar curvature with respect to

S.S.M.C. ∇̃ and M
2n+1

(f1, f2, f3) with respect to Levi-civita connection respectively.

§3. Invariant Submanifolds of Generalised Sasakian Space Form Satisfying C(X,Y ) ·
h = fQ(g, h)

Theorem 3.1 Let M be an I.S.M. of a G.S.S.F. M with semi-symmetric metric connection.

Then M satisfies C(X,Y ) · h = fQ(g, h) iff. M is totally geodesic provided

f 6=
[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
−
(

r

2n(2n+ 1)

)]
. (3.1)

Proof Let M be an I.S.M. of a G.S.S.F. with semi-symmetric metric connection satisfying

C(X,Y ) · h = fQ(g, h), (3.2)

Notice that (3.2) can be written as,

R⊥(X,Y )h(U, V )− h(C(X,Y )U, V )− h(U,C(X,Y )V )

= −f [h((X ∧g Y ), V ) + h(U, (X ∧g Y )V )]. (3.3)

Using (3.3) and also putting X = V = ξ, we get,

R⊥(ξ, Y )h(U, ξ)− h(C(ξ, Y )U, ξ)− h(U,C(ξ, Y )ξ)

= −f [g(Y, U)h(ξ, ξ)− g(ξ, U)h(Y, ξ) + g(Y, ξ)h(U, ξ)− g(ξ, ξ)h(U, Y )]. (3.4)

Applying (2.11) in (3.4), we acquire,

−h(C(ξ, Y )U, ξ)− h(U,C(ξ, Y )ξ) = f [h(U, Y )]. (3.5)
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By virtue of (2.12), (2.11), (2.15), (2.16), (2.17) (2.18) and (2.19), we obtain

h(C(ξ, Y )U, ξ) = 0 (3.6)

and

−h(U,C(ξ, Y )ξ) =

[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2

−
(

r

2n(2n+ 1)

)]
h(U, Y ). (3.7)

Substituting (3.6) and (3.7) in (3.5) we get[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
−
(

r

2n(2n+ 1)

)]
h(U, Y ) = f [h(U, Y )]. (3.8)

That is, h(U, Y ) = 0 implies M is totally geodesic provided,

f 6=
[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
−
(

r

2n(2n+ 1)

)]
. (3.9)

Conversely, If M is totally geodesic, then we obtain M fulfilling C(X,Y ) · h = fQ(g, h).

This completes the proof. �

§4. Invariant Submanifolds of Generalised Sasakian Space Form Satisfying

W (X,Y ) · h = fQ(g, h)

Theorem 4.1 Let M be an I.S.M. of a G.S.S.F. M with semi-symmetric connection. Then

M satisfies W (X,Y ) · h = fQ(g, h) iff M is totally geodesic, provided,

f 6=
[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
− 1

2n

(
2n(f1 − f3)− c− n+

1

2

)]
. (4.1)

Proof Let M be an I.S.M. of a G.S.S.F. with semi-symmetric connection satisfying

W (X,Y ) · h = fQ(g, h), (4.2)

Notice that (3.11) which follows as,

R⊥(X,Y )h(U, V )− h(W (X,Y )U, V )− h(U,W (X,Y )V

= −f [h((X ∧g Y ), V ) + h(U, (X ∧g Y )V )]. (4.3)



74 G.Somashekhara et al.

Taking X = V = ξ and using (2.9) we obtain,

R⊥(ξ, Y )h(U, ξ)− h(W (ξ, Y )U, ξ)− h(U,W (ξ, Y )ξ)

= −f [g(Y,U)h(ξ, ξ)− g(ξ, U)h(Y, ξ) + g(Y, ξ)h(U, ξ)− g(ξ, ξ)h(U, Y )]. (4.4)

Putting (2.11) in (4.4) we get,

−h(W (ξ, Y )U, ξ)− h(U,W (ξ, Y )ξ) = f [h(U, Y )]. (4.5)

By virtue of (2.13),(2.11), (2.15), (2.16), (2.17), (2.18) and (2.19), we get

h(W (ξ, Y )U, ξ) = 0 (4.6)

and

−h(U,W (ξ, Y )ξ) =

[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2

− 1

2n

(
2n(f1 − f3)− c− n+

1

2

)]
h(U, Y ). (4.7)

Substituting (4.6) and (4.7) in (4.5) we get,(
f1 − f3 −

1

2

)
φ(f1 − f3)− 3

2
− 1

2n
(2n(f1 − f3)− c− n

+
1

2
)h(U, Y ) = f [h(U, Y ). (4.8)

That is, h(U, Y ) = 0 implies M is totally geodesic provided,

f 6=
[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
− 1

2n

(
2n(f1 − f3)− c− n+

1

2

)]
. (4.9)

Conversely, If M is totally geodesic, then we get M satisfies W (X,Y ) · h = fQ(g, h). This

completes the proof. �

§5. Invariant Submanifolds of Generalised Sasakian Space Form Satisfying V (X,Y ) ·
h = fQ(g, h)

Theorem 5.1 Let M be an I.S.M. of a G.S.S.F. M with semi-symmetric connection. Then,

M satisfies V (X,Y ) · h = fQ(g, h) iff M is totally geodesic, provided,

f 6=
(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2

− 2

2n− 1

(
2n(f1 − f3)− c− n+

1

2

)
+

(
r

2n(2n− 1)

)
. (5.1)
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Proof Let M be an I.S.M. of a G.S.S.F. with semi-symmetric connection satisfying

V (X,Y ) · h = fQ(g, h). (5.2)

Notice that (5.2) can be written as,

R⊥(X,Y )h(U, V )− h(V (X,Y )U, V )− h(U, V (X,Y )V )

= −f [h((X ∧g Y ), V ) + h(U, (X ∧g Y )V )]. (5.3)

Putting X = V = ξ and using (2.9) we get,

R⊥(ξ, Y )h(U, ξ)− h(V (ξ, Y )U, ξ)− h(U, V (ξ, Y )ξ)

= −f [g(Y, U)h(ξ, ξ)− g(ξ, U)h(Y, ξ) + g(Y, ξ)h(U, ξ)− g(ξ, ξ)h(U, Y )]. (5.4)

Substituting (2.11) in (5.4) we obtain,

−h(V (ξ, Y )U, ξ)− h(U, V (ξ, Y )ξ) = f [h(U, Y )]. (5.5)

By virtue of (2.14), (2.15), (2.16), (2.17), (2.18) and (2.19) we get

h(V (ξ, Y )U, ξ) = 0 (5.6)

and

−h(U, V (ξ, Y )ξ) =

[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2

− 2

2n− 1

(
2n(f1 − f3)− c− n+

1

2

)
+

(
r

2n(2n− 1)

)]
h(U, Y ). (5.7)

Substituting (5.6) and (5.7) in (5.5) we get,[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
− 2

2n− 1

(
2n(f1 − f3)− c− n+

1

2

)
+

(
r

2n(2n− 1)

)]
h(U, Y ) = f [h(U, Y )]. (5.8)

That is, h(U, Y ) = 0 implies M is totally geodesic provided,

f 6=
(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
− 2

2n− 1

(
2n(f1 − f3)− c− n+

1

2

)
+

(
r

2n(2n− 1)

)
. (5.9)
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Conversely, If M is totally geodesic, then we obtain M comply with

V (X,Y ) · h = fQ(g, h). �

§6. Invariant Submanifolds of Generalised Sasakian Space Form Satisfying

C(X,Y ) · h = fQ(S, h)

Theorem 6.1 Let M be an I.S.M. of a G.S.S.F. M with semi-symmetric connection. Then

M satisfies C(X,Y ) · h = fQ(S, h) iff. M is totally geodesic provided,

f 6= 1

2n(f1 − f3)− c− n+
1

2

[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)

− 3

2
−
(

r

2n(2n+ 1)

)]
. (6.1)

Proof Let M be an I.S.M. of a G.S.S.F. with semi-symmetric connection satisfying

C(X,Y ) · h = fQ(S, h). (6.2)

Notice that (6.1) can be written as

R⊥(X,Y )h(U, V )− h(C(X,Y )U, V )− h(U,C(X,Y )V )

= −f [h((X ∧S Y ), V ) + h(U, (X ∧S Y )V )]. (6.3)

Putting X = V = ξ and using (2.9) we get,

R⊥(ξ, Y )h(U, ξ)− h(C(ξ, Y )U, ξ)− h(U,C(ξ, Y )ξ)

= −f [S̃(Y,U)h(ξ, ξ)− S̃(ξ, U)h(Y, ξ) + S̃(Y, ξ)h(U, ξ)− S̃(ξ, ξ)h(U, Y )]. (6.4)

Substituting (2.11), (2.12) in (6.4) we obtain,[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
−
(

r

2n(2n+ 1)

)
− f(S̃(ξ, ξ))

]
h(U, Y ) = 0. (6.5)

That is, h(U, Y ) = 0 implies M is totally geodesic provided,

f 6= 1

2n(f1 − f3)− c− n+
1

2

[(
f1 − f3 −

1

2

)

+ φ(f1 − f3)− 3

2
−
(

r

2n(2n+ 1)

)]
. (6.6)

This completes the proof. �



Generalised Sasakian-Space-Form in Submanifolds 77

§7. Invariant Submanifolds of Generalised Sasakian Space Form Satisfying

W (X,Y ).h = fQ(S, h)

Theorem 7.1 Let M be an I.S.M. of a G.S.S.F. M with semi-symmetric connection. Then

M satisfies W (X,Y ) · h = fQ(S, h) iff M is totally geodesic provided,

f 6= 1(
2n(f1 − f3)− c− n+

1

2

)[(f1 − f3 −
1

2

)
+ φ(f1 − f3)− 3

2

]
− 1

2n
. (7.1)

Proof Let M be an I.S.M. of a G.S.S.F. with semi-symmetric connection satisfying

W (X,Y ).h = fQ(S, h). (7.2)

We have

R⊥(X,Y )h(U, V )− h(W (X,Y )U, V )− h(U,W (X,Y )V )

= −f [h((X ∧S Y ), V ) + h(U, (X ∧S Y )V )]. (7.3)

Taking X = V = ξ and using (2.9) we acquire

R⊥(ξ, Y )h(U, ξ)− h(W (ξ, Y )U, ξ)− h(U,W (ξ, Y )ξ)

= −f [S̃(Y,U)h(ξ, ξ)− S̃(ξ, U)h(Y, ξ) + S̃(Y, ξ)h(U, ξ)− S̃(ξ, ξ)h(U, Y )]. (7.4)

Substituting (2.11), (2.13) in (7.4) we obtain[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
− 1

2n

(
2n(f1 − f3)− c− n+

1

2

)
− f(S̃(ξ, ξ))

]
h(U, Y ) = 0. (7.5)

We now have h(U, Y ) = 0 implies M2n+1 is totally geodesic provided,

f 6= 1(
2n(f1 − f3)− c− n+

1

2

)[(f1 − f3 −
1

2

)
+ φ(f1 − f3)− 3

2

]
− 1

2n
. (7.6)

This completes the proof. �

§8. Invariant Submanifolds of Generalised Sasakian Space Form Satisfying

V (X,Y ).h = fQ(S, h)

Theorem 8.1 Let M be an I.S.M. of a G.S.S.F. M with semi-symmetric connection. Then
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M satisfies V (X,Y ).h = fQ(S, h) iff. M is totally geodesic provided,

f 6= 1(
2n(f1 − f3)− c− n+

1

2

)[(f1 − f3 −
1

2

)
+ φ(f1 − f3)− 3

2

+
r

2n(2n− 1)

]
− 2

2n− 1
. (8.1)

Proof Let M be an I.S.M. of a G.S.S.F. with semi-symmetric connection satisfying

V (X,Y ).h = fQ(S, h). (8.2)

Notice that (8.2) can be written as

R⊥(X,Y )h(U, V )−h(V (X,Y )U, V )− h(U, V (X,Y )V )

= −f [h((X ∧S Y ), V ) + h(U, (X ∧S Y )V )]. (8.3)

Putting X = V = ξ and using (2.9), we have

R⊥(ξ, Y )h(U, ξ)− h(V (ξ, Y )U, ξ)−h(U, V (ξ, Y )ξ)

= −f [S̃(Y, U)h(ξ, ξ)− S̃(ξ, U)h(Y, ξ) + S̃(Y, ξ)h(U, ξ)− S̃(ξ, ξ)h(U, Y )]. (8.4)

By putting (2.14), (2.11) and (2.19) in (8.4) we get[(
f1 − f3 −

1

2

)
+ φ(f1 − f3)− 3

2
− 2

2n− 1

(
2n(f1 − f3)− c− n+

1

2

)

+
r

2n(2n− 1)
− f(S̃(ξ, ξ))

]
h(U, Y ) = 0. (8.5)

That is, h(U, Y ) = 0 implies M is totally geodesic provided

f 6= 1(
2n(f1 − f3)− c− n+

1

2

)[(f1 − f3 −
1

2

)
+ φ(f1 − f3)− 3

2

+
r

2n(2n− 1)

]
− 2

2n− 1
. (8.6)

This completes the proof. �
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Abstract: In this paper we introduced the new notion called block-line forest signed graph

of a signed graph and its properties are studied. Also, we obtained the structural character-

ization of this new notion and presented some switching equivalent characterizations.
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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of

Harary [1]. The non-standard will be given in this paper as and when required.

Given a graph G = (V,E), the block-line forest graph of G = (V,E), denoted BLFG(G),

is defined to be that graph with V (BLFG(G)) = E(G) ∪B, where B is set of blocks of G, and

any two vertices in V (BLFG(G)) are joined by an edge if, and only if, one corresponds to a

block of G and other to a line incident with it (see [4]).

To model individuals’ preferences towards each other in a group, Harary [2] introduced the

concept of signed graphs in 1953. A signed graph S = (G, σ) is a graph G = (V,E) whose

edges are labeled with positive and negative signs (i.e., σ : E(G) → {+,−}). The vertices

of a graph represent people and an edge connecting two nodes signifies a relationship between

individuals. The signed graph captures the attitudes between people, where a positive (negative

edge) represents liking (disliking). An unsigned graph is a signed graph with the signs removed.

Similar to an unsigned graph, there are many active areas of research for signed graphs.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the

signs of its edges; in other words, a cycle is positive if it contains an even number of negative

edges and negative if it contains an odd number of negative edges. A signed graph S is said

to be balanced if every cycle in it is positive. A signed graph S is called totally unbalanced if

every cycle in S is negative. A chord is an edge joining two non adjacent vertices in a cycle.

A marking of S is a function ζ : V (G) → {+,−}. Given a signed graph S one can easily

1Received August 14, 2022, Accepted September 18, 2022.
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define a marking ζ of S as follows: For any vertex v ∈ V (S),

ζ(v) =
∏

uv∈E(S)

σ(uv),

the marking ζ of S is called canonical marking of S. For more new notions on signed graphs

refer the papers (see [5, 9-22]).

The following are the fundamental results about balance, the second being a more advanced

form of the first. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be

empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent

conditions is satisfied:

(i)(Harary [2]) Its vertex set has a bipartition V = V1 ∪ V2 such that every positive edge

joins vertices in V1 or in V2, and every negative edge joins a vertex in V1 and a vertex in V2;

(ii)(Sampathkumar [6]) There exists a marking µ of its vertices such that each edge uv in

Γ satisfies σ(uv) = ζ(u)ζ(v)..

Switching S with respect to a marking ζ is the operation of changing the sign of every edge

of S to its opposite whenever its end vertices are of opposite signs.

Two signed graphs S1 = (G1, σ1) and S2 = (G2, σ2) are said to be weakly isomorphic (see

[24]) or cycle isomorphic (see [25]) if there exists an isomorphism φ : G1 → G2 such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(see [25]).

Theorem 1.2(T. Zaslavsky, [25]) Given a graph G, any two signed graphs in ψ(G), where

ψ(G) denotes the set of all the signed graphs possible for a graph G, are switching equivalent if

and only if they are cycle isomorphic.

§2. Block-Line Forest Signed Graph of a Signed Graph

Motivated by the existing definition of complement of a signed graph, we now extend the

notion of block-line forest graphs to signed graphs as follows: The block-line forest signed graph

BLFS(S) = (BLFG(G), σ′) of a signed graph S = (G, σ) is a signed graph whose underlying

graph is BLFG(G) and sign of any edge uv is BLFS(S) is ζ(u)ζ(v), where ζ is the canonical

marking of S. Further, a signed graph S = (G, σ) is called a block-line forest signed graph, if

S ∼= BLFS(S′) for some signed graph S′. The following result restricts the class of block-line

forest signed graphs.

Theorem 2.1 For any signed graph S = (G, σ), its block-line forest signed graph BLFS(S) is

balanced.

Proof Since sign of any edge e = uv in BLFS(S) is ζ(u)ζ(v), where ζ is the canonical
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marking of S, by Theorem 1.1, BLFS(S) is balanced. �

For any positive integer k, the kth iterated line-block signed graph, BLFSk(S) of S is

defined as follows:

BLFS0(S) = S, BLFSk(S) = BLFS(BLFSk−1(S)).

Corollary 2.2 For any signed graph S = (G, σ) and for any positive integer k, BLFSk(S) is

balanced.

Corollary 2.3 For any two signed graphs S1 and S2 with the same underlying graph, BLFS(S1) ∼
BLFS(S2).

In [23], Swamy et al. defined the line-block signed graph of a signed graph as follows:

The line-block signed graph LBS(S) = (LBG(G), σ′) of a signed graph S = (G, σ) is a signed

graph whose underlying graph is LBG(G) and sign of any edge uv is LBS(S) is ζ(u)ζ(v), where

ζ is the canonical marking of S.

Further, a signed graph S = (G, σ) is called a line-block signed graph, if S ∼= LBS(S′) for

some signed graph S′. The following result restricts the class of line-block signed graphs.

Theorem 2.4(Swamy et al., [24]) For any signed graph S = (G, σ), its line-block signed graph

LBS(S) is balanced.

In [4], the authors remarked that BLFG(G) and LBG(G) are isomorphic if and only if G

is a block. We now characterize the signed graphs such that the block-line forest signed graphs

and its line-block signed graphs are cycle isomorphic.

Theorem 2.5 For any connected signed graph S = (G, σ), BLFS(S) ∼ LBS(S) if and only if

G is a block.

Proof Suppose BLFS(S) ∼ LBS(S). This implies, BLFG(G) ∼= LBG(G) and hence G is

a block.

Conversely, suppose that G is a block. Then BLFG(G) ∼= LBG(G). Now, if S any signed

graph with G is a block, By Theorem 2.1 and 2.4, BLFS(S) and LBS(S) are balanced and

hence, the result follows from Theorem 1.2. This completes the proof. �

The following result characterize signed graphs which are block-line forest signed graphs.

Theorem 2.6 A signed graph S = (G, σ) is a block-line forest signed graph if, and only if, S

is balanced signed graph and its underlying graph G is a block-line forest graph.

Proof Suppose that S is balanced and G is a block-line forest graph. Then there exists

a graph G′ such that BLFG(G′) ∼= G. Since S is balanced, by Theorem 1.1, there exists a

marking ζ of G such that each edge uv in S satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed

graph S′ = (G′, σ′), where for any edge e in G′, σ′(e) is the marking of the corresponding vertex

in G. Then clearly, BLFS(S′) ∼= S. Hence S is a block-line forest signed graph.
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Conversely, suppose that S = (G, σ) is a block-line forest signed graph. Then there exists

a signed graph S′ = (G′, σ′) such that BLFS(S′) ∼= S. Hence, G is the block-line forest graph

of G′ and by Theorem 2.1, S is balanced. �

The notion of negation η(S) of a given signed graph S defined in [3] as follows:

The negation η(S) of a given signed graph S has the same underlying graph as that of S

with the sign of each edge opposite to that given to it in S. However, this definition does not

say anything about what to do with nonadjacent pairs of vertices in S while applying the unary

operator η(.) of taking the negation of S.

For a signed graph S = (G, σ), the BLFS(S) is balanced (Theorem 2.1). We now examine,

the conditions under which negation η(S) of BLFS(S) is balanced.

Proposition 2.7 Let S = (G, σ) be a signed graph. If BLFG(G) is bipartite then η(BLFS(S))

is balanced.

Proof Since, by Theorem 2.1, BLFS(S) is balanced, it follows that each cycle C in

BLFS(S) contains even number of negative edges. Also, since BLFG(G) is bipartite, all cycles

have even length; thus, the number of positive edges on any cycle C in BLFS(S) is also even.

Hence η(BLFS(S)) is balanced. �
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tions among the notions. We have shown that these notions satisfy good extension, heredi-
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Key Words: Supra fuzzy bitopological space, quasi-coincidence, supra fuzzy Hausdorff

bitopological space, good extension, mappings, initial and final fuzzy bitopology.

AMS(2010): 47H10, 54H25.

§1. Introduction

The first concept of fuzzy sets proposed by Zadeh [24] in 1965. By using this concept Chang [2]

defined fuzzy topological spaces in 1968. The concept of bitopological spaces was introduced

by J.C. Kelly [5]. A set equipped with two topologies is called a bitopological spaces. The

supra topological spaces have been introduced by A.S. Mashhour at [10] in 1983. In topological

space, the arbitrary union condition is enough to have a supra topological space. Here every

fuzzy topological space is a supra fuzzy bitopological space but the converse is not always true.

Separation axioms [4,11,12, 14] are important parts in fuzzy topological spaces. Also many

researchers have contributed various types of separation axioms [6,13,15] on fuzzy bitopological

space which is introduced by Kandil and El-Shafee [6] in 1991. Among those axioms, T2− type

separation on fuzzy bitopological space is one and it has been introduced earlier by Abu Sufiya

et al. [22], Nouh [20], Amin et al. [1] and others. The purpose of this paper is to further

contribute to the development of supra fuzzy Hausdorff bitopological spaces especially on supra

fuzzy bitopological spaces. In this paper, we define Hausdorff supra fuzzy bitopological space

and showed that the definitions satisfy good extension property, hereditary property, order

preserving, productive and projective properties hold on the new concepts, initial and final

supra fuzzy bitopologies are discussed also.

1Received August 3, 2022, Accepted September 20, 2022.
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§2. Basic Notions and Preliminary Results

For the purpose of the main results, we need to introduce some definitions and notions.

Definition 2.1([24]) For a set X, a function u : X → [0, 1] is called a fuzzy set in X. For

every x ∈ X, u(x) represents the grade of membership of x in the fuzzy set u. Some authors

say that u is a fuzzy subset of X.

Definition 2.2([17]) A fuzzy set u ∈ X is called fuzzy singleton if and only if u(x) = r, 0 < r ≤ 1

for a certain x ∈ X an u(y) = 0 for all points y of X except x. The fuzzy singleton is denoted

by xr and x is its support. The class of all fuzzy singletons in x is denoted by S(X). If u ∈ IX

and xr ∈ S(X) then we say that xr ∈ u if and only if r ≤ u(x).

Definition 2.3([2]) A fuzzy singleton xr is said to be quasi-coincidence with u denoted by xrqu

if and only if u(x) + r > 1. If xr is not quasi-coincidence with u we write xr q̄u and defined as

u(x) + r ≤ 1.

Definition 2.4([2]) Let X and Y be two sets and f : X → Y be a function. For a fuzzy subset

v of Y , the inverse image of v under f is the fuzzy subset f−1(v) = v0f in X and is defined by

f−1(v)(x) = v(f(x)), for x ∈ X.

Definition 2.5([2]) Let X be a non empty set and t be the collection of fuzzy sets in IX . Then

t is called a fuzzy topology on X if it satisfies the following conditions:

(i) 1, 0 ∈ t;
(ii) If ui ∈ t for each i ∈ Λ, then ∪i∈Λui ∈ t;
(iii) If u1, u2 ∈ t then u1 ∩ u2 ∈ t.

If t is a fuzzy topology on X, then the pair (X, t) is called a fuzzy topological space (fst, in short)

and members of t are called t-open (or simply open) fuzzy sets. If u is open fuzzy set, then the

fuzzy sets of the form 1-u are called t-closed (or simply closed) fuzzy sets.

Definition 2.6([10]) Let X be a nonempty set. A subfamily t∗ of IX is said to be a supra fuzzy

topology on X if and only if

(i) 1, 0 ∈ t∗;
(ii) If ui ∈ t∗ for each i ∈ Λ, then ∪i∈Λui ∈ t∗,

Then the pair (X, t∗) is called a supra fuzzy topological spaces. The elements of t∗ are called

supra open sets in (X, t∗) and complement of supra open set is called supra closed set.

Definition 2.7([3]) Let (X, t∗) and (Y, s∗) be two topological space. Let t∗ and s∗ are associated

supra topological with t and s respectively and f : (X, t∗) → (Y, s∗) be a function. Then the

function f is a supra fuzzy continuous if the inverse image of each i.e., if for any v ∈ s∗, f−1(v) ∈
t∗. The function f is called supra fuzzy homeomorphic if and only if f is supra bijective and both

f and f−1 are supra fuzzy continuous.
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Definition 2.8([3]) The function f : (X, t∗)→ (Y, s∗) is called supra fuzzy open if and only if

for each supra open fuzzy set u in (X, t∗), f(u) is supra fuzzy set in (Y, s∗).

Definition 2.9([3]) The function f : (X, t∗) → (Y, s∗) is called supra fuzzy closed if and only

if for each supra closed fuzzy set u in (X, t∗), f(u) is supra closed fuzzy set in (Y, s∗).

Definition 2.10([8]) Suppose {Xi, i ∈ Λ}, be any collection of sets and X denoted the Cartesian

product of these sets, i.e., X =
∏
i∈ΛXi. Here X consists of all points p =< ai, i ∈ Λ >, where

ai ∈ Xi. For each j0 ∈ Λ, we define the projection πj0 : X −→ Xj0 by πj0(< ai : i ∈ Λ >) = aj0 .

These projection are used to defined the product supra topology.

Definition 2.11([21]) Let (X, t∗) be a topological space and t∗ be associated supra topology with

T. Then a function f : X −→ I is lower semi continuous if and only if {x ∈ X : f(x) > α} is

open for all α ∈ I.

Definition 2.12([3]) Let (X, t∗) be a supra fuzzy topological space and t∗ be associated supra

topology with t. Then the lower semi continuous topology on X associated with t∗ is ω(t∗) =

{µ : X → [0, 1], µ is supra lsc}.

Definition 2.13([17]) The function f : (X, t) → (Y, s) is called fuzzy continuous if and only

if for every v ∈ s, f−1(v) ∈ t, the function f is called fuzzy homeomorphic if and only if f is

bijective and both f and f−1 are fuzzy continuous.

Definition 2.14([18]) The function f : (X, t) → (Y, s) is called fuzzy open if and only if for

every open fuzzy set u in (X, t), f(u) is open fuzzy set in (Y, s).

Definition 2.15([23]) Let {(Xi, si, ti) : i ∈ Λ} is a family of fuzzy bitopological spaces. Then the

space (
∏
Xi,

∏
si,
∏
ti) is called the product fuzzy bitopological space of the family {(Xi, si, ti) :

i ∈ Λ}, where
∏
si and

∏
ti denote the usual product fuzzy topologies of the families {

∏
si : i ∈

Λ} and {
∏
ti : i ∈ Λ} of the fuzzy topologies respectively on X.

A fuzzy bitopological property P is called productive if the product of fuzzy bitopological

spaces of a family of fuzzy bitopological space, each having property P , has property P .

A fuzzy bitopological property P is called projective if for a family of fuzzy bitopological

space {(Xi, si, ti) : i ∈ Λ}, the product fuzzy bitopological space (
∏
Xi,

∏
si,
∏
ti) has property

P implies that each coordinate space has property P .

Definition 2.16([18]) Let (X,T ) be an ordinary topological space. The set of all lower semi

continuous functions from (X,T ) into the closed unit interval I equipped with the usual topology

constitutive a fuzzy topology associated with (X,T ) and is denoted by (X,ω(T )).

Definition 2.17([8]) The initial fuzzy topology on a set X for the family of fuzzy topological

spaces {(Xi, ti)i∈Λ} and the family of functions {fi : X → (Xi, ti)}i∈Λ is the smallest fuzzy

topology on X making each fi fuzzy continuous. It is easily seen that it is generated by the

family {f−1
i (ui) : ui ∈ ti}i∈Λ.

Definition 2.18([8]) The final fuzzy topology on a set X for the family of fuzzy topological spaces
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{(Xi, ti)i∈Λ} and the family of functions {fi : (Xi, ti) → X}i∈Λ is the finest fuzzy topology on

X making each fi fuzzy continuous.

Definition 2.19([19]) A bijective mapping from an fts (X, t) to an fts (Y, s) preserves the value

of a fuzzy singleton (fuzzy point).

Note 2.1 The preimage of any fuzzy singleton (fuzzy point) under bijective mapping preserves

its value.

§3. Definition and Properties of Supra Fuzzy T2 Bi-Topological Spaces

We define our notions in Supra fuzzy T2 bitopological spaces and show relations among the

notions.

Definition 3.1 A supra fuzzy bitopological space (X, s∗, t∗) is called

(a) SFPT2(i) if and only if for any pair xm, yn ∈ S(X) for distinct x and y, there exist

µ, η ∈ s∗ ∪ t∗ such that xmqµ, ynqη, and µ ∩ η = 0;

(b) SFPT2(ii) if and only if for any pair xm, yn ∈ S(X) for distinct x and y, there exist

µ, η ∈ s∗ ∪ t∗ such that xmqµ, ynqη and µq̄η;

(c) SFPT2(iii) if and only if any pair xm, yn ∈ S(X) for distinct x and y, there exist

µ, η ∈ s∗ ∪ t∗ such that xm ∈ µ, yn ∈ η and µq̄η;

(d) SFPT2(iv) if and only if any pair x, y ∈ X for distinct x and y, there exist µ, η ∈ s∗∪t∗

such that µ(x) = 1, η(y) = 1 and µ ∩ η = 0.

Lemma 3.1 For a supra fuzzy bitopological space (X, s∗, t∗) the following implications are true:

SFPT2(i)⇒ SFPT2(ii), SFPT2(iv)⇒ SFPT2(i), SFPT2(iv)⇒ SFPT2(ii)

but in general, the converse is not true.

Proof For SFPT2(i)⇒ SFPT2(ii), let (X, s∗, t∗) be a supra fuzzy bitopological space and

(X, s∗, t∗) is SFPT2(i). We have to prove that (X, s∗, t∗) is SFPT2(ii). Let xm, yn be fuzzy

singletons in X for distinct x and y. Since (X, s∗, t∗) is SFPT2(i) fuzzy bitopological space,

we have, there exist µ, η ∈ s∗ ∪ t∗ such that xmqµ, ynqη, and µ ∩ η = 0.

To prove (X, s∗, t∗) is SFPT2(ii), it is only needed to prove that µq̄η. Now, µ ∩ η = 0⇒
(µ ∩ η)(x) = 0 ⇒ min(µ(x), η(x)) = 0 ⇒ µ(x) = 0 or η(x) = 0 ⇒ µ(x) + η(x) ≤ 1 ⇒ µq̄η. It

follows that there exist µ, η ∈ s∗ ∪ t∗ such that xmqµ, ynqη, and µ ∩ η = 0. Hence it is clear

that (X, s∗, t∗) is SFPT2(ii).

To show (X, s∗, t∗) is SFPT2(ii) 6=⇒ (X, s∗, t∗) is SFPT2(i), we give a counterexample

following.

Counterexample. Let X = {x, y} and µ, η ∈ IX be given by µ(x) = 1− ε, µ(y) = 1− ε
3

and η(y) = 1− ε, η(x) = ε
3 , where ε = m

3 for m ∈ (0, 1]. Consider the supra fuzzy topologies s∗

and t∗ on X generated by {0, µ, η, 1}. Then, µ(x) = 1− m
3 ⇒ µ(x) + m

3 = 1⇒ µ(x) +m > 1⇒
xmqµ also, η(y) = 1− m

3 ⇒ η(y) + m
3 = 1 η(y) +m > 1⇒ ymqη and, µ(x) + η(x) = 1− ε+ ε

3
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⇒ µ(x) + η(x) = 1 − ε
3 ≤ 1 ⇒ µ(x) + η(x) ≤ 1 ⇒ µq̄η. Hence, (X, s∗, t∗) is SFPT2(ii). But

min(µ(x), η(x)) 6= 0⇒ µ ∩ η 6= 0 Thus, (X, s∗, t∗) is not SFPT2(i).

For SFPT2(iv) ⇒ SFPT2(i), let (X, s∗, t∗) be a supra fuzzy bitopological space and

(X, s∗, t∗) is SFPT2(i). We have to prove that (X, s∗, t∗) is SFPT2(i). Let xm, yn be fuzzy

singletons in X for distinct x and y. Since (X, s∗, t∗) is SFPT2(iv) fuzzy bitopological space,

we have, there exist µ, η ∈ s∗ ∪ t∗ such that µ(x) = 1, η(y) = 1, and µ ∩ η = 0.

To prove (X, s∗, t∗) is SFPT2(i), it is only needed to prove that xmqµ, ynqη. Now, µ(x) =

1 ⇒ µ(x) + m > 1, for any m ∈ (0, 1] ⇒ xmqµ. Similarly, we can prove that ynqη. It follows

that there exist µ, η ∈ s∗ ∪ t∗ such that xmqµ, ynqη and µ ∩ η = 0. Hence it is clear that

(X, s∗, t∗) is SFPT2(i).

To show (X, s∗, t∗) is SFPT2(i) 6=⇒ (X, s∗, t∗) is SFPT2(iv), we give a counterexample

following.

Counterexample. Let X = {x, y} and µ, η ∈ IX be given by µ(x) = 1− ε, µ(y) = 0 and

η(y) = 1−ε, η(x) = 0, where ε = m
3 for m ∈ (0, 1]. Consider the supra fuzzy topologies s∗ and t∗

on X generated by {0, µ, η, 1}. Then, µ(x) = 1− m
3 ⇒ µ(x) + m

3 = 1⇒ µ(x) +m > 1⇒ xmqµ.

Similarly, we can prove that ynqη. Also, min(µ(x), η(x)) = 0⇒ µ ∩ η = 0. Hence, (X, s∗, t∗) is

SFPT2(i). But µ(x) 6= 1, η(y) 6= 1 Thus, (X, s∗, t∗) is not SFPT2(iv).

For SFPT2(iv) ⇒ SFPT2(ii), let (X, s∗, t∗) be a supra fuzzy bitopological space and

(X, s∗, t∗) is SFPT2(iv). We have to prove that (X, s∗, t∗) is SFPT2(ii). Let xm, yn be fuzzy

singletons in X for distinct x and y. Since (X, s∗, t∗) is SFPT2(iv) fuzzy bitopological space,

we have, there exist µ, η ∈ s∗ ∪ t∗ such that µ(x) = 1, η(y) = 1, and µ ∩ η = 0.

To prove (X, s∗, t∗) is SFPT2(ii), it is only needed to prove that xmqµ, ynqη and µq̄η.

Now, µ(x) = 1 ⇒ µ(x) + m > 1, for any m ∈ (0, 1] ⇒ xmqµ. Similarly, we can prove that

ynqη. Now, µ ∩ η = 0 ⇒ (µ ∩ η)(x) = 0 ⇒ min(µ(x), η(x)) = 0 ⇒ µ(x) = 0 or η(x) = 0

⇒ µ(x) + η(x) ≤ 1 ⇒ µq̄η. It follows that there exist µ, η ∈ s∗ ∪ t∗ such that xmqµ, ynqη and

µq̄η. Hence it is clear that (X, s∗, t∗) is SFPT2(ii).

To show (X, s∗, t∗) is SFPT2(ii) 6=⇒ (X, s∗, t∗) is SFPT2(iv), we give a counterexample

following.

Counterexample. Let X = {x, y} and µ, η ∈ IX be given by µ(x) = 1 − ε, µ(y) =
ε
3 and η(y) = 1 − ε, η(x) = ε

3 , where ε = m
3 for m ∈ (0, 1]. Consider the supra fuzzy

topologies s∗ and t∗ on X generated by {0, µ, η, 1}. Then, µ(x) = 1 − m
3 ⇒ µ(x) + m

3 = 1

⇒ µ(x) +m > 1⇒ xmqµ. Similarly, we can prove that ynqη. Also, µ(x) + η(x) = 1− ε+ ε
3 ⇒

µ(x) + η(x) = 1 − ε
3 ≤ 1 ⇒ µ(x) + η(x) ≤ 1 ⇒ µq̄η. Hence, (X, s∗, t∗) is SFPT2(ii). But

µ(x) 6= 1, η(y) 6= 1,min(µ(x), η(x)) 6= 0⇒ µ∩η 6= 0. Thus, (X, s∗, t∗) is not SFPT2(iv). These

complete the proof. �

§4. Good Extensions

In this section, we shall show that our notions satisfy good extension property.

Theorem 4.1 Let (X,S∗, T ∗) be a supra bitopological space. Consider the following statements:
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(1) (X,S∗, T ∗) be a T2 supra bitopological space;

(2) (X,ω(S∗), ω(T ∗)) be a SFPT2(i) bitopological space;

(3) (X,ω(S∗), ω(T ∗)) be a SFPT2(ii) bitopological space;

(4) (X,ω(S∗), ω(T ∗)) be a SFPT2(iii) bitopological space;

(5) (X,ω(S∗), ω(T ∗)) be a SFPT2(iv) bitopological space.

The following implications are true:

(1)⇐⇒ (2), (1)⇐⇒ (3), (1)⇐⇒ (4), (1)⇐⇒ (5).

Proof For (1) =⇒ (2), let (X,S∗, T ∗) be a supra bitopological space and (X,S∗, T ∗) is T2.

We have to prove that (X,ω(S∗), ω(T ∗)) is SFPT2(i). Let xm, yn be fuzzy singletons in X

with distinct x, y. Since (X,S∗, T ∗) is T2 supra bitopological space we have, there exist U, V ∈
S∗ ∪ T ∗ such that x ∈ U, y ∈ V and U ∩ V = 0. From the definition of lower semi continuous

we have 1U , 1V ∈ ω(S∗) ∪ ω(T ∗) and 1U (x) = 1, 1V (y) = 1. Then 1U (x) + m > 1 ⇒ xmq1U .

Similarly, ⇒ ynq̄1V .

Also, 1U ∩ 1V = 0. If 1U ∩ 1V 6= 0, then there exists z ∈ X such that (1U ∩ 1V )(z) 6= 0⇒
1U (z) 6= 0, 1V (z) 6= 0 ⇒ U(z) = 1, V (z) = 1 ⇒ z ∈ U, z ∈ V ⇒ z ∈ U ∩ V ⇒ U ∩ V 6= φ, a

contradiction. So, 1U ∩1V = 0. Hence, (X,ω(S∗), ω(T ∗)) is SFPT2(i). Thus (1) =⇒ (2) holds.

For (2) =⇒ (1), let (X,ω(S∗), ω(T ∗)) is SFPT2(i). We have to prove that (X,S∗, T ∗) is

T2. Let x, y be distinct points in X. Since (X,ω(S∗), ω(T ∗)) is SFPT2(i), we have, for any

fuzzy singletons xm, yn in X, ∃µ, η ∈ ω(S∗) ∪ ω(T ∗) such that xmqµ, ynqη and µ ∩ η = 0. Now

xmqµ ⇒ µ(x) + m > 1 ⇒ µ(x) > 1 −m = α ⇒ x ∈ µ−1(α, 1] Similarly, y ∈ η−1(α, 1]. Also,

µ−1(α, 1], η−1(α, 1) ∈ S∗ ∪ T ∗. Now, µ ∩ η = 0⇒ µ ∩ η(z) = 0 ⇒ min(µ(z), η(z)) = 0.

We claim that µ−1(α, 1] ∩ η−1(α, 1] = φ. For, if z ∈ µ−1(α, 1] ∩ η−1(α, 1], then z ∈
µ−1(α, 1] and z ∈ η−1(α, 1] ⇒ µ(z) > αand η(z) > α ⇒ min(µ(z), η(z)) > α, a contradiction.

Then µ−1(α, 1] ∩ η−1(α, 1] = φ.

It follows that there exist µ−1(α, 1], η−1(α, 1] ∈ S∗ ∪ T ∗ such that x ∈ µ−1(α, 1], y ∈
η−1(α, 1] and µ−1(α, 1] ∩ η−1(α, 1] = φ. Thus (2) =⇒ (1) holds.

Similarly, we can prove the other results. �

§5. Hereditary, Productivity and Projectivity in Supra Fuzzy T2

Bitopological Spaces

In this section, we shall show that our notions satisfy hereditary, productive and projective

properties.

Theorem 5.1 Let (X, s∗, t∗) be a supra fuzzy bitopological space, A ⊆ X, s∗A = {µ/A : µ ∈
s∗ ∪ t∗}, t∗A = {η/A : η ∈ s∗ ∪ t∗}, then (X, s∗, t∗) is SFPT2(j) =⇒ (A, s∗A, t

∗
A) is SFPT2(j);

where j = i, ii, iii, iv.

Proof Let (X, s∗, t∗) be a supra fuzzy bitopological space and (X, s∗, t∗) is SFPT2(i). We

have to prove that (A, s∗A, t
∗
A) is SFPT2(i). Let xm, yn be fuzzy singletons in A for distinct
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x and y. Since A ⊆ X, these fuzzy singletons are also fuzzy singletons in X. Also since

(X, s∗, t∗) is SFPT2(i) supra fuzzy bitopological space we have, there exist µ, η ∈ s∗ ∪ t∗

such that xmqµ, ynqη and µ ∩ η = 0. For A ⊆ X, we have µ/A, η/A ∈ s∗A ∪ t∗A. Now,

xmqµ ⇒ µ(x) + m > 1, x ∈ X ⇒ (µ/A)(x) + m > 1, x ∈ A ⊆ X ⇒ xmq(µ/A). and

ynqη ⇒ η(y) + n > 1, y ∈ X ⇒ (η/A)(y) + n > 1, y ∈ A ⊆ X ⇒ ynq(η/A).

Also,

µ ∩ η = 0 ⇒ (µ ∩ η)(x) = 0, x ∈ X ⇒ min(µ(x), η(x)) = 0, x ∈ X

⇒ min(µ/A(x), η/A(x)) = 0, x ∈ A ⊆ X

⇒ ((µ/A) ∩ (η/A)(x)) = 0⇒ (µ/A) ∩ (η/A) = 0.

It follows that there exist µ/A, η/A ∈ s∗A∪t∗A such that xmq(µ/A), ynq(η/A) and (µ/A)∩(η/A) =

0. Hence, (A, s∗A, t
∗
A) is SFPT2(i). The proof of others is of similar manner. �

Theorem 5.2 Let (Xi, s
∗
i , t
∗
i ), i ∈ Λ be a supra fuzzy bitopological spaces and (X =

∏
i∈ΛXi, s

∗, t∗)

be the corresponding product bitopological space, then for all i ∈ Λ, (Xi, s
∗
i , t
∗
i ) is SFPT2(j) if

and only if (X, s∗, t∗) is SFPT2(j); where j = i, ii, iii, iv.

Proof Let for all i ∈ Λ, (Xi, s
∗
i , t
∗
i ) is SFPT2(iii) space. We have to prove that (X, s∗, t∗)

is SFPT2(iii). Let xm, yn be fuzzy singletons in X for distinct x and y. Then (xi)m, (yi)n are

fuzzy singletons for distinct xi and yi for some i ∈ Λ. Since (Xi, s
∗
i , t
∗
i ) is SFPT2(iii), there

exist µi, ηi ∈ s∗i ∪ t∗i such that (xi)m ∈ µi, (yi)n ∈ ηi and µiq̄ηi. Now, (xi)m ∈ µi, (yi)n ∈ ηi.
But we have πi(x) = xi and πi(y) = yi. Now, (xi)m ∈ µi ⇒ µ(xi) ≥ m ⇒ µi(πi(x)) ≥
m ⇒ (µi ◦ πi)(x) ≥ m ⇒ xm ∈ (µi ◦ πi). Similarly, we can prove that (yi)n ∈ µi. Now, ⇒
µi(xi)+ηi(xi) ≤ 1⇒ µi(πi(x))+ηi(πi(x)) ≤ 1⇒ (µi◦πi)(x)+(ηi◦πi)(x) ≤ 1⇒ (µi◦πi)q̄(ηi◦πi).
It follows that there exist (µi ◦πi), (ηi ◦πi) ∈ s∗i ∪ t∗i such that xm ∈ (µi ◦πi), yn ∈ (ηi ◦πi) and

(µi ◦ πi)q̄(ηi ◦ πi). Hence, (X, s∗, t∗) is SFPT2(iii).

Conversely, Let (X, s∗, t∗) be a supra fuzzy bitopological space and (X, s∗, t∗) is SFPT2(iii).

We have to prove that (Xi, s
∗
i , t
∗
i ), i ∈ Λ is SFPT2(iii). Let ai be a fixed element in Xi. Let

Ai = {x ∈ X =
∏
i∈Λ

Xi : xj = aj for some i 6= j}

.

Then Ai is a subset of X, and hence (Ai, s
∗
Ai
, t∗Ai) is subspace of (X, s∗, t∗). Since (X, s∗, t∗)

is SFPT2(iii), so (Ai, s
∗
Ai
, t∗Ai) is SFPT2(iii). Now we have Ai is homeomorphic image of Xi.

Hence it is clear that for all i ∈ Λ, (Xi, s
∗
i , t
∗
i ) is SFPT2(iii) space. Similarly, other results can

be proved. �

§6. Mappings in Supra Fuzzy T2 Bitopological Spaces

In this section, we shall show that our notions are preserved under one-one, onto, fuzzy open

and fuzzy continuous mappings.
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Theorem 6.1 Let (X, s∗1, t
∗
1) and (Y, s∗2, t

∗
2) be two supra fuzzy bitopological spaces and f :

X → Y be a one-one, onto and fuzzy open map then, (X, s∗1, t
∗
1) is SFPT2(j) =⇒ (Y, s∗2, t

∗
2) is

SFPT2(j); where j = i, ii, iii, iv.

Proof Let (X, s∗1, t
∗
1) be a supra fuzzy bitopological space and (X, s∗1, t

∗
1) is SFPT2(i). We

have to prove that (Y, s∗2, t
∗
2) is SFPT2(i). Let x′m, y′n be fuzzy singletons in Y for distinct x′

and y′. Since f is onto then there exist x, y ∈ X with f(x) = x′, f(y) = y′ and xm, yn are

fuzzy singletons in X with x 6= y as f in one-one. Again since (X, s∗1, t
∗
1) is SFPT2(i) space,

there exist µ, η ∈ s∗1 ∪ t∗1 such that xmqµ, ynqη and µ ∩ η. Now, xmqµ ⇒ µ(x) + m > 1 and,

ynqη ⇒ µ(y) + n > 1.

Now, f(µ)(x′) = {supµ(x) : f(x) = x′} ⇒ f(µ)(x′) = µ(x), for some x and f(η)(y′) =

{sup η(y) : f(y) = y′} ⇒ f(η)(y′) = η(y) for some y. Also since, f is open map then f(µ), f(η) ∈
s∗2 ∪ t∗2 as µ, η ∈ s∗1 ∪ t∗1.

Again,⇒ µ(x)+m > 1⇒ f(µ)(x′)+m > 1⇒ x′mqf(µ),⇒ η(x)+n > 1⇒ f(η)(x′)+n > 1

⇒ y′nqf(η) and µ ∩ η = 0. Here, f(µ ∩ η)(x′) = {sup(µ ∩ η)(x) : f(x) = x′}, f(µ ∩ η)(x′) = 0

and f(µ ∩ η)(y′) = {sup(µ ∩ η)(y) : f(y) = y′}. Therefore, f(µ ∩ η) = 0⇒ f(µ) ∩ f(η) = 0. It

follows that there exist f(µ), f(η) ∈ s∗2 ∪ t∗2 such that x′mqf(µ), y′nqf(η) and f(µ) ∩ f(η) = 0.

Hence it is clear that (Y, s∗2, t
∗
2) is SFT2(i) space. Similarly, we can prove the remaining. �

Theorem 6.2 Let (X, s∗1, t
∗
1) and (Y, s∗2, t

∗
2) be two supra fuzzy bitopological spaces and f : X →

Y be a one-one and fuzzy continuous map then, (Y, s∗2, t
∗
2) is SFPT2(j) =⇒ (X, t∗) is SFT2(j);

where j = i, ii, iii, iv.

Proof Let (Y, s∗2, t
∗
2) be a supra fuzzy topological space and (Y, s∗2, t

∗
2) is SFPT2(j). We

have to prove that (X, s∗1, t
∗
1) is SFPT2(j). Let xm, yn be fuzzy singletons in X for distinct x

and y. Then (f(x))m, (f(y))n are fuzzy singletons in Y with f(x) 6= f(y) as f is one-one. Again

since, (Y, s∗2, t
∗
2) is SFPT2(j) space, there exist µ, η ∈ s∗2∪t∗2 such that (f(x))m ∈ µ, (f(y))n ∈ η

and µq̄η. Now, (f(x))m ∈ µ ⇒ µ(f(x)) ≥ m ⇒ f−1(µ(x)) + m > 1 ⇒ (f−1(µ))(x) + m > 1

⇒ xm ∈ f−1(µ) and, (f(x))n ∈ η ⇒ η(f(x)) ≥ n ⇒ f−1(η(x)) ≥ n ⇒ (f−1(η))(x) ≥ n

⇒ yn ∈ f−1(η). Also, µq̄η ⇒ u1(f(x)) + u2(f(x)) ≤ 1 ⇒ (f−1(η))(x) + (f−1(η))(x) ≤ 1

⇒ (f−1(µ)q̄(f−1(η)). Now, since, f is continuous map and µ, η ∈ s∗2 ∪ t∗2 then f−1(µ), f−1(η) ∈
s∗1 ∪ t∗1. It follows that there exist f−1(µ), f−1(η) ∈ s∗1 ∪ t∗1 such that xm ∈ f−1(µ), yn ∈ f−1(η)

and f−1(µ)q̄f−1(η) . Hence, (X, s∗1, t
∗
1) is SFPT2(iii) space. The proofs of others are of similar

procedure. �

§7. Initial and Final Supra Fuzzy T2 Bitopological Spaces

We discuss the initial and final fuzzy bitopologies in this section.

Definition 7.1([16]) The initial fuzzy bitopology on a set X for the family of fuzzy bitopological

spaces {(Xi, si, ti)}i∈Λ and the family of functions {fi : X → (Xi, si ∪ ti)}i∈Λ is the smallest

fuzzy bitopology on X making each fi fuzzy continuous. It is easily seen that it is generated by

the family {f−1
i (ui) : ui ∈ si ∪ ti}i∈Λ.
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Definition 7.2([16]) The final fuzzy bitopology on a set X for the family of fuzzy bitopological

spaces {(Xi, si, ti)}i∈Λ and the family of functions {fi : (Xi, si ∪ ti)→ X}i∈Λ is the finest fuzzy

bitopology on X making each fi fuzzy continuous.

Theorem 7.1 If {(Xi, s
∗
i , t
∗
i )}i∈Λ is a family of SFPT2(j) and {fi : X → (Xi, s

∗
i ∪ t∗i )}i∈Λ, a

family of one-one and fuzzy continuous functions, then the initial supra fuzzy bitopology on X

for the family {fi}i∈Λ is SFPT2(j) for j = i, ii, iii, iv.

Proof We shall prove the theorem for j = i, ii and the remaining is similar. Let s∗, t∗ be

the initial supra fuzzy topologies on X for the family {fi}i∈Λ. Let xm, yn be fuzzy singletons

in X for distinct x and y. Then fi(x), fi(y) ∈ Xi and fi(x) 6= fi(y) as fi is one-one. Since

(Xi, s
∗
i , t
∗
i ) is SFPT2(i), then for every two distinct fuzzy singletons (fi(x))m, (fi(y))n in Xi,

there exist fuzzy sets µi ηi ∈ s∗i ∪ t∗i such that (fi(x))mqµi, (fi(y))nqηi andµi ∩ ηi = 0. Now,

(fi(x))mqµi and (fi(y))nqηi,

i.e.,

µi(fi(x)) +m > 1 and ηi(fi(y)) + n > 1.

That is

f−1
i (µi)(x) +m > 1 and f−1

i (ηi)(y) + n > 1.

Also,

µi ∩ ηi ⇒ µi(fi(x)) + ηi(fi(x)) ≤ 1⇒ f−1
i (µi)(x) + f−1

i (ηi)(x) ≤ 1.

This is true for every i ∈ Λ. So,

inf f−1
i (µi)(x) +m > 1, inf f−1

i (ηi)(y) + n > 1 and inf f−1
i (µi)(x) + inf f−1

i (ηi)(x) ≤ 1.

Let µ = inf f−1
i (µi) and η = inf f−1

i (ηi) . Then µ, η ∈ s∗ ∪ t∗ as fi is fuzzy continuous. So,

µ(x) +m > 1, η(y) + n > 1 and µ(x) + η(x) ≤ 1.

Hence, xmqµ, ynqη and µ ∩ η = 0. Therefore, (X, s∗, t∗) is SFPT2(i).

Again, Since (Xi, s
∗
i , t
∗
i ) is SFPT2(ii), then for every two distinct fuzzy singletons (fi(x))m, (fi(y))n

in Xi, there exist fuzzy sets µi, ηi ∈ s∗i ∪ t∗i such that

(fi(x))mqµi, (fi(y))nqηi and µiq̄ηi.

Now,

(fi(x))mqµi and (fi(y))nqηi,

i.e.,

µi(fi(x)) +m > 1 and ηi(fi(y)) + n > 1.
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That is

f−1
i (µi)(x) +m > 1 and f−1

i (ηi)(y) + n > 1.

Also,

µiq̄ηi ⇒ µi(fi(x)) + ηi(fi(x)) ≤ 1⇒ f−1
i (µi)(x) + f−1

i (ηi)(x) ≤ 1.

This is true for every i ∈ Λ. So,

inf f−1
i (µi)(x) +m > 1, inf f−1

i (ηi)(y) + n > 1 and inf f−1
i (µi)(x) + inf f−1

i (ηi)(x) ≤ 1.

Let µ = inf f−1
i (µi) and η = inf f−1

i (ηi). Then µ, η ∈ s∗ ∪ t∗ as fi is fuzzy continuous. So,

µ(x) +m > 1, η(y) + n > 1 and µ(x) + η(x) ≤ 1.

Hence, xmqµ, ynqη and µq̄η. Therefore, (X, s∗, t∗) is SFPT2(ii). �

Theorem 7.2 If {(Xi, s
∗
i , t
∗
i )}i∈Λ is a family of SFPT2(j) and {fi : X → (Xi, s

∗
i ∪ t∗i )}i∈Λ, a

family of fuzzy open and bijective functions, then the final supra fuzzy bitopology on X for the

family {fi}i∈Λ is SFPT2(j) for j = i, ii, iii, iv.

Proof We shall prove the theorem for j = ii and the remaining is similar. Let s∗, t∗ be the

final supra fuzzy topologies on X for the family {fi}i∈Λ. Let xm, yn be fuzzy singletons in X

for distinct x and y. Then f−1
i (x), f−1

i (y) ∈ Xi and f−1
i (x) 6= f−1

i (y) as fi is bijective. Since

(Xi, s
∗
i , t
∗
i ) is SFPT2(ii), then for every two distinct fuzzy singletons (f−1

i (x))m, (f−1
i (y))n in

Xi, there exist fuzzy sets µi, ηi ∈ s∗i ∪ t∗i such that (f−1
i (x))mqµi, (f−1

i (y))nqηi andµiq̄ηi.

Now,

(f−1
i (x))mqµi and (f−1

i (y))nqηi,

i.e.,,

µi(f
−1
i (x)) +m > 1 and ηi(f

−1
i (y)) + n > 1.

That is,

fi(µi)(x) +m > 1 and fi(ηi)(y) + n > 1.

Also,

µiq̄ηi ⇒ µi(f
−1
i (x)) + ηi(f

−1
i (x)) ≤ 1⇒ (fi(µi(x) + fi(ηi)(x) ≤ 1.

This is true for every i ∈ Λ. So,

inf fi(µi)(x) +m > 1, inf fi(ηi)(y) + n > 1 and inf fi(µi)(x) + inf fi(ηi)(x) ≤ 1.

Let µ = inf fi(µi) and η = inf fi(ηi). Then µ, η ∈ s∗ ∪ t∗ as fi is fuzzy open. So,

µ(x) +m > 1, η(y) + n > 1 and µ(x) + η(x) ≤ 1.

Hence, xmqµ, ynqη and µq̄η. Therefore, (X, s∗, t∗) is SPFT2(ii). �



Study on Hausdorff Supra Fuzzy Bitopological Space – Approach of Quasi-Coincidence 97

§8. Conclusion

The main result of this paper is introducing some new concepts of supra fuzzy T2 bitopological

spaces. We discuss some features of these concepts and present the hereditary, productive and

projective properties. Also, we have observed that these notions are preserved under one-one,

onto, supra fuzzy open and supra fuzzy continuous mappings. We think that this research

work will contribute to the development of the field of modern mathematics. Initial and final

bitopologies introduced in SFPT2 spaces are interesting.
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Abstract: Let G be a graph. Let f : V (G)→ {0, 1, 2, . . . , k − 1} be a function where k ∈ N
and k > 1. For each edge uv, assign the label f (uv) =

⌈
f(u)+f(v)

2

⌉
. f is called k-total mean

cordial labeling of G if |tmf (i)− tmf (j)| ≤ 1 for all i, j ∈ {0, 1, 2, · · · , k − 1}, where tmf (x)

denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, 2, · · · , k − 1}. A

graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

Key Words: Total mean cordial labeling, Smarandachely total mean cordial labeling,

path, complete graph, corona, star.

AMS(2010): 05C78.

§1. Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was

introduced by Cahit [3] and cordial relation labeling technique was studied in [1, 2, 4, 5, 6, 9,

17, 18, 19, 20]. The notation of k-total mean cordial labeling has been introduced in [10]. We

investigate the 4-total mean cordial labeling behaviour of several graphs like cycle, complete

graph, star, bistar, comb and crown in [10, 11, 12, 13, 14, 15, 16].. Let x be any real number.

Then dxe stands for the smallest integer greater than or equal to x. Terms are not defined here

follow from Harary [8] and Gallian [7]. In this paper we investigate the 4-total mean cordial

labeling of some graphs derived from H- graph and star.

§2. k-Total Mean Cordial Graph

Definition 2.1 Let G be a graph. Let f : V (G) → {0, 1, 2, . . . , k − 1} be a function where

k ∈ N and k > 1. For each edge uv, assign the label f (uv) =
⌈
f(u)+f(v)

2

⌉
. f is called k-total

mean cordial labeling of G if |tmf (i)− tmf (j)| ≤ 1, for all i, j ∈ {0, 1, 2, · · · , k − 1}, where

tmf (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, 2, · · · , k − 1}.
1Received June 18, 2022, Accepted September 20, 2022.
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A graph with admit a k-total mean cordial labeling is called a k-total mean cordial graph.

Such a labeling f is called a Smarandachely k-total mean cordial labeling of G if there are

integers i, j ∈ {0, 1, 2, · · · , k − 1} hold with |tmf (i)− tmf (j)| ≥ 2 and G is called a Smaran-

dachely k-total mean cordial graph.

§3. Preliminaries

Definition 3.1 Let P
(1)
n : u1u2 . . . un and P

(2)
n : v1v2 · · · vn be any two paths. We join the

vertices un+1
2

and vn+1
2

by an edge, if n is odd and join the vertices un
2

and vn
2 +1 by an edge, if

n is even. Then the resulting graph is called a H-graph on 2n vertices. We denote it by H (n).

Definition 3.2 If e = uv is an edge of G then e is said to be subdivided when it is replaced by

the edges uw and wv. The graph obtained by subdividing each edge of a graph G is called the

subdivision graph of G and is denoted by S (G).

Definition 3.3 The duplication of an edge e = uv of a graph G is the graph G
′

obtained from

G by adding a new vertex x to G such that x is adjacent to both u and v.

Definition 3.4 Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The corona of G1 with G2

is the graph G1 � G2 obtained by taking one copy of G1 , p1 copies of G2 and joining the ith

vertex of G1 by an edge to every vertex in the ith copy of G2 where 1 ≤ i ≤ p1.

Definition 3.5 The complement G of a graph G also has V (G) as its vertex set, but two

vertices are adjacent in G if and only if they are not adjacent in G.

Definition 3.6 The complete bipartite graph K1,n is called a star.

Definition 3.7 K1,3 ∗K1,n is the graph obtained from K1,3 by attaching root of a star K1,n at

each pendent vertex of K1,3.

Definition 3.8 Consider two copies of graph G namely G1 and G2. Then the graph G
′

=

〈G1∆G2〉 is the graph obtained by joining the apex vertices of G1 and G2 by an edge as well as

to a new vertex x.

Definition 3.9 A sparkler denoted as P+n
m is a graph obtained from the path Pm and appending

n edges to an end point. This is a special case of a caterpillar. We refer to the hub of P+n
m ,

the sparkler as the vertex of degree n+ 1.

Definition 3.10 Let u
(k)
i and v

(k)
i be the vertices in the kth copy of H-graph, where i =

1, 2, 3, · · · , n and k = 1, 2, 3, · · · , r. Join the vertices vk1 and vk+1
1 for k = 1, 2, 3, . . . , r− 1. The

resulting graph is denoted by P (r,H (n)).

Theorem 3.1([10]) Any path is k-total mean cordial.

§4. Main Results

4.1 Graphs Derived From H-Graph

Theorem 4.1 The graph H (n) is a 4-total mean cordial for all values of n ≥ 2.
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Proof Take the vertex set and edge set of H (n) as in Definition 3.1. Clearly |V (H (n))|+
|E (H (n))| = 4n − 1. Obviously H (2) ∼= P4. Therefore H (2) is 4-total mean cordial follow

from Theorem 3.1.

Case 1. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. Assign the label 2 to the r + 1 vertices u1, u2,. . ., ur+1. Next we

assign the label 3 to the r vertices ur+2, ur+3, · · · , u2r+1. Now we assign the label 0 to the

r + 1 vertices v1, v2, · · · , vr+1. Finally we assign the label 1 to the r vertices vr+2, vr+3, · · · ,
v2r+1.

Case 2. n ≡ 0 (mod 2).

Let n = 2r, r ≥ 2. We assign the label 2 to the r vertices u1, u2, · · · , ur. Now we assign

the label 3 to the r vertices ur+1, ur+2, · · · , u2r. Next we assign the label 0 to the r vertices

v1, v2, · · · , vr. Finally we assign the label 1 to the r vertices vr+1, vr+2, · · · , v2r.

This shows that vertex labeling f is a 4-total mean cordial labeling follows from the Table

1.This completes the proof. �

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r + 1 2r + 1 2r + 1 2r + 1 2r

n = 2r 2r − 1 2r 2r 2r

Table 1.

Theorem 4.2 The subdivision of H (n), S (H (n)) is a 4-total mean cordial for all values of

n ≥ 2.

Proof Take the vertex set and edge set as in Definition 3.1. Let xi (1 ≤ i ≤ n− 1) be the

vertex which subdivide the edge uiui+1 (1 ≤ i ≤ n− 1) and yi (1 ≤ i ≤ n− 1) be the vertex

which subdivide the edge vivi+1 (1 ≤ i ≤ n− 1). Let w be the vertex which subdivide the edge

un+1
2
vn+1

2
, if n is odd and w be the vertex which subdivide the edge un

2
vn

2 +1, if n is even.

Clearly,
∣∣V (S (H(n)

))∣∣+
∣∣E (S (H(n)

))∣∣ = 8n− 3.

Case 1. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. Assign the label 2 to the vertex w. We now assign the label 0 to the r

vertices u1, u2, · · · , ur. Now we assign the label 1 to the r vertices ur+1, ur+2, · · · , u2r. Next

we assign the label 0 to the r vertices x1, x2, · · · , xr. Now we assign the label 1 to the r − 1

vertices xr+1, xr+2, · · · , x2r−1. Next we assign the label 3 to the r vertices v1, v2, . . ., vr. Now

we assign the label 2 to the r vertices vr+1, vr+2, · · · , v2r. Next we assign the label 3 to the r

vertices y1, y2, · · · , yr. Finally we assign the label 2 to the r− 1 vertices yr+1, yr+2, · · · , y2r−1.

Case 2. n ≡ 1 (mod 2).

Let n = 2r+ 1, r ∈ N. Now we assign the label 1 to the vertex w. We now assign the label

0 to the r+ 1 vertices u1, u2, · · · , ur+1. Next we assign the label 2 to the r vertices ur+2, ur+3,

· · · , u2r+1. We now assign the label 0 to the r vertices x1, x2, . . ., xr. Now we assign the label



102 R.Ponra, S.Subbulakshmi and S.Somasundaram

2 to the r vertices xr+1, xr+2, · · · , x2r. Now we assign the label 3 to the r + 1 vertices v1, v2,

· · · , vr+1. Next we assign the label 1 to the r vertices vr+2, vr+3, · · · , v2r+1. Now we assign

the label 3 to the r vertices y1, y2, · · · , yr. Finally we assign the label 1 to the r vertices yr+1,

yr+2, · · · , y2r. This shows that the vertex labeling f is a 4-total mean cordial labeling follows

from the Table 2.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r 4r − 1 4r − 1 4r − 1 4r

n = 2r + 1 4r + 1 4r + 2 4r + 1 4r + 1

Table 2.

Theorem 4.3 Duplication of all edges of H-graph H (n) is a 4-total mean cordial labeling, if

n is odd.

Proof Take the vertex set and edge set of H (n) as in Definition 3.1. Let H∗ (n) be the

graph obtained by duplication of all edges u1u2,u2u3,· · · ,un−1un and v1v2,v2v3,· · · ,vn−1vn by

a new vertices x1,x2,· · · ,xn−1 and y1,y2,· · · ,yn−1 respectively. Let w be a new vertex obtained

by duplicating the edge un+1
2
vn+1

2
. In graph H∗ (n), |V (H∗ (n))|+ |E (H∗ (n))| = 10n− 4.

Assign the label 3 to the vertex w. We now assign the label 2 to the n+1
2 vertices u1, u2,

· · · , un+1
2

. Now we assign the label 3 to the n−1
2 vertices un+3

2
, un+5

2
, · · · , un. Next we assign

the label 2 to the n−1
2 vertices x1, x2, · · · , xn−1

2
. Now we assign the label 3 to the n−1

2 vertices

xn+1
2

, xn+3
2

, · · · , xn−1. We now assign the label 0 to the n+1
2 vertices v1, v2, · · · , vn+1

2
. Next

we assign the label 1 to the n−1
2 vertices vn+3

2
, vn+5

2
, · · · , vn. Now we assign the label 0 to the

n−1
2 vertices y1, y2, · · · , yn−1

2
. Finally we assign the label 1 to the n−1

2 vertices yn+1
2

, yn+3
2

, . . .,

yn−1.

Clearly, tmf (0) = tmf (1) = 5n−3
2 ; tmf (2) = tmf (3) = 5n−1

2 . This completes the proof. �

Theorem 4.4 The graph H (n)�K1 is a 4-total mean cordial for all values of n ≥ 2.

Proof Let V (H (n)) = {ui, vi : 1 ≤ i ≤ n} and let x1,x2,· · · , xn be the pendent vertices

connected to u1,u2,· · · , un and y1,y2,· · · , yn be the pendent vertices connected to v1,v2,· · · , vn.

Clearly, |V (H (n)�K1)|+ |E (H (n)�K1)| = 8n− 1.

Case 1. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. Assign the label 2 to the 2r + 1 vertices u1, u2, · · · , u2r+1. Now

we assign the label 3 to the 2r + 1 vertices x1,x2,· · · , x2r+1. Next we assign the label 0 to the

r vertices v1, v2, · · · , vr. We now assign the label 1 to the r + 1 vertices vr+1,vr+2,· · · , v2r+1.

Now we assign the label 0 to the r + 2 vertices y1, y2, · · · , yr+2. Finally we assign the label 1

to the r − 1 vertices yr+3,yr+4,· · · , y2r+1.

Case 2. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. We assign the label 2 to the 2r vertices u1, u2, · · · , u2r. Next we assign

the label 3 to the 2r vertices x1,x2,· · · , x2r. Now we assign the label 0 to the r vertices v1, v2,

· · · , vr. Next we assign the label 1 to the r vertices vr+1, vr+2, · · · , v2r. Now we assign the
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label 0 to the r + 1 vertices y1,y2, · · · , yr+1. Finally we assign the label 1 to the r − 1 vertices

yr+2,yr+3,· · · , y2r. Thus, this vertex labeling f is a 4-total mean cordial labeling follows from

the Table 3. �

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r + 1 4r + 1 4r + 2 4r + 2 4r + 2

n = 2r 4r 4r − 1 4r 4r

Table 3.

Theorem 4.5 The graph H (n)�K2 is a 4-total mean cordial for all values of n ≥ 2.

Proof Let

V
(
H (n)�K2

)
= {ui, vi, xi, yi, pi, qi : 1 ≤ i ≤ n} ,

E
(
H (n)�K2

)
= {uiui−1, vivi−1 : 1 ≤ i ≤ n− 1}

⋃
{uixi, uiyi, vipi, viqi : 1 ≤ i ≤ n} .

Clearly,
∣∣V (H (n)�K2

)∣∣+∣∣E (H (n)�K2

)∣∣ = 12n−1. Assign the label 1 to the n vertices

u1, u2, . . ., un. Now we assign the label 3 to the n vertices x1,x2,. . ., xn. We now assign the

label 0 to the n vertices y1,y2,. . ., yn. Next we assign the label 0 to the n vertices v1, v2, . . .,

vn. We now assign the label 3 to the n vertices p1,p2,. . ., pn. Finally we assign the label 3 to

the n vertices q1, q2, . . ., qn. Thus tmf (0) = 3n− 1; tmf (1) = tmf (2) = tmf (3) = 3n. �

Theorem 4.6 The graph P (r,H (n)) is a 4-total mean cordial for all values of n ≥ 2.

Proof Take the vertex set and edge set of P (r,H (n)) as in Definition 3.10. In the graph

P (r,H (n)), |V (P (r,H (n)))|+ |E (P (r,H (n)))| = 4nr − 1.

Case 1. n ≡ 1 (mod 2).

Let n = 2t+ 1, t ∈ N. Assign the label 1 to the t vertices uk1 , uk2 , · · · , ukt . Now we assign

the label 0 to the t + 1 vertices ukt+1, ukt+2, · · · , uk2t+1. Next we assign the label 3 to the t

vertices vk1 , vk2 , · · · , vkt . Finally we assign the label 2 to the t+ 1 vertices vkt+1, vkt+2, · · · , vk2t+1.

Case 2. n ≡ 0 (mod 2).

Let n = 2t, t ∈ N. We assign the label 2 to the t vertices uk1 , uk2 , · · · , ukt . Next we assign

the label 3 to the t vertices ukt+1, ukt+2, · · · , uk2t. Now we assign the label 0 to the t vertices vk1 ,

vk2 , · · · , vkt . Finally we assign the label 1 to the t vertices vkt+1, vkt+2, · · · , vk2t. This shows that

vertex labeling f is a 4-total mean cordial labeling follows from the Table 4. �

n tmf (0) tmf (1) tmf (2) tmf (3)

n is odd (2t+ 1) r (2t+ 1) r (2t+ 1) r (2t+ 1) r − 1

n is even 2tr 2tr 2tr 2tr − 1

Table 4.
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4.2 Graphs Derived From Stars

Theorem 4.7 The graph K1,3 ∗K1,n is 4-total mean cordial for all values of n.

Proof Let V (K1,3 ∗K1,n) = {u, u1, u2, u3, xi, yi, zi : 1 ≤ i ≤ n} and E (K1,3 ∗K1,n) =

{uu1, uu2, uu3}∪{u1xi, u2yi, u3zi : 1 ≤ i ≤ n}. Note that |V (K1,3 ∗K1,n)|+|E (K1,3 ∗K1,n)| =
6n+ 7. Assign the labels 0,0,3,1 to the vertices u,u1,u2,u3.

Case 1. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. Assign the label 0 to the r−1 vertices x1, x2, · · · , xr−1. Now we assign

the label 1 to the vertex xr. Now we assign the label 2 to the r vertices xr+1, xr+2, · · · , x2r.

Next we assign the label 0 to the r vertices y1, y2, · · · , yr. We now assign the label 3 to the

r vertices yr+1,yr+2,· · · , y2r. Now we assign the label 1 to the r − 1 vertices z1, z2, · · · , zr−1.

Finally we assign the label 3 to the r + 1 vertices zr,zr+1,· · · , z2r.

Case 2. n ≡ 1 (mod 2).

Let n = 2r+ 1, r ∈ N. We now assign the label 0 to the r vertices x1, x2, · · · , xr. Now we

assign the label 1 to the two vertices xr+1, xr+2. Next we assign the label 2 to the r−1 vertices

xr+3, xr+4, · · · , x2r+1. Now we assign the label 0 to the r + 1 vertices y1, y2, · · · , yr+1. We

now assign the label 3 to the r vertices yr+2,yr+3,· · · , y2r+1. Now we assign the label 1 to the

r − 1 vertices z1, z2, · · · , zr−1. Finally we assign the label 3 to the r + 2 vertices zr,zr+1,· · · ,
z2r+1. Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the Table 5.

This completes the proof. �

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r + 1 3r + 4 3r + 3 3r + 3 3r + 3

n = 2r 3r + 1 3r + 2 3r + 2 3r + 2

Table 5.

Example 4.1 A 4-total mean cordial labeling of K1,3 ∗K1,5 is given in Figure 1.

�
�

�
�

�
��

r

r rr
r r r r r r r r r r r rr r r

0 0 1 1 2 0 0 30 3 1 3 3 3 3

0 3
1

0

Figure 1

Theorem 4.8 The graph
〈
K

(1)
1,n∆K

(2)
1,n

〉
is 4-total mean cordial for all values of n.
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Proof Let u1,u2,· · · , un be the pendent vertices of K
(1)
1,n and v1,v2,· · · , vn be the pendent

vertices of K
(2)
1,n. Let u and v be the vertices of K

(1)
1,n and K

(2)
1,n which adjacent to ui (1 ≤ i ≤ n)

and vi (1 ≤ i ≤ n) respectively. Let u and v are adjacent to a new common vertex x. Note that∣∣∣V (〈K(1)
1,n∆K

(2)
1,n

〉)∣∣∣ +
∣∣∣E (〈K(1)

1,n∆K
(2)
1,n

〉)∣∣∣ = 4n + 6. Assign the labels 0,1,3 to the vertices

x,u,v. Consider the vertices u1, u2, · · · , un. Now we assign the label 0 to the n vertices u1, u2,

· · · , un. We now consider the vertices v1, v2, · · · , vn. Finally we assign the label 2 to the n

vertices v1, v2, · · · , vn. Obviously tmf (0) = tmf (3) = n+ 1; tmf (1) = tmf (2) = n+ 2. �

Theorem 4.8 The graph P+n
n is a 4-total mean cordial for all values of n.

Proof Let u1 u2 · · · un be the path Pn. Then V (P+n
n ) = V (Pn) ∪ {vj : 1 ≤ j ≤ n} and

E (P+n
n ) = E (Pn) ∪ {uivj : 1 ≤ j ≤ n}. Note that |V (P+n

n )|+ |E (P+n
n )| = 4n− 1.

Case 1. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. Assign the label 0 to the r + 1 vertices u1, u2, · · · , ur+1. Next we

assign the label 1 to the r vertices ur+2, ur+3, · · · , u2r+1. Now we assign the label 3 to the

2r + 1 vertices v1, v2, · · · , v2r+1.

Case 2. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. We now assign the label 0 to the r vertices u1, u2, · · · , ur. Now we

assign the label 1 to the r vertices ur+1, ur+2, · · · , u2r. Finally we assign the label 3 to the 2r

vertices v1, v2, · · · , v2r.

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 6. �

n tmf (0) tmf (1) tmf (2) tmf (3)

n is odd 2r + 1 2r 2r + 1 2r + 1

n is even 2r − 1 2r 2r 2r

Table 6.

References

[1] M.Andar, S.Boxwala and N.Limaye, New families of cordial graphs, J. Combin. Math.

Combin. comput., 53 (2005), 117-154.

[2] M.Andar, S.Boxwala and N.Limaye, On the cordinality of corona graphs, Ars. Combin.,

78 (2006), 179-199.

[3] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars Com-

bin., 23 (1987), 201-207.

[4] I.Cahit, H-cordial graphs, Bull.Inst Combin. Appl., 18 (1996), 87-101.

[5] G.Chartrand, S.M.Lee and P.Zhang, Uniformly cordial graphs, Discrete Math., 306 (2006),

726-737.

[6] A.T.Diab, Generalization of some result on cordial graphs, Ars Combin., 99 (2011), 161-

173.



106 R.Ponra, S.Subbulakshmi and S.Somasundaram

[7] J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics,

19 (2016), #Ds6.

[8] Harary, Graph Theory, Addision wesley, New Delhi (1969).

[9] N.Khan, Cordial labelling of cycles, Annals Pure Appl. Math., 1, No.2 (2012), 117-130.

[10] R.Ponraj, S.Subbulakshmi, S.Somasundaram, k-Total mean cordial graphs, J.Math. Com-

put. Sci., 10(2020), No.5, 1697-1711.

[11] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial graphs derived from

paths, J.Appl and Pure Math., Vol 2(2020), 319-329.

[12] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labeling in subdivision

graphs, Journal of Algorithms and Computation, 52(2020), 1-11.

[13] R.Ponraj, S.Subbulakshmi, S.Somasundaram, Some 4-total mean cordial graphs derived

from wheel, J. Math. Comput. Sci., 11(2021), 467-476.

[14] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial graphs derived from

star and bistar, Turkish Journal of Computer and Mathematics Education, 12(2021), 951-

956.

[15] R.Ponraj, S.Subbulakshmi, S.Somasundaram, On 4-total mean cordial graphs, J. Appl.

Math and Informatics, Vol 39(2021), 497-506.

[16] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labelling of special

graphs, Journal of Algorithms and Computation, 53(2021), 13-22.

[17] M.A.Seoud and A.E.I.Abdul, Magsoud on cordial and balanced labeling of graphs, J.

Egyptian Math. Soc., 7 (1999) 127-135.

[18] A.Sugumaran and K.Rajesh, Some graph operations on sum divisor cordial labeling related

to H-graph, International Journal of Statistics and Applied Mathematics, (2018), 389-395.

[19] S.K.Vaidya and M.C.Barasara, Product cordial labeling of line graph of some graphs,

Kragujevac. J. Math., 40(2) (2016), 290-297.

[20] S.K.Vaidya and N.H.Shah, Cordial labeling for some bistar related graphs, Internat. J.

Mathematics Soft Comput., 4(2) (2014), 33-39.



International J.Math. Combin. Vol.3(2022), 107-118

Enlightenment of the Combinatorial Notion

Linfan MAO

1. Chinese Academy of Mathematics and System Science, Beijing 100190, P.R.China

2. Academy of Mathematical Combinatorics & Applications (AMCA), Colorado, USA

E-mail: maolinfan@163.com

Abstract: As is known to all, the science’s function lies in guiding human activities and

promotes the human civilization. However, science is the knowledge of humans ourselves

on things in the universe. While it benefits humans, the accumulation of humans intrusion

on the nature is increased year by year, causes the reaction of nature on humans such as

the global warming, ice caps melt, sea level rise, extreme weather, drought, earthquakes,

tsunamis and other natural disasters in the eyes of humans and affects human activities to

some extent also. This fact awakes up humans to look at science with its leading to human

activities and reflects the nature of science again. Among them, a most important question

is whether science is absolutely true or only local and conditional true? Different answers to

this question determine the attitude towards science with its application, namely living in

harmony with or govern the nature. In fact, one’s recognition on things is carried out by the

“six sense organs”, namely, the eyes, ears, nose, tongue, body and mind of human, which

have certain limitations by their working mechanism. Accordingly, science is only a local

recognition or conditional true of things. In this case, how to form a combined recognition

based on their inherited topological structure of things and then to hold on the reality of

things by local recognition is an important work in the development of science. In fact,

this is nothing else but the combinatorial notion on recognition of things in the universe,

explained detail in my book Combinatorial Theory on the Universe (in Chinese).

Key Words: Local recognition, recognitive limitation, scientific limitation, Smarandache

multispace, mathematical combinatorics, combinatorial reality, harmonious coexistence of

humans with the nature.

AMS(2010): 00A30, 00A35.

§1. Introduction

Essentially, the science lies in the recognition, holds on things in the universe and so as to

promote human’s living ability and benefit to humans ourselves.

Recently, I have finished the book Combinatorial Theory on the Universe. It systematical-

ly presents a combinatorial notion on scientific recognition, i.e., the combinatorial conjecture

1Reported at the book launch of Combinatorial Theory on the Universe (in Chinese), September 27, 2022,
Beijing, P.R.China.

2Received August 2, 2022, Accepted September 27, 2022.
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for mathematical sciences of mine proposed in 2006 to guide the recognition of things in the

universe, which asserts that any mathematical science can be reconstructed from or made by

combinatorialization[4-5], first reported by me at the 2nd Conference on Combinatorics and

Graph Theory of China, Tianjing, August 16-19, 2006. In fact, this conjecture is a kind of

philosophical thought that reconstructs and develops science furthermore, and greatly promotes

the human recognition of things in the universe ([9]).

The book Combinatorial Theory on the Universe (in Chinese)[16] including scientific recog-

nition, mathematical sciences and philosophy was published by the Chinese Branch Xiquan

House, USA in August, 2022 and distributed globally by the Global Knowledge – Publishing

House. After publication of the book, the First Construction Media of China organized a book

launch of Combinatorial Theory on the Universe (in Chinese) to recommend this book and

spread my philosophical thoughts in Beijing on September 27, 2022. A group photo of this

launch is shown in Figure 1. It is a little surprising that the participants of this launch reached

more than 22,000 online and most guests gave a high evaluation on this book.

Figure 1

In this book launch, Mr.Qingzhong Ping, a professor of the Academy of Internet Industry

of Tsinghua University evaluated this book as a universal instruction, comparable to Critique

of Pure Reason of Kant, which aims to reveal the truth of human recognition and it has estab-

lished the mathematical foundation for the digital economy, meta-universe to a certain extent;

Mr.Dezhong Wang, the president of Zhong Guan Cun Public Resources Optimal Allocation

Association evaluated this book as a “Universal Book” and said it is a yellow book that can

accompany one’s lifelong learning, has profound effect at first reading, interesting effect once

again and insight effect at close reading. Many scholars in this launch claim that this book will

have a place in the academic history of humans, which motivates me to write this paper for

further spreading the academic notion that I explained in the book of Combinatorial Theory

on the Universe (in Chinese).

§2. Science: Local or Conditional Reality

Certainly, science leads human activities and its function is to promote the material and spiritual

civilization of humans, improve humans ability for surviving and benefit humans ourselves. In

this way, believing in science and acting according to scientific laws is a basic principle of
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human’s conduct. But how many humans can understand this principle correctly? The answer

is unclear because most humans are standing on the humans side, understand this principle

simply just for human benefits and ignore the intrusion of human activities on the nature. This

is a narrow understanding of science because in the binary system consisting of humans and

nature, the effect of nature on humans is immediate, visible by humans at once. However,

the reaction of nature on humans caused by human’s action on the nature is a delayed effect.

It will appear only if the disturbance of nature caused by human activities accumulated to

a certain amount, which will forms a disaster reaction on humans, i.e., produces the effect

“from quantitative change to qualitative change” such as those destruction of the ozone layer,

temperature rise, ice caps melt, extreme weather, drought and virus mutation, etc., also harmful

to human development. It should be noted that this cumulative effects alone may not be visible

to contemporary ones. Whence, one can not standing only on the humans side in response to

scientific functions, can not only see the benefits of science to humans in present and allow the

intrusion on the naturae without limitation. They should put the science with its application

in the harmonious coexistence of humans with the nature and discuss its contribution and the

harm to humans because science’s benefits to humans should first guarantee the sustainability

of human reproduction, i.e., not only the benefits to the present generation but also to the

benefits of future generations. This ruler should be the basis or scientific motivation for the

continuation of human civilization.

Figure 2

We should answer a basic question for recognition before exploring the science’s function,

i.e., whether science is absolutely true or only local and conditional true? The answer lies in

a famous fable, i.e., the blind men with an elephant. In this fable, why did the blind men

respectively perceived the shape of an elephant as a pillar, a rope, a radish, a big fan, a wall

or a pipe such as those shown in Figure 2? Their answers are so different from the shape

of an elephant in the eyes of an ordinary man. Why do they so answer is because of the

blind men lack of vision. They can only perceive the shape of an elephant by touching parts

of the elephant’s body with their hands and different parts of an elephant are bound to be

different perception. Indeed, the blind men touch different parts of the elephant’s body for

perceiving the shape of an elephant. Similarly, science is the human recognition of things in

the universe, which is similar to the situation of the blind men in this fable. It is human’s

local recognition of unknown things with known characteristics. Consequently, the scientific

recognition is not the real face of things but a local or conditional knowing of things. This
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recognitive limitation comes from the limitation of “six sense organs”, i.e., the eyes, ears, nose,

tongue, body and mind of human in perceiving things [2-3]. Compared with an ordinary man,

a blind man is lack of vision, only with five or less sense organs in the perception of things.

This is the reason why it results in the different recognition of blind men on an elephant

shape. So, how to solve the recognitive limitations of humans is an important question. The

answer is what the sophist said to the blind men in the fable, namely, “You are all right about

the elephant! The reason why you think the elephant’s shape different is because each of you

touches the different part of the elephant’s body. In fact, an elephant has those all characteristics

that you are talking about!” Notice that the sophist uses the “six sense organs” of human to

arouse the recognition of the blind men only with five or less sense organs on the shape of

an elephant, which is also applicable to the perception of things by the “six sense organs” of

human. That is, the reality of a thing T should be the combination of all local recognitions

on T , i.e, the combinatorial reality and we should hold on the reality of things in the universe

by the combinatorial notion. Certainly, the combinatorial notion on the reality of things is

really a philosophical thought that humans follow the guidance of the sophist in the fable of

the blind men with an elephant to solve the recognitive limitations of humans and then hold on

the reality of things. A further generalization of this recognitive way that the sophist told the

blind men is called the Smarandache multispace or multisystem([6-7, 17-18]). For example, the

unified field theory, gauge field theory, electroweak theory and the standard model of particles

are all Smarandache multisystems. Furthermore, a combinatorial model for the recognition of

a thing T can be established on its Smarandache multispace or multisystem by considering the

intersection of spaces or systems to form a combinatorial structure, a combinatorial notion also.

For instance, the twelve meridians on which the vital energy and blood are moving is such an

example of combinatorial model for recognizing the body of human in the traditional Chinese

medicine, which are correspondent to the viscera organs of human body.

Usually, one needs to find the “cause” of a thing for its appearance “effect” and holds on

the causal relationship of things. Among them, a systemic way is to decompose a thing by

its appearance into the smallest units called elements, including the molecules, atoms, nuclei,

leptons and quarks in material composition as well as the cells and genes in biological composi-

tion. Then, a behavior of the thing is assumed can be understood by its element behaviors, and

the “effect” of its appearance is traced by the ”cause” of the elements. This is the recognitive

thought of reductionism. However, is it possible to hold on anything in this way? Certainly,

it is an ideal model for systematically understand the causality of a thing. The difficulty lies

in how to determine the elements from its appearance of things and characterize the action of

elements. In this process, how to determine the elements and how to characterize the behavior

or the action of elements? Such questions may become also the obstacle for holding on the

truth of things. It is for this reason that our science is still a local knowledge of things rather

than the reality of things. In this case, science with its applications needs to be evaluated

under the harmonious coexistence of humans with the nature once again, to verify whether it

is promoting human civilization rather than harming humans or excessive intrusion into the

nature which will affects humans finally.

Realized this point, taking the quantitative recognition of things as the main line constraint
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on the ruler of harmonious coexistence of humans with the nature and using the combinatorial

notion as the recognitive thought of things, it is a meaningful thing to systematically review and

reflect on mathematical science and philosophy for the recognition of humans. In fact, I have

been most concerned about the relationship between mathematical science and the recognition

of things in the past ten years. Most of the topics that I reported in some academic conferences

are related to the word reality (see [8-15] for details) because I think it is the most important

that science needs to solve and it is necessary coming back to the philosophical thought of the

combinatorial notion on the reality of things. Generally, a thing inherits a topological structure

in space. We should establish an envelope mathematics, i.e., the “mathematical combinatorics”

([8-9]) for solving the limitations of scientific recognition and gradually tend to the reality of

things. This is the initial intention that I wrote the book Combinatorial Theory on the Universe

(in Chinese). For this objective, I choose the contents and arrange the order of chapters. In its

expression, I apply the dialogue of a father with his daughter in sections, also with some vivid

images to help the reader understand easily this book. In fact, if one removing the mathematical

formulas and deduction, this book can be used as a popular scientific book. Notice that the

contents containing mathematical formulas with deduction, including the last two chapters on

the philosophy of science in this book is to guide those who are interested in mathematical

combinatorics and aim to help them further study on the literatures for related topics and

then, we can realize the harmonious coexistence of humans with the nature.

§3. What is the Book of Combinatorial Theory on the Universe About

There are 12 chapters in the book of Combinatorial Theory on the Universe (in Chinese),

arranged in order [16]. Some main contents of each chapter are mentioned in the following.

Chapter 1 – Chapter 2 are an introduction to scientific recognition. Among them, Chapter

1 “Ultimate Questions on the Universe” presents the ultimate questions of the universe in

the voice of a schoolboy, namely where do we come from and where we will go? including the

celestial bodies, the earth, plants and animals and aims to briefly introduce scientific hypotheses

or answers to such questions for children. Usually, a scientific answer often do not satisfy

students in primary school because they do not believe in authority and like to repeatedly ask

“why” for their frank desire of knowledge, which often leads to the disappearance of an adult’s

answer. But this frank attitude to study is exactly the quality of one engaged in scientific

research. This chapter also introduces the answers to such ultimate problems in religion and

legends in Chinese culture. It is not to propagate the superstition but in comparison because

the answers in religious or the cultural legends are more vivid than scientific explanations

and more accessible to primary school students. This is the object that the school education

should pays attention to. Chapter 2 “Perceptible Limitation on the Universe” explains the

limitation of human recognition of things, including the origin of human evolution and the

legend of religion or god creation. Certainly, the “six sense organs” of human impact on the

recognition. And in recognition, how to understand that “being out of non-being” and how

to construct phenomenological theories by recognition of things such as grain cultivation and

livestock rearing in the early period of humans are introduced. As an example, this chapter
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takes the double-slit experiment of physics in Figure 3 to summarize the limitations of human

recognition, including the structural limitations of human eyes, ears, nose, tongue, body and

mind which form three cases of perceptible unknown, unknowable and conditional limitation of

humans. This chapter also introduces a few legends such as the Nuwa creation, Shennong taste

herbs, the story of Adam and Eve ate forbidden fruits, the phenomenological theories such as

the traditional Chinese medicine, the Kepler three laws of planets, etc.

Figure 3

Chapter 3 “Combinatorial Notion on the Universe” explains the combinatorial notion of

systematic recognition of things on local recognitions and verifies the combinatorial notion by

summarizing the methods of recognition in physics, chemistry and biology as examples. It

begins with the famous fable of the blind men with an elephant as an introduction with graphs,

labeled graphs and topological graphs in space and then, shows the reductionism establishes

local sciences such as it had done in physics, chemistry or biology but we can establish an enve-

lope science by the combinatorial notion, i.e., the science over inherited topological structures

of things. For counting elements in a Smarandache multispace or multisystem, this chapter

introduces the inclusion-exclusion principle and pigeonhole principle, also introduces a general-

ization of the pigeonhole principle, i.e., the existence of substructure with certain relationships

among individuals if the number of individuals large enough, which affirmatively answers the

Ramsey problem in combinatorics. Certainly, the combinatorial notion of things derives easily

the “technological combination” [1] in theory. However, we can get this conclusion by simulating

the decomposition of matter. In fact, the social development is reflected by the improvement

of human’s ability adapting to the nature such as those of the improvement and innovation of

artificial appliances, devices and facilities. Among them, a technology is a kind of methods,

techniques and means to make such appliances, devices or facilities possible. Similar to the

structure of matter, a technology can be viewed as a combination of blocks which have their

own combinatorial structure and the block is a combination of sub-blocks with a specific func-

tion, is the next level of technology. Similarly, the function sub-block is also a combination of

next level sub-blocks of functions, which is the next level technology. In this way, the decom-

position of a technology level by level will eventually reaches to the elementary components in

the technical composition, likewise the elementary particles. Indeed, different technologies are

all combination of the elementary components of “function” or “effect”.

Chapter 4 – Chapter 6 are the basis of systematic recognition of things by reductionism.

Among them, Chapter 4 “Characterizing the Universe” introduces the characterizing methods
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of things in a reference frame, including the reference frame to determine the position of a

thing with change characterizing, Einstein’s relativity principle, vector algebra, linear space

with basis, Newton mechanics, n-body problem, and the application of Newton’s law of univer-

sal gravitation in determining the first, second and third velocity of universe, Lorenz transform

in Einstein’s special relativity theory, etc., points out that the essence of Einstein’s principle

of general relativity is the mathematical display of the philosophical thought that objective

things are not transferred by human’s will. Chapter 5 “Systemic Recognizing the Universe” is

designed to the combinatorial notion of systemic recognition and methods of things, including

the system structure, combinatorial characteristics of system and the motifs in the systemic

recognizing of things. This chapter introduces physical dimension and the measuring methods

of distance objects and micro particles, involved such as the quality, time, system, also the

state equation of a system, the solution and the solving methods, etc. Particularly, the stability

of system and the Lyapunov’s direct judgment, linear and hyperbolic nonlinear systems are

discussed. And corresponding to the recognitive thought of combinatorial notion of things, a

philosophical thought on mathematics is introduced also. That is the combinatorial conjecture

for mathematics, i.e., mathematical combinatorics which extends mathematics over topologi-

cal structures in space. Chapter 6 “System Synchronization” aims to introduce an interesting

synchronization phenomenon in the nature and explain the method of determining, regulating

of system synchronization. It is pointed out that up to now, humans benefited from all sys-

tems simulating animal behavior such as automobile, train, ship, aircraft and other mechanical

movements are based on the system synchronization and regulation of system elements. To

this end, this chapter presents the major methods for determining the system synchronization,

including the master function method, graph criteria as well as the introduction of error term

converts a synchronization problem into the stability of system and the control of the system

synchronization, explains the 2-matrix norm and Lyapunov index often used for determining

system stability, system synchronization, etc.

Figure 4

Chapter 7 “Contradictory Systems” applies the combinatorial notion of things to explain

and characterize contradictory phenomena of things in the eyes of human, which is extreme-

ly different from the textbook. It should be noted that the contradiction is caused by one’s

recognition, implied in the definition or named process of Laozi explained in his Tao Te Ching,

i.e., replaces the reality of things by local recognitions, not the real face of things because he

said that “the heaven and the earth view all things as straw dogs” [2], i.e., all things are fair in
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the universe and the recognitive principle with “logic consistency” should be followed in this

case. In this point, the allegory of Hanfeizi’s contradiction of ancient China in Figure 4(a) is

essentially consistent with the living-death state or quantum collapse of the Schrodinger’s cat

in Figure 4(b). The problem lies in how to describe the living-death state or contradiction of

Schrodinger’s cat. For resolving the contradiction, the parallel space or 2-branch tree was intro-

duced by H.Everett to explain the living-death of Schrodinger’s cat covering both the living and

the death states of the cat, which is in fact a special case of Smarandache contradictory systems,

Smarandache multispaces or multisystems. To this end, this chapter explains the Smarandache

contradictory systems, Smarandache geometries, Smarandache multispace or multisystem and

the relationship of Smarandache denied axiom with them [15]. On this basis, the application

of Schrodinger cat’s living-death state or quantum entanglement, quantum teleportation and

the disentangling Smarandache multispaces and multisystems in the field of communication are

discussed. Notice that the expression of Laozi’s “Name named not the eternal Name” [2] in the

symbol deduction of mathematics is the limitation of mathematics, including the limitations of

mathematical abstracting and deduction, which usually appears as a non-harmonious group or

system of non-solvable equations, i.e., a system is unsolvable with contradictions but its each

equation is solvable. It is worth noting that different from the equations in classical mathe-

matics, the combined solution of a non-harmonious group always exists, which provides the

condition for characterizing such groups, including the sum stability and the product stability

of non-harmonious groups.

Chapter 8 “Complex Networks” introduces the by-product in studying social phenomena,

i.e., complex network which characterizes the social behavior of humans with certain random-

ness. Of course, a human’s behavior is not completely random because he or she has a brain. So,

it is only an assumption that human social behavior can be characterized by randomness. This

chapter introduces some common random distribution, the law of large numbers, the central

limit theorem and the network indexes. On this basis, the complete stochastic model introduced

by Eröds and Rényi in the 1960s, the related network index and properties are introduced in

details. In this field, the WS small-world network represents a breakthrough in the use of ran-

domness to simulate social behavior, whose randomness is between the regular networks and

the completely random models. At the same time, the BA scale-free network describes the

connection of new sites with existing sites on the internet, corresponds to the phenomenon of

“the richer is more and more rich, the poorer is more and more poor” in a society leading by

the capitals. An extension of the BA scale-free network is the local world network. Different

from the simple construction of differential equations to describe the spread of disease, the real

spread of disease is carried out on the social network, which is related to one’s social circle.

Based on this situation, this chapter introduces also the application of various complex net-

works to simulate community networks, analyzes the SI, SIS, SIR models and describes the law

of the spread of diseases on the social network.

Chapter 9 – Chapter 10 apply the combinatorial notion of things to generalize network flow

to continuity flow, regard it as a new mathematical element for mathematics, which can be used

as the mathematical model of things under the combinatorial notion. Among them, Chapter 9

“Network Arithmetic” begins with an introduction on some optimal problems in network and
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the methods operation on graphs, analyzes the possibility of simulating the behavior of things

by network and constructs the operation system on network under the condition that the com-

binatorial structure of the network is unchanged. At this time, the network operations is similar

to the operation of vectors, only need to keep the structure remains the same its in evolution,

on which the metric can be introduced similar to that of the linear space and applying both the

discrete or continuous model for simulating thing behaviors, namely the network sequences and

the continuous networks, construct the algebraic operation, differential and integral operation

on networks. In this way, the Newton-Leibniz theorem of integral operation on networks is

generalized as an example. Chapter 10 “Combinatorial Reality” introduces the mathematical

model that simulates the evolution of things under the guidance of the combinatorial notion

of things, namely continuity flow. Certainly, the continuity flow is a generalization of network.

That is, the labels of network vertices and edges are no longer limited to real numbers but

vectors in Banach space. At the same time, operators in Banach space can be introduced on

edge flows with requiring them to obey the law of flow conservation on vertices. This chapter

begins with an introduction to Banach space, Hilbert space and some important results as well

as three hypotheses of quantum behavior in quantum mechanics. Similar to network, continuity

flow can also be regarded as a kind of mathematical element on which the operations such as the

addition, subtraction, number multiplication and the Hadamard product can be defined, and

the Banach space and Hilbert space on continuity flow, i.e., Banach or Hilbert flow space can

be constructed and applied to the stability of continuity flow also. For describing the dynamic

behavior of continuity flows, the Lagrange equation of continuity flows is obtained by the prin-

ciple of least action. It should be noted that some important conclusions in functional analysis

can be generalized on Banach flow spaces by using G-isomorphism operators. Particularly, the

theorem of Fréchet and Riesz representation on Banach flow space holds which implies that

the assumption of quantum behavior in quantum mechanics holds also. That is, whether a

quantum has intrinsic structure or not it will not affects the conclusion of quantum mechanics.

Figure 5

Chapter 11 – Chapter 12 belong to the philosophy of science and discuss how science can

promote human civilization in the combinatorial notion of things. Among them, Chapter 11

“Chinese Recognizing the Universe” aims to take Chinese civilization as an example to explain

how the ancient Chinese perceived things and how the Chinese civilization formed under the
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thought of “one union of the heaven and humans”. That is, the principle of the harmonious

coexistence of humans with the nature. This chapter also compares some scientific achievements

of the Chinese with the western. Particularly, Laozi’s explaining on the creation of the universe,

the relationship between the heaven, the earth and humans in his Tao Te Ching is compared

with the theory of big bang. It points out that the western science is a local recognition of

the law of things, i.e, “Tao” while the ancient Chinese were a recognition on the whole life

cycle of things and behaviors. At the same time, this chapter introduces two typical examples

for applications of continuity flows. One is the surprised theory of the 12 meridians and the

relationship with the viscera organs of human body established on the Yin-Yang theory by

the ancient Chinese such as the Hand Yang Ming large intestine meridian (LI), Foot Shao Yin

kidney meridian(KI) and the Foot Shao Yang gallbladder meridian (GB) shown in Figure 5.

Another is the corresponding of the 64 hexagrams in the Change Book to the continuous flow

over cycles of order 6 such as those shown in Figure 6, which is essentially the soul of Chinese

science and a scientific method for understanding objective things rather than a superstition.

Figure 6

Chapter 12 “Philosophy of Science” aims to reaffirm that science is a kind of local recog-

nition or conditional reality of things and to discuss how science promotes human civilization

under the harmonious coexistence of humans with the nature. This chapter takes the Theory of

Everything as an example, outlines the application of Smarandache multispace or multisystem

in the development of science by combinatorial notion and points out also that humans should

take the initiative to limit or end some fields or directions in science development. That is,

science needs to have a limiting scale or standard while recognizing things in the universe for

conducting the behaviour of humans and promotes humans harmonious coexistence with the

nature, including those that affects the order of universe, destroys the biological diversity or

affects the behavior of humans ourselves so as to realize the human activities guiding by science

do not disturb the nature, which is the fundamental principle of human development.

§4. A Most Important Objective of Science

A central issues of philosophy of science is to discuss the ultimate goal of science or how science

should develops. Certainly, science serves the ultimate goal of humans. So, what is the ultimate

goal of humans, to dominate the earth or the universe? Of course Not! In the times substance
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shortage, the leader leads all humans of the clan to compete for resources or war with other clans

or groups for the survival and continuation of the clan. In the times of organized production and

material prosperity, humans are more greedy for spiritual enjoyment. Whence, the ultimate

goal of humans is to satisfy the material needs first and then, to realize the spiritual needs

of humans. At the same time, there are no a individual or population in the universe can

dominates the earth or the universe, and the humans are no exception also. In this way, the

ultimate goal of science in the service to humans is to promote the progress of human civilization

and living in harmony with the nature. Since science is the local recognition of things by the

“six sense organs” of human, its improper application in the benefit of humans is surely bound

to disturb the nature because its effects will inevitably come back to humans after accumulated

to a certain extent, resulting in a dilemma of science. However, the initiative to get out of this

dilemma is in the hands of humans ourselves. That is, science should study how not to disturb

the nature and realize the harmonious coexistence of humans with the nature while it benefits

humans. This is the biggest challenge that science faces in guiding human activities.

Personally, I believe that the harmonious coexistence of humans with the nature is the most

important objective in the development of science with the promotion of human civilization in

the 21st century ([11-12]). In this process, the initiative to realize the harmonious coexistence

of humans with the nature lies in humans ourselves. For this objective, the first is necessary

to reflect on the immoral behavior in the past that humans excessively intrude on the nature,

the second is to study the scientific programme of harmonious coexistence with the nature, to

correct and eliminate the harm caused by human’s excessive intrusion on the nature in the past

and the third is the review and restraint of humans ourselves, including the immoral behavior in

previous human activities and consciously harmonious coexistence with the nature for everyone.

In this way and only in this way, the ultimate goal of our humans will comes true.
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